

Figure S3

Table S1

		Species	Source	Details	cd-hit	BUSCO (version 4.0.6)					
Order	Family					Complete (tot)	Complete (single)	Complete (double)	Fragmented	Missing	BUSCO database used
Comatulida	Antedonidae	Antedon mediterranea Elphick et al. 2015 Florometra serratissima <u>https://www.ebi.ac.u</u> <u>k/ena/browser/view/</u> <u>PRJNA305899</u>	Elphick et al. 2015	Translated+predicted proteins with	slated+predicted proteins with	79.70%	78.50%	1.20%	15.50%	4.80%	metazoa_odb10 (954)
			Transdecoder v5.5.0	96%	79.70%	78.50%	1.20%	15.50%	4.80%	metazoa_odb10 (954)	
			https://www.ebi.ac.u	Downloaded fastq reads; removed adaptors with Trimmomatic v0.36; assembled with Trinity	none	96.90%	38.30%	58.60%	2.10%	1.00%	metazoa_odb10 (954)
			v2.11.0; translated+predicted proteins with Transdecoder v5.5.0	96%	96.80%	89.50%	7.30%	2.10%	1.10%	metazoa_odb10 (954)	
	Comatulidae	https://www.ncbi.nl matulidae Anneissia japonica <u>https://www.ncbi.nl</u> <u>m.nih.gov/assembly/</u> <u>GCF_011630105.1/</u>	Downloaded protein EASTA file	none	97.00%	70.00%	27.00%	1.40%	1.60%	metazoa_odb10 (954)	
			<u>GCF_011630105.1/</u>	Downloaded protein FASTA file.	96%	97.10%	93.60%	3.50%	1.40%	1.50%	metazoa_odb10 (954)

ASW	S1	S2	CRI	LUQ
-0.01	-0.012	-0.012	0.008	0
-0.004	-0.002	0.006	0.034	-0.022
0.002	0.000	0.004	-0.008	-0.006
-0.006	-0.046	-0.002	0.034	-0.002
-0.002	0.032	0.004	0.064	0.002
-0.014	-0.008	0.004	-0.008	-0.008
-0.008	-0.016	-0.008	0.084	-0.01
0.002	-0.038	-0.048	0.058	-0.03
-0.024	-0.008	0.004	0.016	-0.014
-0.014	0.002	-0.092	-0.024	0.012
-0.048	-0.008	-0.002	-0.02	-0.068
-0.026	-0.032	0.000		0.014
0.014		-0.006		0.026

Anova: Single Factor

Table S2

SUMMARY							
Groups	Count .	Sum	Averag	е	Vari	ance	
ASW	13	-0.13	8 -0.01061	5385	0.000	242256	
S1	12	-0.13	6 -0.011333	3333	0.000)424242	
S2	13	-0.14	8 -0.011384	4615	0.000	786256	
CRI	11	0.23	8 0.02163	6364	0.001	.310255	
LUQ	13	-0.10	6 -0.008153	3846	0.000	546974	
ANOVA							
Source of Variation	n SS	df	MS	F		P-value	F crit
Between Groups	0.00934849	4 (0.00233712	3.6323	3319	0.010506146	2.53358327
Within Groups	0.036675058	57 (0.00064342				
Total	0.046023548	61					

t-Test: Two-Sample Assuming Unequal Variances

	ASW	<i>S1</i>
Mean	-0.010615385	-0.011333333
Variance	0.000242256	0.000424242
Observations	13.000	12.000
Hypothesized Mean Difference	0.000	
df	20.000	
t Stat	0.09771072	
P(T<=t) one-tail	0.461567306	
t Critical one-tail	2.527977003	
P(T<=t) two-tail	0.923134612	
t Critical two-tail	2.84533971	
	ASW	S2
Mean	ASW -0.010615385	<i>S2</i> -0.011384615
Mean Variance	ASW -0.010615385 0.000242256	<i>S2</i> -0.011384615 0.000786256
Mean Variance Observations	ASW -0.010615385 0.000242256 13	52 -0.011384615 0.000786256 13
Mean Variance Observations Hypothesized Mean Difference	ASW -0.010615385 0.000242256 13 0	52 -0.011384615 0.000786256 13
Mean Variance Observations Hypothesized Mean Difference df	ASW -0.010615385 0.000242256 13 0 19	52 -0.011384615 0.000786256 13
Mean Variance Observations Hypothesized Mean Difference df t Stat	ASW -0.010615385 0.000242256 13 0 19 0.086481551	52 -0.011384615 0.000786256 13
Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail	ASW -0.010615385 0.000242256 13 0 19 0.086481551 0.465994256	52 -0.011384615 0.000786256 13
Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail t Critical one-tail	ASW -0.010615385 0.000242256 13 0 19 0.086481551 0.465994256 2.539483191	52 -0.011384615 0.000786256 13
Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail t Critical one-tail P(T<=t) two-tail	ASW -0.010615385 0.000242256 13 0 19 0.086481551 0.465994256 2.539483191 0.931988511	52 -0.011384615 0.000786256 13

	ASW	CRI
Mean	-0.010615385	0.021636364
Variance	0.000242256	0.001310255
Observations	13	11
Hypothesized Mean Difference	0	
df	13	
t Stat	-2.747949736	
P(T<=t) one-tail	0.008301378	
t Critical one-tail	2.650308838	
P(T<=t) two-tail	0.016602757	
t Critical two-tail	3.012275839	
	ASW	LUQ
Mean	-0.010615385	-0.008153846
Variance	0.000242256	0.000546974
Observations	13	13
Hypothesized Mean Difference	0	
df	21	
t Stat	-0.315919401	
P(T<=t) one-tail	0.377591061	
t Critical one-tail	2.517648016	
P(T<=t) two-tail	0.755182122	
t Critical two-tail	2.831359558	

Table S3

CRI	CRI+PRO	ASW
-0.004	0.002	-0.018
0.002	0.002	0.000
0.094	-0.010	0.002
0.012	0.002	-0.010
-0.002	0.002	0.002
0.000	-0.008	-0.008
0.050	-0.008	0.016
0.052	-0.010	0.004
-0.008	0.004	0.008
0.076	0.004	0.002
0.108	0.042	0.064
-0.022	0.046	-0.036
-0.010	0.002	-0.018
0.046	0.000	-0.008
-0.014	0.000	0.002
0.000	0.008	0.006
0.000	-0.010	-0.020
0.006	0.000	-0.018
-0.016	-0.004	-0.056
-0.030	-0.008	0.012
-0.006	0.002	-0.024
0.000	0.002	-0.016
0.044	0.002	-0.008
0.022	0.002	0.004
0.140	0.030	0.002
0.012	-0.008	-0.008
-0.008	0.010	0.036
0.044	0.004	0.004
0.068	0.000	0.022
0.010	0.000	-0.008
0.002	0.012	0.016
0.012	0.000	0.004
0.030	-0.010	0.014
0.050		0.010
0.008		0.010
0.048		
-0.012		

Anova: Single Factor

SUMMARY						
Groups	Count	Sun	n Aver	age Vario	ance	
CRI	37	0.	804 0.02	2173 0.00	1481	
CRI+PRO	33	0.	102 0.003	3091 0.00	0173	
ASW	35	-0.	016 -0.00	0046 0.00	0416	
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.01025	2	0.00512	7.16033	0.00123	3.08547
Within Groups	0.073	102	0.00072			
Total	0.08325	104				

t-Test: Two-Sample Assuming Unequal Variances

	CRI	ASW
Mean	0.02173	-0.00046
Variance	0.001481	0.000416
Observations	37	35
Hypothesized Mean Difference	0	
df	55	
t Stat	3.078995	
P(T<=t) one-tail	0.001619	
t Critical one-tail	2.174331	
P(T<=t) two-tail	0.003238	
t Critical two-tail	2.461509	
		A C14/
Maan	0.002001	ASW
Variance	0.003091	-0.00046
Observations	0.000173	0.000416
Upservations	33	35
Hypothesized Mean Difference	U F0	
di t Stat		
l Slal	0.05/120	
P(I<=L) ONE-Lan	0.197452	
	2.1/1459	
P(I<=L) LWO-LAII	0.394903	
	2.437332	
	CRI	CRI+PRO
Mean	0.02173	0.003091
Variance	0.001481	0.000173
Observations	37	33
Hypothesized Mean Difference	0	
df	45	
t Stat	2.770503	
P(T<=t) one-tail	0.004053	
t Critical one-tail	2.186752	
P(T<=t) two-tail	0.008106	
t Critical two-tail	2.478733	

Figure S1. Cluster analysis of sequences (CLANS) of crinoid neuropeptide precursors and neuropeptide precursors from other echinoderms that belong to known families.

CLANS analysis facilitated identification of crinoid members of known neuropeptide families. Red = sequences from starfish species (*Asterias rubens* and *Acanthaster planci*); Light blue = sequences from brittle star species (*Amphiura filiformis* and *Ophionotus victoriae*); Green = sea cucumber sequences (*Apostichopus japonicus*); Dark blue = sea urchin sequences (*Strongylocentrotus purpuratus*). Sequences from *Asterias rubens* have the name highlighted; Pink = crinoid sequences. The pink triangles are *A. mediterranea* sequences; the pink crosses are *A. japonica* sequences; the pink stars are *F. serratissima* sequences. Clustering and connections are shown at p-value = $1.00E^{-12}$. However, clustering performed better at different p-values for different neuropeptide families; consequently, identification of crinoid sequences was based on CLANS at different p-values specific to the neuropeptide family.

Figure S2. Cluster analysis of sequences (CLANS) of other predicted crinoid

neuropeptide precursors (PCNPs). The sequences identified from NeuroPID analysis were BLASTed against sequence data from the other crinoid species and then clustered using CLANS. Sequences identified as putative neuropeptide precursors from the NeuroPID pipeline are in red. In blue are the sequences obtained from the BLAST analysis that cluster well with the putative neuropeptide precursors and that were therefore collected for manual examination. Sequences not highlighted did not cluster well and were discarded from further examination. Triangles = *A. mediterranea*; Crosses = *A. japonica*; Stars = *F. serratissima*. Clustering and connections are shown at p-value = $1.00E^{-8}$. However, clustering performed better at different p-values for different proteins; consequently, the choice of sequences to keep for further analysis was based on CLANS at different p-values specific to each cluster containing the originally identified putative neuropeptide precursor.

Figure S3. Negative controls for experiments investigating neuropeptide expression in *A. mediterranea.* (A-C) *in situ* hybridization with sense probes for the F-type SALMFamide precursor in doliolaria specimens (A) and adult arm sections (B-C) showing absence of staining. (D) Comparison of fluorescence observed in pentacrinoids with the ArCT antiserum and the ArCT antiserum pre-absorbed ArCT antigen peptide. Fluorescence observed in the nervous system with the ArCT antiserum is abolished by pre-absorption of the antiserum with the antigen peptide, demonstrating the specificity of this immunostaining. Fluorescence in saccules (arrows) is also present in specimens incubated with the pre-absorbed ArCT antiserum and therefore this is non-specific fluorescence. (E-F) *in situ* hybridization with sense probes for the crinotocin precursor in adult sections, showing absence of staining in neural structures. Non-specific staining is present in saccules (arrowheads). Scale bars: 100 µm. Abbreviations: A: anterior side; bn: brachial nerve; P: posterior side.

Table S1. Crinoid species proteomes used in this study with respective BUSCO values as a measure of proteome completeness. Sources and details of processing, where applicable, are indicated for the proteomes of the three crinoid species analysed in this study. For all three species a cd-hit with identity threshold of 96% was carried out to remove almost identical transcript variants. Then BUSCO was performed on both the non-cd-hit and the cd-hit versions of the proteomes. In general, proteome completeness, as measured by the percentage of total and single-copy BUSCO genes present in the proteome, was good for all three species. The cd-hit improved the level of single-copy BUSCO for *F. serratissima* and *A. japonica*. Cd-hit versions of the proteomes were used for subsequent analyses.

Table S2. Statistics for the comparison of neuropeptide effects on Antedon mediterranea arm preparations. First an ANOVA Single Factor was performed, and this highlighted that there is a statistically significant difference between some of the treatments. Then, multiple ttests with a Bonferroni-corrected alpha value were applied to the single treatments versus between some of the treatments. Then, t-tests with Bonferroni-corrected alpha value were applied to the single treatments versus control (ASW). 106 arm preparations from three animals were used for this experiment, although one data point for crinotocin + procaine hydrochloride was excluded as an outlier (see Supplementary File 5). While crinotocin has a significant effect versus ASW (p = 0.00324), the crinotocin + procraine hydrochloride is not significantly different from the negative control (p = 0.39490).

Table S3. Statistics for the anaesthetisation experiment. First an ANOVA Single Factor was performed, and this highlighted that there was a statistically significant difference between some of the treatments. Then, t-tests with Bonferroni-corrected alpha value were applied to the single treatments versus control (ASW). 106 arm preparations from three animals were used for this experiment, although one data point for crinotocin + procaine hydrochloride was excluded as an outlier (see Supplementary File 6). While crinotocin has a significant effect versus ASW (p = 0.00324), the crinotocin + procraine hydrochloride is not significantly different from the negative control (p = 0.39490).