
Environmental Pollution 327 (2023) 121515

Available online 24 March 2023
0269-7491/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Comparison of traditional Cox regression and causal modeling to 
investigate the association between long-term air pollution exposure and 
natural-cause mortality within European cohorts☆ 

Kathrin Wolf a,*, Sophia Rodopoulou b, Jie Chen c, Zorana J. Andersen d, Richard W. Atkinson e, 
Mariska Bauwelinck f, Nicole A.H. Janssen g, Doris Tove Kristoffersen h, Youn-Hee Lim d, 
Bente Oftedal i, Maciek Strak c,g, Danielle Vienneau j,k, Jiawei Zhang d, Bert Brunekreef c, 
Gerard Hoek c, Massimo Stafoggia l,m,1, Evangelia Samoli b,1 

a Institute of Epidemiology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany 
b Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece 
c Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands 
d Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark 
e Population Health Research Institute, St George’s, University of London, London, UK 
f Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium 
g National Institute for Public Health and the Environment, Bilthoven, the Netherlands 
h Cluster for Health Services Research, Norwegian Institute of Public Health, Oslo, Norway 
i Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway 
j Swiss Tropical and Public Health Institute, Allschwil, Switzerland 
k University of Basel, Basel, Switzerland 
l Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Rome, Italy 
m Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden   

A R T I C L E  I N F O   

Keywords: 
Causal inference 
Inverse probability weighting 
Air pollution 
Health effects 
Fine particulate matter 
Nitrogen dioxide 

A B S T R A C T   

Most studies investigating the health effects of long-term exposure to air pollution used traditional regression 
models, although causal inference approaches have been proposed as alternative. However, few studies have 
applied causal models and comparisons with traditional methods are sparse. We therefore compared the asso-
ciations between natural-cause mortality and exposure to fine particulate matter (PM2.5) and nitrogen dioxide 
(NO2) using traditional Cox and causal models in a large multicenter cohort setting. We analysed data from eight 
well-characterized cohorts (pooled cohort) and seven administrative cohorts from eleven European countries. 
Annual mean PM2.5 and NO2 from Europe-wide models were assigned to baseline residential addresses and 
dichotomized at selected cut-off values (PM2.5: 10, 12, 15 μg/m3; NO2: 20, 40 μg/m3). For each pollutant, we 
estimated the propensity score as the conditional likelihood of exposure given available covariates, and derived 
corresponding inverse-probability weights (IPW). We applied Cox proportional hazards models i) adjusting for 
all covariates (“traditional Cox”) and ii) weighting by IPW (“causal model”). Of 325,367 and 28,063,809 par-
ticipants in the pooled and administrative cohorts, 47,131 and 3,580,264 died from natural causes, respectively. 
For PM2.5 above vs. below 12 μg/m3, the hazard ratios (HRs) of natural-cause mortality were 1.17 (95% CI 
1.13–1.21) and 1.15 (1.11–1.19) for the traditional and causal models in the pooled cohort, and 1.03 (1.01–1.06) 
and 1.02 (0.97–1.09) in the administrative cohorts. For NO2 above vs below 20 μg/m3, the HRs were 1.12 
(1.09–1.14) and 1.07 (1.05–1.09) for the pooled and 1.06 (95% CI 1.03–1.08) and 1.05 (1.02–1.07) for the 
administrative cohorts. In conclusion, we observed mostly consistent associations between long-term air pollu-
tion exposure and natural-cause mortality with both approaches, though estimates partly differed in individual 
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cohorts with no systematic pattern. The application of multiple modelling methods might help to improve causal 
inference. 

299 of 300 words.   

1. Introduction 

Evidence is increasing that associations between long-term exposure 
to outdoor air pollution and mortality and morbidity also persist at low 
concentrations (e.g. lower than the current limit values set by the Eu-
ropean Union (EU) (2008/50/EC Directive on Ambient Air Quality and 
Cleaner Air for Europe and 2004/107/EC Directive on heavy metals and 
polycyclic aromatic hydrocarbons in ambient air), the US Environ-
mental Protection Agency (EPA) standards, and World Health Organi-
zation (WHO) 2005 air quality guidelines) (Brauer et al., 2022; 
Brunekreef et al., 2021; Dominici et al., 2022; Burnett et al., 2018; Chen 
and Hoek, 2020). Consequently, the WHO has recently lowered their 
guidelines considerably, e.g. from 10 to 5 μg/m3 for annual average 
PM2.5 and from 40 to 10 μg/m3 for annual average NO2 (World Health 
Organization (WHO), 2021). 

In our previous analyses within the Effects of Low-Level Air Pollu-
tion: A Study in Europe (ELAPSE) project, we observed associations 
between air pollution and natural-cause mortality in the well- 
characterized ELAPSE pooled cohort as well as in seven population- 
based administrative cohorts. Thereby, we used traditional Cox regres-
sion adjusting for an extensive set of individual and area-level covariates 
(Strak et al., 2021; Stafoggia et al., 2022). The associations persisted 
when reducing our study population to participants exposed to con-
centrations below the current EU limits of 25 μg/m3 for PM2.5 and 40 for 
NO2, but also below the stricter EPA standard of 12 μg/m3 and WHO 
2005 guideline for PM2.5 of 10 μg/m3, and 20 μg/m3 for NO2 which was 
suggested by the Health Risks of Air Pollution In Europe (HRAPIE) 
(Health risks of air pollution, 2013) project. 

While some argue that traditional approaches (which include po-
tential confounders as covariates in the regression model) do not inform 
causality, others argue against, suggesting that an integration of results 
from different methods is essential to improve causal inference (Pearce 
et al., 2019; Wu et al., 2020). Causal inference models that mimic ran-
domized controlled trials have been suggested to be: less susceptible to 
sources of bias, particularly confounding; more robust to model mis-
specification and; if correctly specified, may identify causal relation-
ships (Dominici et al., 2022; Higbee et al., 2020; Little and Rubin, 2000; 
Rubin, 2008). However, several main assumptions need to be fulfilled: 
consistency, positivity and no unmeasured confounders (Dominici et al., 
2022; Makar et al., 2017). Consistency, sometimes also referred to as no 
interference or stable unit treatment value assumption, states that the 
potential outcome for a given observation is not affected by the exposure 
(or treatment assignment) of any other observation. Positivity (or 
overlap) implies that each individual has a positive chance of receiving 
any exposure level (or each level of treatment) independent of the set of 
potential confounders. Last, no unmeasured confounders assumes that 
the available covariates are sufficient to adjust for residual confounding. 
A major advantage of causal inference methods over traditional multi-
variable regression models is the splitting of the design and analyses 
stage. In the design stage, the approximation of a randomized study can 
be quantified and visualized, which should then allow an evaluation of 
causality of results of the analyses stage (Wu et al., 2020; Rubin, 2008). 

The aim of the study was to compare the associations between 
natural-cause mortality and exposure to fine particulate matter (PM2.5) 
and nitrogen dioxide (NO2) above vs. below selected cut-off values using 
traditional Cox and causal models in a large multicenter cohort setting. 

2. Materials and methods 

We followed a causal inference approach suggested by Makar and 

colleagues using inverse probability weighting (IPW) (Makar et al., 
2017). Thereby, the exposure data is dichotomized at selected cut-off 
values. Then, for each binary pollutant exposure, a propensity score 
(PS) is calculated as the conditional likelihood of exposure given all 
available covariates. Finally, corresponding IPWs are derived and 
included in a weighted Cox proportional hazards model. Although this 
method implies the assumption that the exposure is binary and 
time-invariant, we chose this approach over others using continuous 
exposures (Wu et al., 2020; Higbee et al., 2020; Naimi et al., 2014). 
Reasons for the binary approach included simplicity in assumptions 
testing, interpretation and computational complexity, particularly as we 
aimed to include as many cohorts from our previous analyses as 
possible. Thereby, we did not intend to duplicate our previous findings, 
which specifically related to the question of health effects in the low 
exposure ranges. We rather aimed to supplement them by contrasting 
high versus low exposures using a previously applied causal modelling 
approach allowing easy interpretation. We a-priori defined the cut-off 
levels (PM2.5: 10, 12 and 15 μg/m3; NO2: 20 and 40 μg/m3) on the 
basis of the current US standard (PM2.5: 12 μg/m3), the WHO 2005 Air 
Quality Guidelines (PM2.5: 10 μg/m3; NO2: 40 μg/m3), the WHO HRAPIE 
cut-off value for health impact assessment (NO2: 20 μg/m3), but also 
dependent on the cohorts’ overall distribution (Supplementary Fig. S1). 
However, to obtain stable estimates, we only applied the respective 
cut-offs to those cohorts for which more than 5% of the concentrations 
were both above and below the cut-offs. 

For a detailed description of the pooled and administrative cohorts, 
respective outcomes and exposure assessment, covariates, and statistical 
protocols, we refer to our previous publications (Strak et al., 2021; 
Stafoggia et al., 2022). All included cohort studies were approved by the 
medical ethics committees or appropriate institutional review boards 
complying with all relevant national, state, and local regulations. 

2.1. Study populations and natural-cause mortality definition 

The ELAPSE pooled cohort consists of eight population-based cohorts 
(14 subcohorts) from six European countries: Sweden (Stockholm 
County), Denmark (Copenhagen and Aarhus, and nationwide), France 
(nationwide), the Netherlands (four cities), Germany (Ruhr and Augs-
burg areas), and Austria (Vorarlberg region) (Strak et al., 2021). Most 
cohorts were enrolled from large cities and surrounding regions. 
Recruitment and baseline examinations of most cohorts took place in the 
1990s or early 2000s, and participants were followed up until death, 
emigration out of the study area, or end of follow-up in 2011–15, 
whichever came first. All cohorts harmonised their outcome and co-
variate data according to a common codebook, and transferred it to the 
Institute for Risk Assessment Sciences, Utrecht University, the 
Netherlands, where it was further checked, pooled, and stored on a 
secure server for our analyses. In addition, we analysed data from six 
population-based nationwide cohorts in Belgium, Denmark, England, 
the Netherlands, Norway, and Switzerland, and from one citywide 
cohort in Rome, Italy (Stafoggia et al., 2022). We enrolled participants 
aged 30 years or older between 2000 and 2011 based on data from 
population or census registries and followed them up until death, 
emigration out of the study area, or end of follow-up in 2011–17, 
whichever came first. Since data needed to be analysed in a national 
secure environment in all countries, we harmonised the definition of 
covariates and standardised the analytical strategy by centrally devel-
oping and distributing common R scripts to all cohort analysts. 

For all cohorts, we defined mortality from natural causes according 
to the International Classification of Diseases, 9th revision (ICD-9) or 
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10th revision (ICD-10) as ICD-9: 001–779 or ICD-10: A00-R99, based on 
the underlying cause of death recorded on death certificates in mortality 
registries. 

The present analysis and wider ELAPSE project was done in accor-
dance with the Declaration of Helsinki. The original cohort studies were 
approved by the relevant authorities complying with all relevant na-
tional, state, and local regulations, and written informed consent was 
obtained from all participants before enrolment. 

2.2. Air pollution exposure assessment 

We centrally modeled annual mean concentrations of PM2.5 and NO2 
by land use regression (LUR) models for Western Europe for the year 
2010 (de Hoogh et al., 2018). The model was developed by regressing 
routine monitoring data from the AirBase network of the European 
Environmental Agency on satellite observations, chemical transport 
model estimates, land use, and road data and validated the models with 
5-fold cross-validation (de Hoogh et al., 2018). All models performed 
well with an R2 (fraction of variance explained by the respective models) 
of 66% for PM2.5 and 58% for NO2. We then applied the models to a 100 
m * 100 m grid to compile concentration maps and assigned the 
respective exposures to the baseline residential addresses of our cohort 
participants. To apply the binary approach, we dichotomized the indi-
vidually assigned exposures at the a-priori selected cut-off levels. 

2.3. Covariates 

Information on covariates was only available at baseline. In the 
pooled cohort, we included age, sex, year of enrolment, smoking status, 
duration and intensity of smoking (linear and squared for intensity), 
body mass index, marital status, employment status and neighbourhood 
or municipal level mean income in 2001 to adjust for potential con-
founders (Supplementary Table S1). In addition, we adjusted for sub-
cohorts to account for differences not fully captured by the available 
covariates (Samoli et al., 2021). Since not all of these covariates were 
available for the administrative cohorts, the confounder model differed 
across cohorts. All cohorts included at least age (timescale), sex (strata), 
some individual-level socio-economic variable (though different be-
tween cohorts) and multiple area-level socioeconomic status (SES) in-
dicators such as income, education, and unemployment rates at both the 
regional and neighbourhood scale (Supplementary Table S2). We 
defined regions as large-scale areas, such as counties and administrative 
regions, which was applicable for the six national cohorts only. Neigh-
bourhoods were defined as smaller units, representing parts of a city, 
with about 1000–10,000 people, with some differences across cohorts. 
In addition, the administrative cohorts included all available 
individual-level variables to achieve maximal adjustment. However, 
only five cohorts had information on marital status and occupation, four 
cohorts had data on country of origin and education and only the English 
cohort had individual data on smoking and body-mass index (BMI). 

For all analyses, we excluded participants with missing information 
on covariates or missing residential address at baseline. 

2.4. Traditional cox regression with binary exposures 

We reran the main covariate models from our previous analyses 
(Strak et al., 2021; Stafoggia et al., 2022) replacing the continuous ex-
posures with the binary pollutants (as specified above) to enable a direct 
comparison with the binary causal inference models. Our previous 
comparisons of different approaches to account for subcohorts in the 
pooled cohort showed stable effect estimates (Samoli et al., 2021). We 
therefore included a categorical covariate in the model instead of the 
previously used strata term to align the model further with the causal 
model. Also, we extensively checked the proportional hazards assump-
tions (Grambsch and Therneau, 1994) by investigating the log-log plots, 
scaled Schoenfeld residuals against time as well as a global test from R 

survival package (cox.zph) in previous analyses. We observed some 
deviation from the proportional hazards assumption for BMI and 
smoking for some of the outcomes. However, sensitivity analyses 
incorporating these in strata resulted in almost identical estimates 
(Hvidtfeldt et al., 2021; Wolf et al., 2021). 

2.5. Causal modeling framework 

In the design stage, we applied IPW to compute participant-specific 
weights and to derive a weighted sample for which the distribution of 
covariates is balanced with regard to the binary exposure. Thus, for each 
of the selected cut-off levels, we fitted a logistic regression with the bi-
nary exposure as response and i) only an intercept (null model), and ii) 
all available covariates as explanatory variables (PS). We then calcu-
lated the weights as the ratio of the predictions from the null model i) vs. 
the predictions from the PS model ii) for the “treated” subjects (those 
above the selected cut-off values). For the "non-treated" participants 
(below the selected cut-off values), we calculated the weights as the 
ratio of the complementary predictions (Supplementary Methods M1). 
We assumed consistency a priori, because ambient exposures are exog-
enous and it is unlikely that individual mortality risks are affected by 
exposures of other individuals in the cohort. To check the positivity 
assumptions, we examined that there is an overlap of PS distributions 
above vs. below the selected cut-off values. The assumption of no un-
measured confounding cannot be tested. For the pooled cohort, we 
adjusted for the main set that was available in all cohorts. For each 
administrative cohort, we included all available individual- and area- 
level covariates. In our previous analyses applying traditional Cox, we 
conducted intensive sensitivity analyses (including adjustment for 
additional covariates, e.g. education, diet, and occupational status, in 
the pooled cohort and indirect adjustment for smoking and BMI in the 
administrative cohorts) (Strak et al., 2021; Stafoggia et al., 2022). Since 
results were very robust, we assume that our main set of covariates is 
adequate to adjust for confounding. Covariate balance before and after 
conditioning for IPW was assessed by standardized mean differences (as 
close to 0 as possible) and Kolmogorov-Smirnov-tests (0 indicates per-
fect identical distributions and 1 indicates perfect separation thus values 
close to 0 are indicative of balance) of the distributions of the covariates 
above vs. below the selected cut-off (Greifer, 2022). 

In the analyses stage, we applied weighted Cox proportional haz-
ards models with weights equal to the IPWs derived in the design stage 
to estimate the causal hazard rate ratios (HR) of exposure to above vs 
below the pollutant-specific cut-off for natural-cause mortality. For the 
pooled cohort, we adjusted for the subcohorts (as categorical variable) 
in the analysis stage rather than the design stage. We assumed the 
subcohort to be less important for predicting exposure, whereas 
adjusting for differences in outcome diagnosis coding and covariates is 
essential. We truncated the left and right tail of the weights to mitigate 
the effect of extremely large or small weights. Specifically, after some 
preliminary checks following Cole and Hernan (2008), we truncated at 
the 1st and 99th quantiles of the distribution of the standardized weights 
to limit the truncation as much as possible. The 95% confidence in-
tervals were calculated based on adjusted standard errors applying 
robust variance estimators to account for the standardized weights 
(Therneau and Grambsch, 2000). Finally, we pooled the cohort-specific 
estimates of the administrative cohorts with fixed and random effects 
meta-analyses. For the latter, we used the restricted maximum likeli-
hood estimator of the between-cohorts variance following our previous 
analyses (Stafoggia et al., 2022; Veroniki et al., 2016). 

2.6. Sensitivity analyses 

To test the robustness of our causal estimates, we alternatively 
truncated the standardized weights at the 5th and 95th quantiles of the 
distribution and repeated the analysis. We did not truncate further, e.g. 
at the 10th and 90th quantiles as applied in Makar et al. (2017), since 
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preliminary checks in the pooled and Rome cohort indicated that the 
most extreme weights were already captured with the initial 1st and 
99th quantiles truncation. 

All analyses were conducted with R software (version 3.6.0) and 
were based on common scripts developed and distributed by the ELAPSE 
statistical group. 

3. Results 

The pooled cohort consisted of 325,367 participants with complete 
data (contributing 6,339,553 person-years of observation) of whom 
47,131 died from natural causes (Table 1). The seven administrative 
cohorts included data from 28,063,809 participants in total 
(257,456,655 person-years), of whom 3,580,264 died from natural 
causes. Mean age at enrollment was 48.7 years in the pooled cohort and 
ranged from 52.6 (Belgian) to 58.9 (English) years in the administrative 
cohorts. The percentage of females was considerably higher in the 
pooled cohort with 66.0% compared to 49.4–54.5% in the administra-
tive cohorts, since four of the subcohorts included only women (Sup-
plementary Tables S1 and S2). Modeled annual mean concentrations for 
the selected cut-off values for the European region are displayed in 
Fig. 1. Mean air pollution concentrations were highest in the Belgian 
(PM2.5) and Roman (NO2) cohorts and lowest in the Norwegian cohort 
(both pollutants) with considerable variation within and across cohorts 
(Table 1 and Supplementary Fig. S1). 

The PM2.5 cut-off value of 12 μg/m3 could not be applied to the 
Belgian, Dutch and Roman cohort since less than 5% of the exposure 
data fell below this cut-off, whereas less than 5% of the data was above 
15 μg/m3 for the Norwegian cohort (and again below 15 μg/m3 for the 
Belgian and Roman cohort; see Supplementary Table S3 for the number 
of persons, person-years at risk and cases above and below the selected 
cut-off values). For NO2, the Norwegian, Danish, English and Swiss 
cohort did not exhibit enough data above 40 μg/m3 and the Belgian and 
Roman cohort lacked enough data below 20 μg/m3. For the pooled 
cohort, only subcohorts with more than 5% of data above and below the 
respective cut-off values were included. We also used 30 μg/m3 for NO2 
as alternative cut-off value for the pooled cohort since only four sub-
cohorts offered enough data for the cut-off value of 40 μg/m3. 

All cohorts showed a reasonable overlap of propensity score distri-
butions above vs. below the selected cut-off values indicating that the 
positivity assumption was met (Supplementary Figs. S2 and S3). Cova-
riates were partly imbalanced before conditioning but balance (stan-
dardized mean differences and/or Kolmogorov-Smirnov-tests close to 0) 
was achieved after conditioning for individual-level covariates, espe-
cially when truncating at the 1st and 99th percentiles (Supplementary 
Figs. S4 and S5). However, the balance plots indicated some deviations 
for some of the regional and neighbourhood socio-economic variables. 

Analyses in the pooled cohort showed consistent associations with 
natural-cause mortality for both pollutants and both approaches 
(Table 2; though the main causal model was not significant for the NO2 
cut-off value of 30 μg/m3). However, the effect sizes partly differed, e.g. 

they were considerably higher for the causal models compared to 
traditional Cox for the PM2.5 cut-off value of 15 μg/m3, quite similar for 
12 μg/m3 and considerably lower for both NO2 cut-offs. 

The pattern was rather heterogeneous in the administrative cohorts 
(Table 3). When increasing PM2.5 exposure from levels below to above 
15 μg/m3, both approaches showed increased HR for natural-cause 
mortality for the majority of administrative cohorts except the English 
cohort with mostly comparable effect estimates (only the Danish causal 
estimate was twice the traditional Cox estimate). For the 12 μg/m3 cut- 
off value, all traditional Cox estimates pointed to positive associations 
though both the English and Swiss cohort showed an inverse association 
in the causal models. The results were consistent for NO2 with all cohorts 
showing a clear positive association and similar effect sizes of the two 
approaches for the 20 μg/m3 cut-off value. For the 40 μg/m3 cut-off 
value, the estimates were heterogenous with an inverse association in 
the Belgian cohort and null or positive associations in the Dutch and 
Roman cohorts (positive for the Dutch causal model and the Roman 
traditional Cox). Thus, the meta-analytical results indicated only a weak 
association for PM2.5 but a clear signal for NO2 with an HR of 1.06 (95% 
CI 1.03–1.08) for the traditional Cox model and of 1.05 (95% CI 
1.02–1.07) for the causal model when increasing levels below to above 
20 μg/m3 (Fig. 2). We could only investigate the 10 μg/m3 cut-off value 
for PM2.5 within the Norwegian cohort, for which we observed HRs of 
1.04 (1.03–1.05) and of 1.03 (95% CI 1.03–1.04) for the traditional and 
causal models, respectively (Supplementary Table S4). 

3.1. Sensitivity analyses 

Truncation at the 1st and 99th percentile resulted in considerably 
better covariate balance compared to truncation at the 5th and 95th 
percentile for most of the cohorts and covariates (Supplementary 
Figs. S4 and S5). Only the Danish (PM2.5 cut-off 15), English (PM2.5 cut- 
off 15), Dutch (PM2.5 cut-off 15; NO2 cut-off 20) and Rome cohort (PM2.5 
cut-off 15; NO2 cut-off 40) indicated a better balance for some of the 
area-level variables for the truncation at the 5th and 95th percentile. 
However, there was no clear pattern across the pollutants or cut-offs and 
the causal HR estimates from the weighted Cox models were mostly 
similar except for the Swiss PM2.5 cut-off value of 15 μg/m3 (Tables 2 
and 3 and Supplementary Fig. S6). 

4. Discussion 

With this large multicenter analysis of the ELAPSE pooled cohort and 
seven administrative cohorts, we aimed to compare the associations 
between natural-cause mortality and long-term exposure to PM2.5 and 
NO2 using a traditional Cox regression model and a causal modelling 
framework using IPW. We observed mostly consistent associations with 
both methods, though effect sizes partly differed in individual cohorts, 
with no particular pattern of larger effect estimates in either method. 
While the pooled cohort showed consistent associations for both pol-
lutants, the pattern was rather heterogeneous in the administrative 

Table 1 
Description of the ELAPSE pooled cohort and seven administrative cohorts.  

Characteristic Pooleda Norwegian Danish English Dutch Belgian Swiss Roman 

Number of participants 325,367 2,309,001 3,083,227 1,368,740 10,376,406 5,474,548 4,188,175 1,263,712 
Follow-up 1985–2015 2001–2016 2000–2015 2011–2017 2008–2012 2001–2011 2000–2014 2001–2015 
Person-years at risk 6,339,553 32,531,421 42,586,464 9,084,293 50,034,558 54,575,223 53,344,296 15,300,400 
Natural-cause mortality, N 47,131 524,592 714,629 145,988 590,832 707,146 661,534 235,543 
Mean (SD) age at enrollment 48.7 (13.4) 53.9 (15.9) 53.0 (15.1) 58.9 (12.8) 53.6 (15.1) 52.6 (15.2) 52.7 (15.2) 55.1 (15.4) 
Percentage of women 66.0% 50.9% 51.7% 52.5% 51.3% 49.4% 52.0% 54.5% 
PM2.5 (μg/m3), mean (SD) 15.0 (3.2) 8.3 (2.6) 12.4 (1.6) 13.1 (1.4) 16.3 (1.4) 18.6 (1.6) 15.9 (2.4) 16.7 (0.9) 
NO2 (μg/m3), mean (SD) 25.0 (8.1) 15.3 (7.8) 20.3 (7.9) 28.0 (6.9) 31.4 (7.1) 30.4 (7.3) 23.7 (7.4) 32.9 (6.1) 
N of individual/area-level confounders 8/1 6/6 5/6 4/1 5/8 6/8 7/8 5/5  

a Descriptive numbers are given for the main model 3 dataset of the pooled cohort (Strak et al., 2021). Numbers slightly differ for the different cut-off values due to an 
inclusion criteria of at least 5% of data that needed to be available above and below the respective cut-off value. 
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cohorts and the meta-analytical results indicated only a weak associa-
tion for PM2.5 but a clear signal for NO2. 

The ELAPSE project was specifically designed to investigate the 

exposure response functions in the low exposure ranges (Brunekreef 
et al., 2021). However, with this analysis we aimed to explore a causal 
inference method that allows standardized application and testing in all 
ELAPSE cohorts to provide a comprehensive picture across the different 
cohort settings. We therefore decided for an IPW approach using binary 
exposures (Makar et al., 2017) over others, more advanced methods 
using continuous exposures (Wu et al., 2020; Higbee et al., 2020; Naimi 
et al., 2014). Makar and colleagues applied the binary IPW approach by 
contrasting PM2.5 concentrations above vs. below the current US stan-
dard of 12 μg/m3 in an US cohort of Medicare beneficiaries. They 
observed no association with all-cause mortality (HR 0.97; 95% CI 
0.90–1.04) but a significant association with all-cause hospitalizations 
(1.07; 1.03–1.10) (Makar et al., 2017). Yet, they had only one year of 
follow-up and the number of deaths was comparably small. When 
restricting the cohort to individuals with exposure levels below 12 
μg/m3, they found an indication for associations with mortality (HR 
1.11; 95% CI 0.97–1.28) and the HR for hospitalizations was doubled 
(1.15; 1.08–1.23) for a cut-off value of 8 μg/m3. In comparison, we 
observed a HR of 1.15 (1.11–1.19) in the pooled cohort and HRs ranging 
from 0.97 (0.95–0.99) to 1.09 (1.07–1.12) in the administrative cohorts. 
However, not all cohorts could be included for all cut-off values since no 
or not enough data was available above or below the selected cut-off 
values. Only the Norwegian cohort allowed to investigate a lower 
cut-off value of 10 μg/m3, for which we observed a HR of 1.03 
(1.03–1.04) whereas Makar et al. reported a HR of 1.09 (0.98–1.22) for 
all-cause mortality. 

Several papers using advanced causal modeling techniques for 
continuous exposures compared their approaches with traditional 
methods (Dominici et al., 2022; Wu et al., 2020; Higbee et al., 2020). 
Higbee and colleagues investigated PM2.5 associations with all-cause 

Fig. 1. Modeled annual mean concentrations for 2010 for PM2.5 (left) and NO2 (right) for the European region.  

Table 2 
Hazard ratios (and 95% confidence intervals) of the association between resi-
dential air pollutants above versus below the specified cut-off values and 
natural-cause mortality in the pooled cohorta. Results from traditional Cox 
regression, main causal model and sensitivity analysis.   

PM2.5 NO2 

Model 15 μg/m3 12 μg/m3 30 μg/m3 20 μg/m3 

% above/below 
cut-off 

51/49 86/14 41/59 69/31 

Traditional Coxb 1.10 (1.08, 
1.13) 

1.17 (1.13, 
1.21) 

1.08 (1.05, 
1.12) 

1.12 (1.09, 
1.14) 

Main Causalc 1.22 (1.20, 
1.25) 

1.15 (1.11, 
1.19) 

1.02 (0.99, 
1.06) 

1.07 (1.05, 
1.09) 

Sensi Causald 1.21 (1.18, 
1.23) 

1.16 (1.12, 
1.20) 

1.04 (1.01, 
1.07) 

1.08 (1.06, 
1.10)  

a Subcohorts for cut-off levels PM2.5 15 μg/m3 (DCH, DNC-1993, DNC-1999, 
E3N, KORA-S3, KORA-S4, VHM_PP), PM2.5 12 μg/m3 (DCH, DNC-1993, DNC- 
1999, VHM_PP), NO2 30 μg/m3 (CEANS-SALT, CEANS-SIXTY, CEANS-SNACK, 
DCH, DNC-1993, DNC-1999, E3N, EPIC_NL-Morgen, EPIC_NL-Prospect), NO2 
20 μg/m3 (CEANS-SALT, CEANS-SDPP, CEANS-SIXTY, CEANS-SNACK, DCH, 
DNC-1993, DNC-1999, E3N, KORA-S3, KORA-S4, VHM_PP). 

b Main model as in Strak et al., 2021 but sex and subcohort id as factors and 
continuous pollutants replaced with binary pollutants as factors. 

c Main causal model included only subcohort id and the pollutant as factors 
weighted by IPW truncated at the 1st and 99th quantiles. 

d Sensitivity causal model included only subcohort id and the pollutant as 
factors weighted by IPW truncated at the 5th and 95th quantiles. 
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and cardiopulmonary mortality in the US National Health Interview 
Survey and tested multiple distributions and weight generation tech-
niques (Higbee et al., 2020). Their results generally provided consistent 
and robust estimates that were relatively insensitive to the choice of 
IPW. Also, the estimates were similar to those of an unweighted multi-
variable Cox model, although they indicated marginally lower point 
estimates and higher standard errors. Another study from the US 
investigating long-term PM2.5 exposure and all-cause mortality among 
more than 68.5 million Medicare enrollees (65 years of age or older) 
compared two traditional approaches (Cox models, Poisson regression) 
with three causal inference methods 

applying a generalized propensity score (GPS) to adjust for con-
founding by i) matching by GPS, ii) weighting by GPS, and iii) adjust-
ment by GPS (Dominici et al., 2022; Wu et al., 2020). While all 
approaches lead to comparable estimates in the full population, the 
traditional models showed considerably higher estimates when 
restricting the population to PM2.5 exposures below 12 μg/m3. 

Our study has several strengths. We combined results from eight 
well-characterized adult cohorts and seven large administrative cohorts 
from eleven European countries, with more than 28 million participants 
included in the analysis. The multicenter nature and inclusion of 
European-wide cohorts reduced the likelihood of bias from spatial pat-
terns in unmeasured covariates that correspond to air pollution patterns. 
While the well-characterized adult cohorts offered a broad range of 
potential confounders and allowed pooled analyses, the registry based 
administrative cohorts had less selective recruitment and dropout 
compared with the traditional cohort studies. We used a previously 
applied straightforward causal inference approach that allowed simple 
assumptions testing and interpretation as well as application in all 
ELAPSE cohorts due to its low computational complexity. Moreover, we 
also investigated the sensitivity of our results by applying more stringent 
weights truncation and traditional Cox models with binary exposures 
both resulting in comparable estimates. 

A major limitation of our study is the dichotomization of continuous 
exposures which was prerequisite to apply the approach suggested by 
Makar and colleagues (Makar et al., 2017). However, in our previous 
traditional Cox analyses we comprehensively investigated and described 
the full range of the continuous exposures and their respective health 
effects (Brunekreef et al., 2021; Stafoggia et al., 2022; Wolf et al., 2021). 
The main aim of this analysis was therefore not to duplicate our previous 
results, but to complement them by applying an alternative analysis 
approach that allowed general application in all our cohorts (though not 
for all selected cut-off values) and straightforward interpretation. 
Adequate confounder control is one of the main assumptions of causal 
inference methods but also traditional approaches. We cannot rule out 
the risk of residual confounding from unmeasured covariates, especially 
in the large administrative cohorts. However, we ran a set of sensitivity 

Table 3 
Hazard ratios (and 95% confidence intervals) of the association between resi-
dential air pollutants above versus below the specified cut-off values and 
natural-cause mortality in the administrative cohorts. Results from traditional 
Cox regression, main causal model and sensitivity analysis.   

PM2.5 NO2 

Cohort Model 15 μg/m3 12 μg/m3 40 μg/m3 20 μg/m3 

Norwegian % above/ 
below cut-off 

0/100 6/94 0/100 26/74 

Traditional 
Coxa 

– 1.03 
(1.01, 
1.04) 

– 1.04 
(1.03, 
1.04) 

Main Causalb – 1.09 
(1.07, 
1.12) 

– 1.03 
(1.02, 
1.04) 

Sensi Causalc – 1.07 
(1.06, 
1.08) 

– 1.02 
(1.01, 
1.03) 

Danish % above/ 
below cut-off 

7/93 59/41 0/100 43/57 

Traditional 
Coxa 

1.04 
(1.03, 
1.05) 

1.07 
(1.07, 
1.08) 

– 1.11 
(1.10, 
1.12) 

Main Causalb 1.08 
(1.04, 
1.12) 

1.06 
(1.05, 
1.08) 

– 1.10 
(1.08, 
1.12) 

Sensi Causalc 1.11 
(1.08, 
1.15) 

1.07 
(1.05, 
1.08) 

– 1.09 
(1.07, 
1.11) 

English % above/ 
below cut-off 

7/93 81/19 0/100 87/13 

Traditional 
Coxa 

0.98 
(0.96, 
1.00) 

1.01 
(1.00, 
1.03) 

– 1.05 
(1.03, 
1.07) 

Main Causalb 0.96 
(0.94, 
0.98) 

0.98 
(0.96, 
0.99) 

– 1.03 
(1.01, 
1.05) 

Sensi Causalc 0.99 
(0.97, 
1.01) 

0.98 
(0.96, 
0.99) 

– 1.05 
(1.03, 
1.07) 

Dutch % above/ 
below cut-off 

82/18 100/0 11/89 94/6 

Traditional 
Coxa 

1.03 
(1.02, 
1.03) 

– 1.00 
(0.99, 
1.01) 

1.06 
(1.04, 
1.07) 

Main Causalb 1.03 
(1.02, 
1.05) 

– 1.02 
(1.01, 
1.04) 

1.05 
(1.03, 
1.07) 

Sensi Causalc 1.04 
(1.03, 
1.05) 

– 1.04 
(1.03, 
1.05) 

1.04 
(1.03, 
1.05) 

Belgian % above/ 
below cut-off 

97/3 100/0 11/89 96/4 

Traditional 
Coxa 

– – 0.99 
(0.98, 
1.00) 

– 

Main Causalb – – 0.98 
(0.97, 
0.99) 

– 

Sensi Causalc – – 0.99 
(0.98, 
1.00) 

– 

Swiss % above/ 
below cut-off 

73/27 94/6 0/100 68/32 

Traditional 
Coxa 

1.01 
(1.01, 
1.02) 

1.01 
(1.00, 
1.02) 

– 1.04 
(1.03, 
1.05) 

Main Causalb 1.01 
(1.00, 
1.02) 

0.97 
(0.96, 
0.99) 

– 1.03 
(1.03, 
1.04) 

Sensi Causalc 0.99 
(0.99, 
1.00) 

0.96 
(0.95, 
0.96) 

– 1.02 
(1.02, 
1.03) 

Roman % above/ 
below cut-off 

97/3 100/0 10/90 97/3  

Table 3 (continued )  

PM2.5 NO2 

Cohort Model 15 μg/m3 12 μg/m3 40 μg/m3 20 μg/m3 

Traditional 
Coxa 

– – 1.02 
(1.01, 
1.03) 

– 

Main Causalb – – 1.01 
(0.99, 
1.03) 

– 

Sensi Causalc – – 0.99 
(0.97, 
1.02) 

–  

a Main model as in Stafoggia et al., 2022 but sex as factors and continuous 
pollutants replaced with binary pollutants as factors. 

b Main causal model included only the pollutant as factors weighted by IPW 
truncated at the 1st and 99th quantiles. 

c Sensitivity causal model included the pollutant as factors weighted by IPW 
truncated at the 5th and 95th quantiles. 
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Fig. 2. Cohort-specific and meta-analytical associations between air pollutants above vs below the given cut-off values and natural-cause mortality derived from (A) 
traditional Cox model and (B) causal Cox models weighted by IPW. The size of the squares is proportional to the cohort-specific weight in the meta-analysis. Di-
amonds are centered on the point estimate and extend to the 95% CIs. 
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analyses including additional covariate adjustment in those cohorts with 
respective information available and did not observe substantial de-
viations from our main results (Strak et al., 2021; Stafoggia et al., 2022). 
In the administrative cohorts, we previously applied indirect adjustment 
which generally showed robust results (Stafoggia et al., 2022). More-
over, the investigation of the interplay of the exposures was out of the 
scope of this paper which focused on the comparison of two different 
statistical methods adjusting for potential confounders. We documented 
two-pollutant effects of the traditional Cox models with continuous ex-
posures previously (Strak et al., 2021; Stafoggia et al., 2022). Causal 
methods for two- or multipollutant models are not yet established and 
should be investigated in future analyses. 

5. Conclusion 

In conclusion, our results provide further evidence that traditional 
and causal modelling methods produce robust results for adverse health 
effects of air pollution. Thus, the application of multiple modelling 
methods and documentation of the robustness of the results might help 
to improve causal inference. 
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