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BACKGROUND People with monogenic familial hypercholesterolemia (FH) are at an increased risk of premature cor-

onary heart disease and death. With a prevalence of 1:250, FH is relatively common; but currently there is no population

screening strategy in place and most carriers are identified late in life, delaying timely and cost-effective interventions.

OBJECTIVES The purpose of this study was to derive an algorithm to identify people with suspected monogenic FH for

subsequent confirmatory genomic testing and cascade screening.

METHODS A least absolute shrinkage and selection operator logistic regression model was used to identify predictors

that accurately identified people with FH in 139,779 unrelated participants of the UK Biobank. Candidate predictors

included information on medical and family history, anthropometric measures, blood biomarkers, and a low-density li-

poprotein cholesterol (LDL-C) polygenic score (PGS). Model derivation and evaluation were performed in independent

training and testing data.

RESULTS A total of 488 FH variant carriers were identified using whole-exome sequencing of the low-density

lipoprotein receptor, apolipoprotein B, apolipoprotein E, proprotein convertase subtilisin/kexin type 9 genes. A 14-variable

algorithm for FH was derived, with an area under the curve of 0.77 (95% CI: 0.71-0.83), where the top 5 most important

variables included triglyceride, LDL-C, apolipoprotein A1 concentrations, self-reported statin use, and LDL-C PGS.

Excluding the PGS as a candidate feature resulted in a 9-variable model with a comparable area under the curve: 0.76

(95% CI: 0.71-0.82). Both multivariable models (w/wo the PGS) outperformed screening-prioritization based on LDL-C

adjusted for statin use.

CONCLUSIONS Detecting individuals with FH can be improved by considering additional predictors. This would reduce

the sequencing burden in a 2-stage population screening strategy for FH. (JACC Adv 2023;-:100333) © 2023 The

Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

ALT = alanine

aminotransferase

Apo-A1 = apolipoprotein A1

AUC = area under the curve

BMI = body mass index

CHD = coronary heart disease

CRP = C-reactive protein

DBP = diastolic blood pressure

FH = familial

hypercholesterolemia

HDL-C = high-density

lipoprotein cholesterol

LASSO = least absolute

shrinkage and selection

operator

LDL-C = low-density

lipoprotein cholesterol

PGS = polygenic score

VUS = variant of unknown

significance

WES = whole-exome

sequencing
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F amilial hypercholesterolemia (FH) is
an autosomal dominant disorder
caused by variants in the low-density

lipoprotein receptor (LDLR), apolipoprotein
B (APOB), proprotein convertase subtilisin/
kexin 9 (PCSK9), or apolipoprotein E (APOE)
genes. It is characterized by elevated low-
density lipoprotein cholesterol (LDL-C)
concentration and premature coronary heart
disease (CHD).1 FH-causing variants are
found in about 1 in 250 individuals (95% CI:
1:345-1:192)2; however, the condition remains
highly underdiagnosed worldwide with only
an estimated 1% to 10% of cases diagnosed.3,4

Affected individuals are at increased risk of
premature CHD, due to lifelong exposure to
elevated levels of LDL-C, where early initia-
tion of lipid-lowering treatment is para-
mount for risk management.3 There is
currently no systematic way of identifying
new index FH cases in the general adult pop-
ulation in most countries (eg, in the United
Kingdom (UK) and United States), although,
cascade testing in families of affected indi-
viduals has been shown to be highly cost-effective.5-
8 Currently, patient diagnosis often happens after
the development of CHD symptoms or by opportu-
nistic measurement of lipid profile and at the discre-
tion of clinicians. Diagnosis is made using tools such
as the Dutch Lipid Clinical Network and the Simon
Broome criteria, which have not been designed to be
used as population screening tools.1

In 2016, Wald et al9 suggested screening children
aged 15 months of age by measurement of total or
LDL-C to systematically identify index monogenic FH
cases in the general population as a prelude to testing
parents and other family members. Futema et al10

showed that measurement of LDL-C alone at age 9
may be insufficiently accurate in reliably dis-
tinguishing FH-variant carriers from those with an
elevated cholesterol as a consequence of diet and
lifestyle factors or carriage of a high burden of com-
mon cholesterol-raising alleles, and suggested adding
a confirmatory targeted-sequencing step to reduce
the number of false positive cases detected.

The increased availability of routine health checks
in adults either through work-place schemes or local
healthcare providers offers an opportunity to sys-
tematically identify adult carriers of FH-causing var-
iants.11 Positioning adult FH screening within routine
health checks, which typically record a substantial
number of other clinical measurements, offers the
opportunity to consider additional predictors for FH.
This may be important, because, while the effect of
FH on CHD risk is mediated through elevated circu-
lating LDL-C concentration, it is well-known that
LDL-C concentration associates with other variables
such as blood and liver biomarkers, diet, and also
with common genetic variants.12 Combining multiple
environmental factors and a polygenic score (PGS) for
LDL-C raising genetic variants may improve the
detection of people with monogenic FH for prioriti-
zation for confirmatory genetic testing.13,14 This is
because individuals with monogenic FH are likely to
have a measured LDL-C concentration that is higher
than can be accounted for by these other variables.

In the current manuscript we utilize the UK Bio-
bank data to evaluate the detection rate and testing
burden of 4 prioritization strategies to identify people
with suspected FH-causing variants for confirmatory
genetic testing: 1) no prioritization (ie, referring all
participants for sequencing); 2) a plasma LDL-C-based
prioritization model adjusting for statin treatment; 3)
a multivariable machine learning prioritization model
with nongenetic variables; and 4) a multivariable
machine learning prioritization model which includes
a PGS for LDL-C (Central Illustration).

METHODS

AVAILABLE GENOMICS DATA AND FH ASCERTAINMENT.

We identified 472,147 UK Biobank participants of
White British ancestry (data-field 21000) as part of the
approved project identifications 40721 and 44972.
After performing genomic quality control steps
(Supplemental Appendix), 341,515 individuals
remained, including 140,439 with whole-exome
sequencing (WES) data necessary to identify those
who carry an FH-causing variant. Causal FH variants
were searched for in the WES data encompassing the
LDLR, APOB, and PCSK9 genes (Supplemental
Appendix, Supplemental Table 1). The pathogenic
variant p.Leu167del in APOE associated with FH was
extracted.15 A total of 488 pathogenic and likely
pathogenic FH variants were identified
(Supplemental Table 2). Additionally, 660 partici-
pants were found to carry FH variants of uncertain
significance (VUS) (Supplemental Table 3). These
were excluded from the analysis because more evi-
dence is required to interpret the effect of those VUS.

LDL-C PGS GENERATION. We next generated a PGS
for LDL-C concentration using an independent data
subset of 173,672 White British participants without
lipid-lowering medication or WES data (Supplemental
Figure 1). An initial list of 10,137 genetic variants with
a P value threshold of <5 � 10�4 was obtained from
the Global Lipids Genetics Consortium genome-wide
association study summary statistics for LDL-C.16
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CENTRAL ILLUSTRATION A New Prediction Model to Improve the Detection of Familial
Hypercholesterolemia Variant Carriers Was Developed in This Study Using Machine Learning (Least Absolute Shrinkage
and Selection Operator)

Gratton J, et al. JACC Adv. 2023;-(-):100333.

This model improves the prioritization of individuals for familial hypercholesterolemia–variant genomic sequencing confirmation. The model, developed and derived in

the UK Biobank (with 139,779 whole-exome sequenced participants including 488 familial hypercholesterolemia variant carriers), included 14 predictor variables such

as low-density lipoprotein cholesterol, apolipoprotein A1, triglyceride, alanine aminotransferase, c-reactive protein concentrations, statin use, low-density lipoprotein

cholesterol polygenic score, age, diastolic blood pressure, body mass index, prevalent type 2 diabetes, family history of coronary heart disease, and interaction terms.

It performed better than a model using low-density lipoprotein cholesterol or low-density lipoprotein cholesterol and statin use only. The green icons represent

unaffected individuals, while those in orange represent familial hypercholesterolemia carriers. ALT ¼ alanine aminotransferase; Apo-A1 ¼ apolipoprotein A1;

BMI ¼ body mass index; CHD ¼ coronary heart disease; CRP ¼ C-reactive protein; DBP ¼ diastolic blood pressure; LASSO ¼ least absolute shrinkage and selection

operator; LDL-C ¼ low-density lipoprotein cholesterol; PGS ¼ polygenic score; T2D ¼ type 2 diabetes.
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To reduce the number of potentially redundant vari-
ants and optimize LDL-C prediction, we next applied
a least absolute shrinkage and selection operator
(LASSO) regression algorithm using the biglasso
package in R.17 The degree of penalization was
determined through 15-fold cross-validation, maxi-
mizing the explained variance (R2), which resulted in
a 1,466 genetic variant LDL-C PGS.
DERIVING MACHINE LEARNING ALGORITHMS TO

PRIORITIZE PARTICIPANTS WITH FH. We extracted
data on a total of 24 candidate predictors related to
FH, and feasible to measure and obtain in a clinical
setting, specifically: LDL-C, high-density lipoprotein
cholesterol (HDL-C), total cholesterol, triglycerides,
lipoprotein A, apolipoprotein A1 (Apo-A1), apolipo-
protein B, C-reactive protein (CRP), aspartate amino-
transferase, alanine aminotransferase (ALT), alkaline
phosphatase, sex, body mass index (BMI), age, self-
reported statin use, alcohol use, systolic blood pres-
sure, diastolic blood pressure (DBP), Townsend
deprivation index, smoking status, family history of
CHD, type 2 diabetes diagnosis, hypertension, and
LDL-C PGS. This was expanded by including 10 prod-
uct terms between: age and LDL-C, age and LDL-C PGS,
LDL-C PGS and LDL-C, age2, LDL-C2, statin use and
LDL-C, family history of CHD and sex, family history of
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CHD and statin use, family history of CHD and alcohol
use, and family history of CHD and hypertension. The
limited missing data (Supplemental Table 4) were
singly imputed using the R package MICE.18

Model derivation was performed using the WES
data, applying a 80% training data split of 111,824
subjects, retaining 20% testing data (containing 93
carriers of 27,955 subjects) to unbiasedly evaluate
model performance (Supplemental Figure 1,
Supplemental Table 5). To prevent potential model
instability, highly correlated variables (ie, multicol-
linear) were removed. These included apolipoprotein
B and total cholesterol (Supplemental Figure 2).
Variables were standardized to mean 0 and stan-
dard deviation (SD) 1 (Supplemental Tables 6 and 7).
Finally, we applied a binomial regression model
with LASSO penalization to derive a discrimination–
optimized FH prediction model. Specifically,
optimal penalization was determined through 15-
fold cross-validation maximizing the area under
the receiver operating characteristic curve (AUC).17

A first multivariable model was derived with
nongenetic variables only (ie, without LDL-C PGS),
and a second model was generated with the inclu-
sion of LDL-C PGS.

Model performance was evaluated using the 20%
testing data based on its discriminative ability (AUC),
appropriate calibration of predicted and observed
probability of having an FH variant (using calibration
plots, calibration-in-the-large [CIL], and calibration
slope [CS]), and classification metrics (sensitivity,
specificity (or its compliment the false positive rate),
positive predictive value, and the negative predicted
value).

MODEL COMPARISON: A DECISION CURVE ANALYSIS. A
decision curve analysis was performed using dcurves
package version 0.3.0,19 comparing a model’s net
benefit across various probability thresholds for
confirmatory FH screening. Here, “net benefit” is
calculated as the weighted difference between true
and false positives at a specific threshold.20 A deci-
sion curve analysis is preferable to a net reclassifica-
tion analysis as it provides a comparison of all models
over all possible probability thresholds, instead of
focusing on 1 arbitrary threshold.

EVALUATING THE BURDEN OF GENOMIC SEQUENCING

FOR FH. While genetic sequencing is the gold stan-
dard for FH diagnosis, it may often be prohibitively
expensive to offer it to an entire population as a
screening strategy. We, therefore, explored whether
prioritizing people with suspected FH can reduce the
screening burden with an acceptable number of false-
negative results. We evaluated the following
prioritization strategies: 1) no prioritization (ie,
referring all participants for sequencing), 2) prioriti-
zation based on LDL-C concentration (adjusting for
statin use), 3) a multivariable model built from clin-
ical biomarkers and environmental predictors only, 4)
a multivariable model built from genetic, clinical
biomarkers, and environmental predictors. These
prioritization strategies were evaluated on the num-
ber of subjects that would need to be sequenced, the
proportion of FH carriers who would be missed, and
the ratio of FH carriers correctly prioritized by the
number of noncarriers unnecessarily offered
sequencing. We further wish to emphasize that the
0.006 probability threshold was selected as an
example to illustrate the potential impact of cascade
screening. While this threshold was supported by our
decision curve analysis (ie, located within the plau-
sible range of probability thresholds), more formal
analyses of cost and benefit need to be conducted
before deciding on a more definitive threshold rele-
vant for clinical implementation.

RESULTS

PARTICIPANT CHARACTERISTICS OF OUR STUDY

COHORT. Using the UK Biobank WES data, we iden-
tified 488 pathogenic or likely pathogenic FH
variant carriers (list of variants shown in
Supplemental Table 2) and 139,291 noncarriers;
prevalence of 0.35% (95% CI: 0.32-0.38). FH variant
carriers had a significantly higher frequency of a
family history of CHD (62.7% vs 48.1% in controls),
higher prevalence (8.2% vs 2.8% in controls) and
incidence (6.6% vs 3.9% in controls) of CHD (Table 1).
MULTIVARIABLE MACHINE LEARNING MODELS TO

PRIORITIZE FH VARIANT CARRIERS. Nine nonge-
netic variables were retained by the LASSO regression
model which did not include the LDL-C PGS
(Supplemental Table 6). These predictors were age,
statin use, systolic blood pressure, DBP, Apo-A1 and
triglyceride concentrations, family history of CHD,
and 2 interaction terms: LDL-C2, and statin use and
LDL-C. Retention of these product terms indicated
the presence of nonlinear associations with FH, eg,
the LDL-C association with the presence of a mono-
genic FH variant was found to be quadratic
(Supplemental Figure 4). The test data AUC for this
model was of 0.76 (95% CI: 0.71-0.82).

Fourteen of the 32 variables were retained by the
LASSO regression model which included a LDL-C PGS
for the prediction of FH (Figure 1A, Supplemental
Figure 3, Supplemental Table 7), including triglycer-
ide, Apo-A1, ALT, and CRP concentrations, statin use,
LDL-C PGS, family history of CHD, DBP, BMI, and
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TABLE 1 UK Biobank Participant Characteristics Stratified by Carrying a FH-Causing Variant

FH-Variant Negative
(n ¼ 139,291)

FH-Variant Positive
(n ¼ 488) P Value Missing (%)

Male 63,382 (45.5) 207 (42.4) 0.187 0.0

Age (y) 58.0 (51.0–63.0) 58.0 (51.0–63.0) 0.803 0.0

Townsend deprivation index �2.4 (�3.8–0.0) �2.2 (�3.7–0.2) 0.346 0.1

BMI, kg/m2 26.7 (24.1–29.8) 27.1 (23.9–29.8) 0.689 0.3

Smoking status 0.685 3.7

Non-smoker 76,862 (57.3) 262 (56.2)

Former smoker 49,302 (36.7) 171 (36.7)

Light smoker (<10 cigarettes/d) 1,952 (1.5) 6 (1.3)

Moderate smoker (10-19 cigarettes/d) 3,296 (2.5) 13 (2.8)

Heavy smoker (>20 cigarettes/d) 2,796 (2.1) 14 (3.0)

Alcohol use (%) 0.492 0.0

Prefer not to answer 88 (0.1) 1 (0.2)

1/d 29,719 (21.3) 93 (19.1)

3-4 times/wk 34,015 (24.4) 135 (27.7)

1-2 times/wk 36,823 (26.4) 130 (26.6)

1-3 times/mo 15,498 (11.1) 54 (11.1)

Special occasions 14,383 (10.3) 45 (9.2)

Never 8,765 (6.3) 30 (6.1)

Family history of CHD 67,013 (48.1) 306 (62.7) <0.001 0.0

Systolic blood pressure, mm Hg 136.5 (125.0–149.5) 135.0 (124.5–148.5) 0.119 0.2

Diastolic blood pressure, mm Hg 82.0 (75.0–89.0) 81.0 (74.0–87.0) 0.024 0.2

Statin use 18,139 (13.0) 165 (33.8) <0.001 0.0

Hypertension 7,946 (5.7) 35 (7.2) 0.195 0.0

LDL-C PGS 3.7 (3.5–3.9) 3.7 (3.5–3.9) 0.652 0.0

Biomarkers

LDL-C (unadjusted for statin use), mmol/L 3.5 (3.0–4.1) 3.9 (3.2–4.9) <0.001 5.0

HDL-C, mmol/L 1.4 (1.2–1.7) 1.4 (1.2–1.6) 0.086 12.5

Total cholesterol, mmol/L 5.7 (4.9–6.4) 6.1 (5.2–7.3) <0.001 4.8

Lipoprotein(a), nmol/L 20.0 (9.3–59.8) 27.6 (10.3–59.2) 0.083 24.3

Apolipoprotein A1, g/L 1.5 (1.4–1.7) 1.5 (1.3–1.6) <0.001 13.0

Apolipoprotein B, g/L 1.0 (0.9–1.2) 1.2 (1.0–1.4) <0.001 5.3

Triglycerides, mmol/L 1.5 (1.1–2.2) 1.3 (0.9–1.9) <0.001 4.9

C-reactive protein, mg/L 1.3 (0.7–2.7) 1.2 (0.6–2.3) 0.065 5.1

Aspartate aminotransferase, U/L 24.4 (21.0–28.8) 25.1 (21.0–29.6) 0.111 5.2

Alanine aminotransferase, U/L 20.1 (15.4–27.3) 20.2 (15.6–27.2) 0.848 4.9

Alkaline phosphatase, U/L 80.1 (67.1–95.4) 80.6 (66.8–96.1) 0.506 4.8

Disease prevalence and incidence

CHD prevalence 3,890 (2.8) 40 (8.2) <0.001 0.0

CHD incidence 5,370 (3.9) 32 (6.6) 0.003 0.0

CVD prevalence 5,686 (4.1) 45 (9.2) <0.001 0.0

CVD incidence 9,038 (6.5) 46 (9.4) 0.011 0.0

Type 2 diabetes prevalence 3,593 (2.6) 11 (2.3) 0.757 0.0

Type 2 diabetes incidence 4,948 (3.6) 19 (3.9) 0.776 0.0

Values are n (%) or median (IQR). The P values shown in the table are from the Kruskal-Wallis Rank Sum test for continuous variables and from the Mann-Whitney U test for
binary variables.

BMI ¼ body mass index; CHD ¼ coronary heart disease; CVD ¼ cardiovascular disease; FH ¼ familial hypercholesterolemia; HDL-C ¼ high-density lipoprotein cholesterol;
LDL-C ¼ low-density lipoprotein cholesterol; PGS ¼ polygenic score.
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prevalent type 2 diabetes. Additionally, the following
product terms were selected: LDL-C2, statin use and
LDL-C, and age and LDL-C PGS. The test data AUC for
this model were comparable but superior to the
previous model: 0.77 (95% CI: 0.71-0.83), with a
training data AUC of 0.78 (95% CI: 0.75-0.81). Cali-
bration statistics (calibration-in-the-large: �0.073
[95% CI: �0.28-0.13] and calibration slope: 1.02
[95% CI: 0.85-1.19]) indicated the predicted probabil-
ity agreed well with the observed probability
(Figure 2A). The median predicted probability of hav-
ing monogenic FH by this multivariable model was
w3-fold higher in FH carriers (0.64% [IQR: 0.31-1.62])
compared to noncarriers (0.23% [IQR: 0.14-0.38]),



FIGURE 2 Discrimination and Calibration of a Multivariable Algorithm Predicting FH Carriership Using Independent Testing Data

(A) The calibration plot for the multivariable model where the mean predicted and mean observed probability for each decile of the test data

are depicted by the datapoints with their 95% CI. Perfect calibration is indicated by the vertical gray line. The calibration-in-the-large and

the calibration slope values are indicated on the plot with their 95% CI in brackets. The loess line was fitted with familial hypercholester-

olemia–causing variant status as the outcome and mean predicted probability as the predictor. (B) The receiver operating characteristic

curves for the multivariable model (in red), LDL-C and statin model (in green), and LDL-C concentration only model (in blue). The area

under the curve for each of these models are 0.77 (95% CI: 0.71-0.83), 0.71 (95% CI: 0.65-0.77), and 0.62 (95% CI: 0.56-0.68) respectively.

CI ¼ confidence interval; CIL ¼ calibration-in-the-large; CS ¼ calibration slope; LASSO ¼ least absolute shrinkage and selection operator;

LDL-C ¼ low-density lipoprotein cholesterol; PGS ¼ polygenic score.

FIGURE 1 Feature Importance of the Variables Retained by LASSO Regression Predicting Monogenic FH, and the Density Predicted

Probability Distributions From This Model for Unaffected and Affected FH Individuals in White British Participants of the UK Biobank

(A) The 14 predictors retained by least absolute shrinkage and selection operator regression ordered by absolute log odds ratio per standard

deviation. The “x” sign is used to indicate an interaction term. (B) The density predicted probability distributions for affected (in orange) and

unaffected (in blue) FH participants in our test cohort as predicted by the multivariable model. Fourteen unaffected individuals had a

monogenic FH predicted probability above 0.12 and are not shown on the plot for legibility purposes. The vertical dotted lines represent the

various FH predicted probability thresholds evaluated in Supplemental Table 8. Abs ¼ absolute; ALT ¼ alanine aminotransferase; Apo-

A1 ¼ apolipoprotein A1; BMI ¼ body mass index; CHD ¼ coronary heart disease; CRP ¼ C-reactive protein; DBP ¼ diastolic blood pressure;

FH ¼ familial hypercholesterolemia; LDL-C ¼ low-density lipoprotein cholesterol; PGS ¼ polygenic score; T2D ¼ type 2 diabetes.
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FIGURE 3 Decision Curve Analysis of the Multivariable

Models

The highest curve indicates the highest net benefit which

considers the benefits and harms of a model. Sequence all

refers to screening and sequencing the entire population, while

sequence none refers to no familial hypercholesterolemia

screening. The LDL-C þ statin model is a model based on

LDL-C concentration adjusted for statin use. The LASSO

models are the multivariable machine learning models that

either included or excluded a LDL-C polygenic score.

LASSO ¼ least absolute shrinkage and selection operator;

LDL-C ¼ low-density lipoprotein cholesterol; PGS ¼ polygenic

score.
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with partial overlap between FH carriers and non-
carriers (Figure 1B).

Both multivariable machine learning models out-
performed a model which only considered LDL-C
(AUC: 0.62 [95% CI: 0.56-0.68]), as well as a model
which corrected for statins (AUC: 0.71 [95% CI: 0.65-
0.77]) (Figure 2B).

SENSITIVITY ANALYSES. We further investigated
whether the model was better at predicting APOB or
LDLR FH-causing variants. Using the test data, the
AUC for predicting APOB FH-causing variants (which
in 98% of the cases was the p.Arg3527Gln change) was
0.81 (95% CI: 0.69-0.94), and for predicting LDLR FH-
causing variants was 0.76 (95% CI: 0.70-0.82). Addi-
tionally, we explored model performance across age
groups (Supplemental Results), which did not
differ significantly.

Finally, we additionally considered a model with
HDL-C concentration instead of Apo-A1, where the
former is more readily available in most clinical set-
tings; also finding comparable performance with our
original multivariable model (test data AUC of 0.77
[95% CI: 0.71-0.82]).

EVALUATING THE FH SEQUENCING STRATEGIES

THROUGH DECISION CURVE ANALYSIS. We next
determined at which probability threshold the net
benefit of the various models was larger than the
“sequence all” strategy (Figure 3). The net benefit of
the “sequence all” strategy was lower than that of the
other models tested at a threshold of 0.0013 (0.13%).
This implies that model-based prioritization for
confirmatory FH sequencing is more beneficial if one
decided to screen 1/0.0013 ¼ 769 or more people to
detected one FH case. Irrespective of the probability
threshold, the multivariable machine learning models
had a larger net benefit than the LDL-C adjusted for
statin use model. At a threshold of 0.0050 (0.5%), the
multivariable model with the LDL-C PGS had the
largest net benefit out of all the models
tested (Figure 3).

PRIORITIZING INDIVIDUALS FOR FH GENOMIC

TESTING IN A 2-STAGE POPULATION SCREENING

STRATEGY. As an illustrative example, we evaluated
the impact of a 2-stage population screen for FH
where the second stage consisted of targeted
sequencing of FH variants, comparing the multivari-
able model with a PGS to the statin-adjusted LDL-C
model (Supplemental Figure 5, Supplemental
Table 8). In this example, we employed a common
probability threshold of 0.006 (0.6%), which falls
within the plausible range found using the decision
curve analysis (Figure 3). On average, 7 additional FH
carriers would be detected for 100,000 individuals
screened when using the multivariable model with
LDL-C PGS compared to the LDL-C and statin use
model. This multivariable model would refer 12,033
individuals (12%) for genetic sequencing, compared
to 14,730 (15%) with the LDL-C and statin use model,
resulting in an 18% reduction in genetic testing for
this specific threshold.

Furthermore, if we assume that FH has a popula-
tion prevalence of 1 in 286 (equal to our cohort’s
prevalence) and that one FH case has on average 1.5
first-degree relatives ([2 children þ 1 sibling]/2) who
are also affected by FH (discovered through cascade
testing),21 then overall one FH case would be identi-
fied for every w219 people screened when using the
multivariable model with LDL-C PGS, compared to
one FH case for every w228 individuals screened with
the LDL-C and statin use model.

DISCUSSION

In the current manuscript, we derived a multivariable
machine learning model to identify people with
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suspected FH for confirmatory DNA sequencing in the
context of population screening. Using LASSO
regression, we derived a 14-feature model consisting
of LDL-C, Apo-A1, triglyceride, ALT and CRP concen-
trations, self-reported statin use, family history of
CHD, DBP, BMI, type 2 diabetes diagnosis, 3-product
terms, and an LDL-C PGS. The multivariable algo-
rithm was able to discriminate between FH and non-
FH carriers with an AUC of 0.77 (95% CI: 0.71-0.83),
with good calibration; outperforming a simpler model
consisting of LDL-C and an indicator for statin pre-
scription, and a multivariable model without LDL-C
PGS as a predictor. The model presented here could
be considered as part of a national screening pro-
gramme for FH (eg, integrated with national or local
vascular health checks) in countries (or even in-
dustries) where motivation, resources, and infra-
structure allow it.

Above a classification threshold of 0.0013 (0.13%),
the multivariable algorithm that contained the LDL-C
PGS showed the highest net benefit out of all the
models tested (Figure 3), and was able to decrease the
number of subjects referred to genetic sequencing (as
an example: from 100,000 individuals without any
prioritization, to 14,730 with prioritization using the
LDL-C and statin use model, and to 12,033 with pri-
oritization using the multivariable model for a pre-
dicted probability threshold of carrying a variant for
monogenic FH of 0.006; equivalent to approximately
a 18% decrease in individuals needed to be sequenced
between the last 2 models [Supplemental Figure 5]).
These differences become more significant if extrap-
olating the values to a population-wide scale
comprising of millions of participants screened. The
choice of screening method for FH is very much
dependent on the threshold chosen (Figure 3) and on
the resources available. This manuscript explored the
differences in performance of possible FH screening
strategies in adults, and our results provide support
for opportunistic screening and seeding of cascade
testing for FH using the multivariable algorithms
derived here, which could be integrated within
existing health checks offered to employers or local
health care providers (eg, the National Health Service
vascular checks in the UK).11

Previously, Banda et al22 used a machine learning
method to detect monogenic FH cases from electronic
health records. While their model showed an impres-
sive AUC of 0.94, one of their most important features
was referral to a cardiology clinic, which is in very
close proximity to confirmatory FH testing, limiting
the model’s utility as a prospective tool for FH diag-
nosis. Besseling et al23 developed a multivariable
model to identify FH carriers validated in study par-
ticipants consisting of FH cases and their relatives,
again limiting applicability to the general population.
Our model instead considers FH prioritization in a
non–general practice-referred population and is more
generalizable as a systematic population screening
tool.

Our multivariable model included 3 terms for
LDL-C (LDL-C itself, LDL-C squared, and an interac-
tion with statin prescription), which combined makes
it the most important predictor. Additionally, our
model also identified novel predictors for FH such as
triglyceride and Apo-A1 concentrations, with tri-
glycerides having the largest absolute odds ratio per
SD (0.60). In our study we find that FH carriers had
significantly lower triglyceride concentrations than
noncarriers (Table 1), which resulted in a negative
association, indicating that triglyceride concentra-
tions can be useful in discriminating between in-
dividuals who have hypercholesterolemia due to
lifestyle factors or other causes (eg, combined
hyperlipidemia) instead of an FH-causing variant. We
also found that higher Apo-A1 concentrations, a pro-
tein found on HDL particles, was associated with a
decreased probability of FH. Apo-A1 concentration
can also be readily replaced by HDL-C concentration
without impacting model performance as shown in
the Supplemental Results. Finally, we note that our
multivariable FH model retained a squared term for
LDL-C, suggesting that LDL-C is not linearly related
with carrying an FH variant, but rather has a
quadratic relationship (Supplemental Figure 4).

The variables included in our multivariable algo-
rithm should not be interpreted as causal risk factors
for monogenic FH; they simply help to distinguish
nonmonogenetic sources of variation in LDL-C con-
centrations from monogenic causes (as was discussed
in more detail previously with triglyceride concen-
trations). This also provides the rational for including
an LDL-C PGS in the model: a large discrepancy be-
tween predicted LDL-C concentrations (by the LDL-C
PGS) and observed LDL-C concentrations might be
indicative of FH carriership,13,14 demonstrated here
by a negative coefficient for LDL-C PGS in the model
(Supplemental Table 7). We note that a previous
LDL-C PGS by Wu et al24 had a substantially larger R-
squared (0.21 [95% CI: 0.20-0.22]) than reported here
(0.14 [95% CI: 0.13-0.15]). Unlike Wu et al who iden-
tified genetic variants from an internal UK Biobank
LDL-C genome-wide association study overlapping
with the PGS training data, we identified variants
based on an independent dataset from Global Lipids
Genetics Consortium,16 guarding against overfitting
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through ‘data-leakage’ between the training and
testing data sets and providing a more robust esti-
mate of explained variance. Currently, PGS informa-
tion is not routinely used or collected in clinical
practice, which is why we also derived a multivariable
model without LDL-C PGS, which did not meaning-
fully differ (Supplemental Table 6). Previous studies
have suggested that PGS could be used to identify
individuals with a rare variant for certain diseases,
such as FH.13,14 Our study confirms the utility of the
PGS for FH prioritization; however, given its correla-
tion with environmental variables (eg, lipid levels),
this genetic information can be readily replaced with
information from nongenetic data.

STUDY LIMITATIONS. A study limitation to consider
is the exclusion of individuals with VUS from our
study cohort. There is conflicting evidence as to the
causal effects of these VUS in FH. We anticipate that
some are likely to be FH-causing while others are not,
but more research is needed. As more VUS are classi-
fied as either FH-causing or not, the model can be
readily updated to reflect our growing understanding
of FH. Additionally, it is impossible to know whether
some study participants have been genetically tested
for carrying an FH variant, and whether they might
have modified their behavior (eg, diet) following their
diagnosis. This could potentially impact the accuracy
of the multivariable model developed here; however,
considering that only approximately 7% of FH cases
have been diagnosed in the UK,25 this low number of
diagnoses is unlikely to have a significant effect on the
model and results presented here.

We have tested our multivariable model in a
dataset which was independent from the training
data, with no significant difference between training
and testing AUC (difference of 0.01), suggesting
limited model overfitting to the current sample.
Nevertheless, we acknowledge that the chosen cohort
might not be fully representative of the general pop-
ulation due to the older age of the participants,
however, the prevalence of FH in this study (1:286) is
similar to the estimated population prevalence of FH
(1:250), and the models’ performance did not signifi-
cantly differ between different age categories in our
study.2 Considering the older median age of the UK
Biobank participants and the health discrepancies
observed between the UK Biobank and the general
UK population,26 we suggest that this model is
locally validated and updated before applying it to
distinct settings. Model validation and recalibration
should especially be conducted when considering
populations of non-European ancestry. Irrespective
of the important considerations regarding model
transferability, prior to integrating the model in
clinical care, an informed decision should be made on
the optimal predicted probability threshold for
monogenic FH classification (Figure 3). We wish to
highlight that our choice of 0.006 as a threshold in
Supplemental Figure 5 is simply an illustration, and
depending on the available health care resources, a
different threshold might be preferred (Figure 3).

A cost-benefit analysis would be informative in
terms of whether the implementation of these models
is cost-efficient. However, this type of analysis is
country dependent and was not the aim of the current
study. Nonetheless, we anticipate the additional cost
to be marginal if taking into account the rapidly
declining cost of genotyping, the fact that most of the
biomarkers in the models are readily available in
routine clinical practice, and that the infrastructure of
screening facilities and programmes (eg, the National
Health Service vascular checks in the UK) are already
set up in many places.

CONCLUSION

We derived a multivariable classification model for
detecting monogenic FH variant carriers that out-
performed a model based on LDL-C concentration
(adjusted for statin use) for FH screening, and that
offers an opportunity to prioritize suspected FH car-
riers for genetic sequencing.

CODE AVAILABILITY. The mean, SD, and coefficients
of the variables are available in Supplemental
Tables 6 and 7 for implementation.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: FH

carriers are at greater risk of premature CHD and

death and are usually diagnosed late in life, missing

the opportunity of disease prevention. The identifi-

cation of index FH carriers can be improved and will

enable further cascade testing in families.

TRANSLATIONAL OUTLOOK 1: The systematic

identification of FH carriers earlier in life could

improve the outcome of these patients.

TRANSLATIONAL OUTLOOK 2: The identification

of FH carriers in a population has important implica-

tions in downstream cascade testing of close relatives

who are at 50% risk of also carrying the pathogenic

variant.
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