
For Review Only
Developing an artificial intelligence diagnostic tool for 

paediatric distal radius fractures, a proof of concept study 

Journal: Annals Journal & Bulletin Journal

Manuscript ID RCSJ-2022-0162.R1

Manuscript Type: Original research – Annals (clinical)

Date Submitted by the Author: n/a

Complete List of Authors: Aryasomayajula, Sriharsha; Kingston University, Faculty of 
Science, Engineering and Computing
Hing, Caroline; St George’s University Hospitals NHS 
Foundation Trust, Trauma and Orthopaedics
Siebachmeyer, M; St George's University Hospitals NHS 
Foundation Trust
Naeini, FB; Kingston University
Ejindu, V; St George's University Hospitals NHS Foundation 
Trust
Leitch, P; St George's Hospital Medical School
Gelfer, Y; St George's University Hospitals NHS Foundation 
Trust
Zweiri, Y; Kingston University

Keywords – Go to <a 
href="http://www.ncbi.nlm.nih.gov/mesh" 

target="_blank">MeSH</a> to find your 
keywords.:

Wrist Fracture, Artificial intelligence, X-rays, radiographs

 

https://mc04.manuscriptcentral.com/rcsjournals

Annals Journal & Bulletin Journal



For Review Only

1

Developing an artificial intelligence diagnostic tool for paediatric distal radius fractures, 

a proof of concept study

S Aryasomayajula, CB Hing, M Siebachmeyer, FB Naeini, V Ejindu, P Leitch, Y Gelfer, Y Zweiri

Sriharsha Aryasomayajula. Faculty of Science, Engineering and Computing, Kingston University, 
London, United Kingdom
harshaarya17@outlook.com

Prof. Caroline B Hing*. Department of Orthopaedics, St George's University Hospitals NHS 
Foundation Trust, London, United Kingdom
caroline.hing@stgeorges.nhs.uk

Martin Siebachmeyer. Department of Radiology, St George's University Hospitals NHS Foundation 
Trust, London, United Kingdom
martin.siebachmeyer@stgeorges.nhs.uk

Dr. Fariborz Baghaei Naeini. Faculty of Science, Engineering and Computing, Kingston University, 
London, United Kingdom
f.baghaeinaeini@kingston.ac.uk

Vivian Ejindu. Department of Radiology, St George's University Hospitals NHS Foundation Trust, 
London, United Kingdom
vivian.ejindu@stgeorges.nhs.uk
 
Patricia Leitch. Medical student, St George's University London, London, United Kingdom
patricia.leitch@nhs.net

Dr. Yael Gelfer. Department of Orthopaedics, St George’s University Hospital, London, United 
Kingdom
yael.gelfer@ stgeorges.nhs.uk

Dr. Yahya Zweiri.  Faculty of Science, Engineering and Computing, Kingston University, London, 
United Kingdom
y.zweiri@kingston.ac.uk 

*Corresponding author

Page 1 of 20

https://mc04.manuscriptcentral.com/rcsjournals

Annals Journal & Bulletin Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:harshaarya17@outlook.com
mailto:caroline.hing@stgeorges.nhs.uk
mailto:martin.siebachmeyer@stgeorges.nhs.uk
mailto:f.baghaeinaeini@kingston.ac.uk
mailto:vivian.ejindu@stgeorges.nhs.uk
mailto:patricia.leitch@nhs.net
mailto:y.zweiri@kingston.ac.uk


For Review Only

2

Abstract (250 words)

Introduction: In the UK 1 in 50 children will sustain a fractured bone yearly yet studies have shown 
that 34% of children sustaining an injury do not have a visible fracture on initial radiographs. Wrist 
fractures are particularly difficult to identify as the growth plate poses diagnostic challenges when 
interpreting radiographs. 

Materials and methods: We developed convolutional neural network (CNN) image recognition 
software to detect fractures in radiographs of children. A consecutive dataset of 5000 radiographs of 
the distal radius in children aged less than 19 years from 2014-2019 were used to train the CNN. 
Additionally transfer learning from a VGG16 CNN pre-trained on non-radiological images was applied 
to improve generalization of the network and classification of radiographs. Hypermeter tuning 
techniques were used to compare the model to the radiology reports that accompanied the original 
images to determine diagnostic test accuracy.

Results: The training set consisted of 2881 radiographs with a fracture and 1571 without a fracture, 
548 radiographs were outliers. With additional augmentation the final dataset consisted of 15,498 
images. The dataset was randomly split into three subsets, a training dataset (70%), a validation 
dataset (10%), and a test dataset (20%). After training for 20 epochs, the diagnostic test accuracy 
was 85%.

Discussion: A CNN model is feasible in diagnosing paediatric wrist fractures. We demonstrated that 
this application could be utilized as a tool for improving diagnostic accuracy. Future work would 
involve developing automated treatment pathways for diagnosis, reducing unnecessary hospital visits 
and allowing staff redeployment to other areas.

Keywords: Wrist Fracture, Artificial intelligence, Convolutional neural network, Image classification, X-
rays, radiographs
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Introduction

Wrist and distal forearm fractures are one of the most common types of presentations to the 
emergency department (ED) in children and adolescent patients [1]. The unique properties of the 
immature skeleton result in specific fracture patterns in children [2,3]. Furthermore, the growth plate 
(physis) which is still open in children, poses particular challenges when analyzing radiographs. Not 
only can the physis mimic the appearance of a fracture for clinicians with less experience, but the 
fracture can involve the physis itself. 

Radiographs of acute injuries are provisionally interpreted by frontline medical staff in the emergency 
department (ED). The radiographs are then formally reviewed by a radiologist who writes a report, 
which may not be available in real time, after the radiograph was taken. By this time, the patients may 
have already been discharged from the ED. When there is a significant discrepancy between the 
initial interpretation of the radiograph by the frontline staff and the radiologist, the patient may have to 
be recalled to initiate a different management pathway. 

Subtle injuries can be missed altogether at the initial presentation. One study reported that 3.1% of all 
fractures were not diagnosed at the initial visit to the ED [4]. The same study also observed a diurnal 
distribution of errors with more errors occurring during night-time, potentially due to less senior 
support during night shifts. The specific challenge and factors of missing fractures on radiographs of 
children have been well documented in the literature [1,2,3]. To overcome these challenges, studies 
have investigated the feasibility of artificial intelligence (AI) based, automated analysis of radiographs 
in supporting frontline clinicians in fracture detection. To date, most fracture detection models have 
been developed for the distal radius [5-9]. AI support tools can significantly improve diagnostic 
accuracy of clinicians' ability to correctly detect fractures [7]. 

Most studies published in the recent literature have focused on radiographs of adult patients. Specific 
paediatric AI models have been developed for the distal tibia and the elbow, but not for the wrist 
[10,11]. Similar to humans, AI models seem to struggle more with paediatric images. In one study of 
distal radius fractures, a subgroup analysis found the accuracy of correctly identifying fractures was 
less with paediatric radiographs compared to adult radiographs with a sensitivity of 92.7% versus 
97.5% [12]. A potential explanation is that their AI algorithm was not trained on a dedicated paediatric 
dataset. 

Our study aimed to train an AI model to detect fractures in paediatric wrist radiographs. It is the first 
study of its kind using a specifically prepared dataset with paediatric wrist radiographs only. Further 
development of the AI algorithm will enhance radiographic image interpretation in clinical practice, 
and in particular to support front-line clinicians.
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Materials and methods

The objective of this study was to train and optimize an AI-model to detect wrist fractures in paediatric 
radiographs and to test its accuracy. We trained a Convolutional Neural Network (CNN) using 
retrospective data from paediatric wrist radiographs and existing text-based reports to categorize the 
image as ‘fracture’ or ‘no fracture’. Ethics approval was granted by the Health Research Authority 
(REC 20/PR/0211). The TRIPOD statement checklist was applied for reporting the development of 
the CNN [13,14].

Data source: A dataset of 5000 retrospectively collected paediatric wrist radiographs was obtained 
from St George’s University Hospitals London. Included were all consecutive wrist radiographs from 
2014 to 2018 of patients less than 19 years old until a sufficient quota of 5000 studies was reached. 
Images of poor quality that were not amenable for interpretation were excluded. Using the radiology 
text reports that had been produced by consultant musculoskeletal radiologists, the radiographs were 
labelled as ‘fracture’ or ‘no fracture’. All radiographs with fractures were subcategorized according to 
the bones involved (Figure 1). 

See figure 1

Data processing: Data collection and de-identification was performed by the direct clinical care team. 
Radiographs were stored on the PACS (picture archiving and communication system) server of the 
hospital in DICOM (digital imaging and communications in medicine) format. DICOM is a container 
format, which contains the imaging data, as well as text metadata. The metadata comprised personal 
information about the patient, such as name, date of birth etc. The radiographs were downloaded 
from PACS on a radiology workstation, using specific software tools that allowed mass downloading 
(RadiAnt DICOM Viewer, https://www.radiantviewer.com or Conquest DICOM, 
https://ingenium.home.xs4all.nl/dicom.html). 

The downloaded radiographs were securely stored on a hospital computer. There was one file for 
each radiograph. Any text metadata containing personally identifiable information was removed prior 
to sharing with Kingston University, where the AI model was trained. Information removed from the 
DICOM images included the patient's name, age, sex, birth date, hospital identity number, NHS 
number, ethnic group, occupation, referring physician, and institution name and study date. Text 
metadata was converted to an xlsx file. The xlsx file consisted of entries with accession ID and the 
presence of fracture. The DICOM files were then split into fracture or no fracture. 

There were a few instances where a corresponding ID number was not found in the csv file with the 
existing DICOM files. These files were separated and gathered for further revision of model. The 
radiographs and the radiology reports were anonymised before further processing. Further processing 
included image file conversion, downscaling, and cropping and data augmentation. Augmentation 
resulted in a larger labelled dataset, intended to make the AI model more robust to real-life data 
variability. 

The dataset was in the format of DICOM which was in an unsuitable format for input into a CNN. The 
dataset was therefore converted to high resolution png (portable graphics) format using DICOM 
viewer software. The dataset consisted of images with outliers (features which largely change the 
model’s predictions). Outliers in our dataset were radiographs with intra-osseous metal rods, heavy 
bandages and alignment tags on the radiographic images. These outliers were removed and the 
dataset was refined. There were also 239 images which were joined (two radiographs in one image 
and three radiographs in one image). These images were split manually using image editing software 
on a windows operating system. 

Page 4 of 20

https://mc04.manuscriptcentral.com/rcsjournals

Annals Journal & Bulletin Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://ingenium.home.xs4all.nl/dicom.html


For Review Only

5

This dataset was then used to create augmented images by applying horizontal and vertical flip as 
well as random zoom. The augmentations were applied using Python script with a Keras image data 
generator function [15]. This function was repeated for all the files in fracture and no fracture image 
directories. 

Model training testing and validation: In order to train these neural networks with a high batch size 
(Table 1), a considerable amount of computational power was required. This was provided by Google 
Colab pro account (California, USA). This account was then configured with weights and biases in a 
third party application which provided an application programming interface (API) reporting the 
metrics of classification models trained in all experiments. 

See table 1

The AI model was based on a Convolutional Neural Network (CNN). CNN is a type of deep learning 
architecture which performs convolution operation on the image multiple times to extract features from 
the image. For a given input image and output, the model learns relevant visual features based on 
convolving the image into the learned filters.  Supervised CNN-based models are usually required to 
be trained on large amounts of labelled data. To reduce the need for an even larger dataset and make 
the training faster, transfer learning from VGG16 CNN [16] pre-trained on non-radiological images 
was applied. Our training dataset was used to fine-tune the last hidden layers of the VGG16.

The validation dataset was used to optimize the model’s parameters and to perform interval 
validations. The trained model’s ability to detect the presence of fractures in paediatric wrist 
radiographs was evaluated on the test datasets, previously unseen by the model. 

Training: Models were trained to understand the overview of the model’s accuracy and bias. The 
dataset was cleaned and verified for outliers. The outliers were removed and the model was trained. 
VGG16 with image net weights were used to train an image classification model with two classes. 
More augmentations were used to increase diversity of datasets in order to improve model 
generalization. Augmentation of data assisted the network training process to eliminate learning of 
irrelevant features and noise.

Statistical analysis: The performance of the model was evaluated based on accuracy of the model on 
the validation set during the training. The loss function of neural networks was defined as binary cross 
entropy to update the weights and biases of the model with back propagation. As this was the first 
study performed on the current dataset, an accuracy metric was selected to evaluate the feasibility of 
this approach to compare fracture detection in paediatric wrist radiographs by AI against the 
radiologists. 
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Results

The final training dataset consisted of 2881 real radiographs with a fracture and 1571 without a 
fracture, 548 radiographs were outliers (table 1). The training model tended to start over fitting after 
reaching 70% training accuracy. To reduce over fitting additional images were added to the dataset 
by augmentation techniques. These techniques ensured the models generalized key features of the 
dataset instead of memorizing all features. This yielded an accuracy of 65% and also started over 
fitting at 70% training accuracy. Following data augmentation to produce a further 6457 images with 
fracture and 4589 with no fracture, a total of 15,498 images were available for analysis (table 1) to 
assist the network training process to eliminate learning of irrelevant features and noise, the model 
generalization improved and overfitting of the model on the validation set reduced. Consequently, the 
validation accuracy of the model was greatly improved to 85%.

Deep learning models have a large number of parameters which can lead to overfitting with small 
datasets. Therefore, it was necessary to split the dataset into (i) Training set: to train the model and 
update weights; (2) Validation set: to select the best model during the training process; (3) Test set: to 
evaluate the selected model outcome and report the results. In this study, the dataset was randomly 
split into three subsets, a training dataset (70%), a validation dataset (10%), and a test dataset (20%). 

The model was trained for 20 epochs for each model and training accuracy and validation accuracy of 
the last model is shown in figure 2,3. The model was based on vgg16 and a few more layers added 
after that. Flatten layer was added just before the final activation layer. The final layer had a dense 
layer with SoftMax activation function. Softmax was used to avoid a vanishing gradient problem. The 
model had pretrained weights from Imagenet. Input was fed through model and these weights were 
recalculated corresponding to the training data and an inference made with these weights for any 
image passed through input layer of neural network. 

See figure 2

The training loss and validation loss displayed in figure 2,3 respectively. The model was evaluated 
using accuracy. The accuracy was measured based on unseen data i.e., test data, with accuracy 
defined as the number of correct predictions with the total number of predictions. With that as a metric 
of measurement, the test data accuracy was 85%. 

See figure 3

The CNN has a feature extractor layer and a classification layer. The classification layer as shown in 
figure 4 arranges the final output of convolution block into a column. In the case of the algorithm 
implemented here it has 25088 neurons that are then multiplied to the weight and summed. This sum 
is then presented to the activation function. The activation function then draws probability of the class 
of the image and fires the respective neuron and a decision is omitted. The dropout layer ensures it 
does not fire all the neurons in the network which reduces the overfitting of the network.

Grad-CAM a third party library was used to visualize important features used to make a prediction. A 
heat map is generated of all the key features represented in red with decreasing intensity of color to 
blue as shown in the figures 5, 6,7. This gives us a better understanding of what the model 
abstraction sees while making a prediction to classify as fracture or no fracture where the colour red 
indicates regions with greater significance and blue with lower significance. The regions include the 
background and boundaries of the image. If a heat map colour is not superimposed on an image it 
signifies that those features of the image were not considered in making the decision.
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Discussion

Distal radius fractures account for around 25% of fractures in the paediatric population [17]. The 
incidence is increasing with an ensuing increased burden on ED services for diagnosis and treatment 
[17]. The cost implications are not insignificant with the cost of treating paediatric forearm fractures 
quoted as $2 billion per year in the United States (US) [18].

Additionally taking a child to the ED often necessitates time off work for parents for initial diagnosis 
and further follow up [1,2,3,4]. Improving pathways and automating systems can therefore have a 
positive impact both in terms of hospital resources and reducing unnecessary outpatient attendances 
for the child and carers.

Studies using AI utilizing CNNs to detect fractures of the distal radius in adults are well reported in the 
literature [5,8,9,19]. With accuracy, sensitivity, specificity and Youden Index all showing that CNNs 
can perform better than a group of radiologists in diagnosing adult distal radius fractures [5,8]. Current 
commercially available CE-marked applications in paediatric musculoskeletal radiology using AI 
models have mainly concentrated on bone age, bone health, fractures around the elbow and 
diagnosing child abuse from inflicted fractures [20]. 

Few models exist to detect distal radial fractures with a recent systematic review identifying only two 
studies using AI for the distal radius [21]. Of these, one study by Zhang et al used ultrasound and the 
other radiographs to detect fractures in the entire paediatric appendicular skeleton (Dupuis et al) 
[22,23]. The systematic review noted that the studies assessed using ultrasound of the distal radius 
were subject to bias due to the ultrasound being performed by medical students on a ‘convenience 
sample’ of suspected wrist fractures in children [22]. The review noted that studies had strict exclusion 
criteria (healing bones, certain types of fracture, treatment with cast) reducing the applicability of the 
models in clinical practice. The diagnostic accuracy rates were 92% test accuracy in ultrasound 
diagnosis of the distal radius but the study design was weakened by selection bias [22].

In our study a large consecutive dataset was used with augmentation to a final dataset of 15,498 
images. The AI model classified images into “fracture” and “non-fracture” groups to assist radiologists 
for detection of bone fracture. For evaluation of the model, all the reported metrics were based on the 
test dataset which had not been seen by the AI model in the training process. Therefore, the accuracy 
of model represents the model performance without over-fitting on the dataset. 

For future work, the accuracy of the AI model would be calculated on a per-radiograph basis and a 
per-study basis. Per-radiograph true-positive determination requires a fracture diagnosis which 
corresponds to a fracture diagnosis in the radiology report. Per-study true-positive determination 
requires at least one true-positive for either or both of the radiographs of a typical radiographic 
examination (anteroposterior and lateral view of the same wrist). The sensitivity, specificity, positive 
and negative predictive values and area under the ROC curves would be estimated with 95% 
confidence intervals. The model’s false-positive and false-negative predictions would undergo further 
evaluation by a second reading of the original radiographic images.

As the model is trained on a limited sample of images, further data would need to be collected in a 
diverse manner to be robust against all different types of ‘noise’ in the image. For example, 
radiographic imagery devices may have different ‘noise’ levels which are not even captured by human 
eye while the noise can affect the model performance. Even a static electro-magnetic noise in the 
imaging room can introduce a bias in the dataset. 

In addition, the current classifier model provides a single outcome to assist radiologists which can be 
improve in future by the development of image “segmentation” models and “explainable AI” to 
highlight the exact region of fracture. The segmentation method will require radiologists to highlight 
the fracture region in order to train a new AI-based segmentation model to learn the regional features. 
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Conclusion
In conclusion the diagnosis of paediatric wrist fractures with CNN is feasible and could help 
radiologists reduce the time they take to diagnose a child’s fracture. The CNN trained here was 
VGG16 with imagenet weights and augmentations to dataset were applied to reduce the over fitting of 
the model. The model’s accuracy improved significantly after multiple tests and runs to 85% on test 
data.

Word count 2554
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List of figure and table legends

Figure 1. Schematic of image labelling, training and validation prior to testing. 

Figure 2. Graph of accuracy with respect to epochs showing that training accuracy reached its peak by 
the end of training whereas validation accuracy peaked at 865% for 20 epochs.

Figure 3. Graph illustrating that training loss decreased with each epoch whereas the validation loss 
flattened after 10increases for each epochs. 

Figure 4. Decision making process of the CNN classifier layer illustrating ‘flatten’, ‘activation’ and the 
final dense layer with two neurons. The output of the softmax function is the probability of the class of 
the image being ‘fracture’ or ‘no fracture’.

Figure 5. Heat map of the features learnt by the model at ‘block 2’ convolution on lateral view (red 
greater significance, blue lower significance). 

Figure 6. Heat map of the features learnt by model at block2_convolution on AP view (red greater 
significance, blue lower significance). 

Figure 7. Heat map of the features learnt by model at block5_pooling on AP view (red greater 
significance, blue lower significance). 

Table 1. Table of the dataset used to train the model split into train, test and validation set.
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Figure 1. Schematic of image labelling, training and validation prior to testing. 
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Figure 2. Graph of accuracy with respect to epochs showing that training accuracy reached its peak 
by the end of training whereas validation accuracy peaked at 86% for 20 epochs.
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For Review OnlyFigure 3. Graph illustrating that training loss decreased with each epoch whereas the validation loss 
flattened after 10 epochs. 
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Figure 4. Decision making process of the CNN classifier layer illustrating ‘flatten’, ‘activation’and the 
final dense layer with two neurons. The output of the softmax function is the probability of the class of 
the image being ‘fracture’ or ‘no fracture’.
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Figure 5. Heat map of the features learnt by the model at ‘block 2’ convolution on lateral view (red 
greater significance, blue lower significance).
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Figure 6. Heat map of the features learnt by model at block2_convolution on AP view (red greater 
significance, blue lower significance). 

Page 18 of 20

https://mc04.manuscriptcentral.com/rcsjournals

Annals Journal & Bulletin Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Figure 7. Heat map of the features learnt by model at block5_pooling on AP view (red greater 
significance, blue lower significance). 
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TABLES

DATASET SIZE SPECIFICATIONS
Fracture No fracture

Augmented 6457 4589
Real 2881 1571
Total 9338 6160

Table 1. Table of the dataset used to train the model split into train, test and validation sets.
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