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Abstract  

Lung function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the 

largest multi-ancestry GWAS meta-analysis of lung function to date, comprising 580,869 participants, 1020 

independent association signals identified 559 genes supported by ≥2 criteria from a systematic variant‐to‐gene 

mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across 

ancestries, age and smoking groups, and collectively as a genetic risk score (GRS) showed strong association with 

COPD across ancestry groups. We undertook phenome-wide association studies (PheWAS) for selected associated 

variants, and trait and pathway-specific GRS to infer possible consequences of intervening in pathways underlying 

lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by 

existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, 

and should inform functional genomics experiments and potentially future COPD therapies. 

Introduction 
Lung function - even within the normal range - predicts mortality and is a key diagnostic criterion for COPD1, which 

has the highest prevalence of respiratory diseases globally2 and lacks disease-modifying treatments. Whilst smoking 

and environmental risk factors for COPD are well known, and genetic susceptibility (heritability) is recognised, the 

molecular pathways underlying COPD are incompletely understood. In common with many other complex traits, 

there has been under-representation of diverse ancestries in genome-wide association studies (GWAS)3 of lung 

function4-6. Multi-ancestry studies improve the power and fine-mapping resolution of GWAS, and ultimately the 

prospects for prediction, prevention, diagnosis and treatment in diverse populations3,4,7. 

Understanding of genes, proteins and pathways involved in diseases and disease-related traits underpins modern 

drug development. A high yield of genetic association signals, improved signal resolution and integration with 

functional evidence are all required to confidently identify causal genes and the variants and pathways that impact 



gene function and regulation. Although datasets and in-silico tools to connect GWAS signals to causal genes are 

improving, the findings from different datasets and tools have lacked consensus8,9, highlighting a need for 

frameworks to integrate functional evidence types and to compare findings10. 

Aggregation of genetic variants associated with lung function into a genetic risk score (GRS) provides a tool for COPD 

prediction5. When a GRS comprises a sufficient number of variants, partitioning the GRS according to the biological 

pathways the variants influence could provide a tool to explore their aggregated consequences across a wide range 

of traits through phenome-wide association studies (PheWAS). Just as PheWAS of individual genetic variants can 

predict the consequences of perturbation of specific protein targets, informing assessment of drug efficacy, drug 

safety and drug repurposing opportunities11, PheWAS of pathway-partitioned GRS could inform the understanding of 

consequences of perturbing specific pathways. 

Through the largest global assembly of lung function genomics studies to date we: (i) undertook a multi-ancestry 

meta-analysis of GWAS of lung function traits in 580,869 individuals to detect novel signals, improve fine-mapping 

and estimate the extent of heterogeneity in allelic effects attributable to ancestry; (ii) tested whether lung function 

signals were age-dependent or smoking-dependent, and assessed their relationship to height; (iii) investigated cell 

type and functional specificity of lung function association signals; (iv) fine-mapped signals through annotation-

informed credible sets, integrating functional data such as respiratory cell-specific chromatin accessibility signatures; 

(v) applied a consensus-based framework to systematically investigate and identify putative causal genes, integrating 

eight locus-based or similarity-based criteria; (vi) developed and applied a GRS for the ratio of forced expiratory 

volume in 1 second to forced vital capacity (FEV1/FVC) in different ancestries in UK Biobank and in COPD case-control 

studies; (vii) applied PheWAS to individual variants, GRS for each lung function trait, and GRS partitioned by 

pathway. Through these approaches we aimed to detect novel lung function signals and novel putative causal genes, 

and provide new insights into the mechanistic pathways underlying lung function, some of which may be amenable 

to drug therapy. 

Results 
We undertook genome-wide association analyses of forced expired volume in 1 second (FEV1), forced vital capacity 

(FVC), FEV1/FVC, and peak expiratory flow rate (PEF) from 49 cohorts (Methods, Supplementary Table 1, 

Supplementary Table 2). Our sample of up to 580,869 participants comprised individuals of African (AFR: N=8,590), 

American/Hispanic (AMR: N=14,668), East Asian (EAS: N=85,279), South Asian (SAS: N=10,093) and European 

ancestry (EUR: N=462,239, Supplementary Figure 1a, 1b). Adjustments were made for age, age2, sex, and height in 

association testing within cohorts, and we accounted for population structure and, where appropriate, relatedness 

(Methods and Supplementary Tables 2-4). Genomic control was applied to each cohort before meta-analysis using 

the linkage disequilibrium (LD) score intercept12. After filtering and meta-analysis across multi-ancestry cohorts, 

66.8M variants were available genome-wide for signal selection in each of 4 lung function traits, with genomic 

inflation factors λ of 1.025, 1.022, 0.984 and 0.996 for FEV1, FVC, FEV1/FVC and PEF respectively (Supplementary 

Figures 2-3, Supplementary Table 5). 

1020 signals for lung function 
After excluding 8 signals associated with smoking behaviour (Supplementary Note), and combining signals that 

colocalised across multiple traits, we identified 1020 distinct signals for lung function using a stringent threshold of 

P<5×10-9 (ref.13, Figure 1a). Of these, 713 are novel with respect to the signals and studies described in the 

Supplementary Note (Supplementary Table 6). These 1020 signals explain 33.0% of FEV1/FVC heritability (21.3% for 

FEV1, 17.3% for FVC, 21.4% for PEF, Methods). 

To facilitate fine-mapping, we included larger and more diverse populations than previous lung function GWAS. We 

performed multi-ancestry meta-regression with MR-MEGA7 , which incorporates axes of genetic ancestry as 

covariates to model heterogeneity (Methods). We then incorporated functional annotation for chromatin 

accessibility and transcription factor binding sites in respiratory-relevant cells and tissues, and enriched genomic 

annotations14 to weight prior causal probabilities of association for putative causal variants (Methods). Overall 

reductions in credible set size and higher maximum posterior probabilities of association for the most likely causal 

variant in the credible set were evident after multi-ancestry meta-regression was employed and after functional 

annotation was incorporated (Supplementary Figure 4). Following fine-mapping, 438 (43%) signals had a single 



putative causal variant (posterior probability >50%) and the median credible set size was 9 variants (Supplementary 

Note). 

We assessed heterogeneity of variant associations attributable to ancestry utilising MR-MEGA. Of the 960 signals 
represented in ≥7 cohorts, 109 signals showed ancestry‐correlated heterogeneity (PHet<0.05, Supplementary Figure 
5, Supplementary Table 7), more than expected by chance (binominal test, P = 3.93x10-15). Among these, five signals 
(rs9393688, rs28574670 (LTBP4), rs7183859 (THSD4), rs59985551 (EFEMP1), rs78101726 (MECOM)) showed 
significant ancestry-correlated heterogeneity (Bonferroni correction for 960 signals tested, PHet< 5.21x10-5, 
Supplementary Figures 6a-e). The intronic variant rs7183859 in THSD4, which we previously implicated in lung 
function15, showed larger effect size estimates in non-EUR ancestries, and in particular African ancestries 
(PHET=3.33x10-5, Supplementary Figure 6c).  

We examined associations of lung function associated SNPs in children’s cohorts (Supplementary Table 8) and 
tested for differences in the estimated effect sizes of lung function associated SNPs between children and adults, as 
well as between ever-smokers and never-smokers, in European individuals (Methods). Effect size estimates between 
children and adults were correlated (r from 0.51 for FEV1/FVC to 0.79 for FEV1, Supplementary Figure 7), although 
113 signals showed nominal evidence (P <0.05) of age-dependent effects (more than expected by chance, binomial P 
= 2.56x10-13). Three signals showed age-dependent effects (Bonferroni-corrected P <4.64x10-5): rs7977418 (CCDC91), 
rs34712979 (NPNT) and rs931794 (HYKK) (Supplementary Table 9). We observed 69 out of 1020 signals with 
nominal evidence (P <0.05) of smoking-dependent effects (Supplementary Figure 8), more than expected by chance 
(binomial P= 0.0079). The intronic SNP rs7733410 in HTR4, a signal we previously reported for lung function15, 
showed a 76.2% larger effect on FEV1 in ever than never-smokers (P=4.09x10-5, Supplementary Table 10). As height 
is a determinant of lung growth, we compared height and lung function associations and tested the impact of 
additional height adjustments for sentinel SNPs. We found no correlation between estimated effect sizes for height 
and lung function (Supplementary Figure 9), and the addition of height2 and height3 covariates had little impact on 
effect size estimates (Supplementary Figure 10). 

Cell-type and functional specificity 
We assessed whether our association signals were enriched for regulatory or functional features in specific cell 

types. Using stratified LD-score regression16 we found enrichment of all histone marks we tested (H3K27ac, H3K9ac, 

H3K4me3, H3K4me1) in lung and smooth muscle containing cell lines (Supplementary Table 11). Using GARFIELD17

we assessed enrichment of our signals for DNasel hypersensitivity sites (DHS) and chromatin accessibility peaks, 

showing enrichment in a wide variety of cell types, including higher enrichment in foetal and adult lung and blood 

for FEV1, FEV1/FVC, and PEF and fibroblast enrichment for FVC (Supplementary Figure 11a). Our signals were 

enriched for transcription factor footprints in foetal lung for FEV1, FEV1/FVC, and PEF, for footprints in skin for FVC, 

and also in blood for PEF (Supplementary Figure 11b). Genic annotation enrichment patterns were similar across all 

traits, with enrichment mainly in exonic, 3’ UTR and 5’ UTR regions (Supplementary Figure 11c). For all traits we saw 

enrichment for transcription start sites (TSS), weak enhancers, enhancers and promoter flanks, with cell types for 

weak enhancer enrichment including endothelial cells for FEV1, FEV1/FVC, and PEF (Supplementary Figure 11d). For 

transcription factor binding sites, we observed a similar enrichment pattern across all the lung function traits with 

the largest fold-enrichment in endothelial cells (Supplementary Figure 11e). We used ATAC-seq data for the above 

fine-mapping and also to describe enrichment of our signals in specific cell types. Our signals were enriched in ATAC-

seq peaks (Supplementary Note) in matrix fibroblast 1 for FVC, matrix fibroblast 2 for FEV1, myofibroblast for FEV1, 

FEV1/FVC, and PEF, and alveolar type 1 cells in FEV1/FVC and genic annotations showed enrichment of exon variants 

for FEV1, FEV1/FVC, and 3' UTR variants for FEV1 and FVC. We also found enrichment of transcription factor binding 

sites in lung across all phenotypes and in bronchus for FEV1/FVC (Supplementary Table 12). 

Identification of putative causal genes and causal variants 
To systematically investigate and identify putative causal genes, we integrated orthogonal evidence, using eight 

locus-based or similarity-based criteria (Supplementary Note): (i) the nearest gene to the sentinel SNP; (ii) 

colocalisation of GWAS signal and eQTL or (iii) pQTL signals in relevant tissues (Methods); (iv) rare variant association 

in whole exome sequencing in UK Biobank; (v) proximity to a gene for a Mendelian disease with a respiratory 

phenotype (+/-500kb); (vi) proximity to a human ortholog of a mouse knockout gene with a respiratory phenotype 

(+/-500kb); (vii) an annotation-informed credible set14 containing a missense/deleterious/damaging variant with a 

posterior probability of association >50% and; (viii) the gene with the highest polygenic priority score (PoPS), a 



method based on the assumption that causal genes on different chromosomes share similar functional 

characteristics9. We identified 559 putative causal genes satisfying at least two criteria, of which 135 were supported 

by at least three criteria (Figure 1b, Figure 2, Supplementary Figure 12). Among 20 genes supported by 4 or more 

criteria (Supplementary Table 13), six previously implicated genes (TGFB2, NPNT, LTBP4, TNS1, SMAD3, AP3B1) 5,15,18-

20 were supported by additional criteria compared with the original reports. Fourteen of the 20 genes supported by 4 

or more criteria have not been confidently implicated in lung function previously (CYTL1, HMCN1, GATA5, 

ADAMTS10, IGHMBP2, SCMH1, GLI3, ABCA3, TIM1, CFH, FGFR1, LRBA, CLDN18, IGF2BP2). These are involved in 

smooth muscle function (FGFR1, GATA5, STIM1), tissue organisation (ADAMTS10), alveolar and epithelial function 

(ABCA3, CLDN18), and inflammation and immune response to infection (CFH, CYTL1, HMCN1, LRBA, STIM1).  

In order to supplement understanding of the biological pathways and range of clinical phenotypes that lung function 

associated variants influence, we undertook PheWAS of selected individual variants. We selected 27 putative causal 

genes implicated by ≥4 criteria (20 genes), or implicated by a single putative causal missense variant that was 

deleterious (5 genes: ACAN, ADGRG6, SCARF2, CACNA1S, HIST1H2BE) or rare (2 genes: SOS2, ADRB2, Supplementary 

Table 14). We interpreted the PheWAS findings (shown in full in Supplementary Figure 13 and Supplementary Table 

15) alongside literature reviews (Supplementary Table 16) for each of these 27 genes; examples are highlighted in 

the three paragraphs below. 

The putative causal deleterious missense variant in ABCA3 associated with reduced FEV1/FVC, rs149989682 (A allele, 

frequency 0.6%), has been reported to cause paediatric interstitial lung disease21. ABCA3, expressed in alveolar type 

II cells and localised to lamellar bodies, is involved in surfactant phospholipid metabolism and several ABCA3

mutations cause severe neonatal surfactant deficiency22. The putative causal deleterious missense variant 

rs200383755 C allele (frequency 0.6%) in GATA5, associated with lower FEV1, was associated with increased risk of 

asthma, higher blood pressure and reduced risk of benign prostatic hyperplasia in our PheWAS. GATA5 associations 

have not been previously noted in GWAS of asthma, although Gata5-deficient mice show airway 

hyperresponsiveness23 (Supplementary Figure 13i). GATA5 is a transcription factor involved in smooth muscle cell 

diversity, expressed in bronchial smooth muscle, and highly expressed in bladder and prostate; a previous benign 

prostatic hyperplasia GWAS reported a GATA5 signal 24 23. CLDN18 was implicated by 4 criteria, including a mouse 

knockout with abnormal pulmonary alveolar epithelium morphology25. Through calcium-independent cell-adhesion, 

CLDN18 influences epithelial barrier function through tight junction-specific obliteration of the intercellular space26, 

and its splice variant CLDN18.1 is predominantly expressed in the lung27. Reduced CLDN18 expression has been 

reported in asthma28. However, our PheWAS showed no association with asthma susceptibility or other traits 

(CLDN18_rs182770 in Supplementary Table 15). LRBA was also implicated by 4 criteria. Mutations resulting in LRBA 

deficiency cause common variable immunodeficiency-8 with autoimmunity, which can include cough, respiratory 

infections, bronchiectasis, or interstitial lung disease 29 30. Putative causal LRBA variant rs2290846 (posterior 

probability 56.3%) is a tolerated missense variant which showed pleiotropic associations with 31 associated traits 

(FDR<1%) in our PheWAS (Supplementary Figure 13n, Supplementary Table 15). The rs2290846 G allele, associated 

with lower FVC and lower FEV1, was associated with lower neutrophils, lower risks of cholelithiasis and 

cholecystitis31, and lower diverticular disease risk. 

FGFR1, encoding Fibroblast Growth Factor Receptor 1, has roles in lung development and regeneration32, and loss-

of-function FGFR1 mutations cause hypogonadotropic hypogonadism33. Notably, in our PheWAS, the T allele of 

rs881299, associated with lower FEV1/FVC and higher FVC, is strongly associated with higher testosterone 

(particularly in males) and higher sex hormone binding globulin (SHBG), lower BMI, lower alanine transaminase and 

urate levels (Supplementary Figure 13w-y, Supplementary Table 15). Missense variant rs72681869 in SOS2 also 

showed association with SHBG in our PheWAS. In both sexes the C allele of rs72681869, associated with higher FVC 

and higher FEV1, was associated with lower SHBG, higher alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST), higher fat mass, HbA1c and higher systolic and diastolic blood pressure, higher urate and 

creatinine, and in males lower testosterone, and reduced inguinal hernia risk (Supplementary Figure 13z-bb). 

Mutations in SOS2 have been reported in Noonan Syndrome. The A allele of rs7514261 implicating CFH, associated 



with lower FVC, was strongly associated with reduced risk of macular degeneration34 and also with raised albumin in 

our PheWAS (Supplementary Figure 13g). 

CACNA1S is one of several genes prioritised encoding calcium voltage-gated channel subunits in skeletal muscle 

(CACNA1S, CACNA1D, and CACNA2D3 supported by ≥2 criteria; CACNA1C was supported by PoPS). Mutations in 

CACNA1S have been reported to cause hypokalemic periodic paralysis35 and malignant hyperthermia36. CACNA1S is 

strongly expressed in skeletal muscle, but at much lower levels in airway smooth muscle. The common CACNA1S

missense variant, rs3850625 (A allele, frequency EUR 11.8%, SAS 21.4%) was associated with lower FVC, lower FEV1, 

and in the PheWAS, with lower whole body fat-free mass, reduced hand grip strength, and lower aspartate 

aminotransferase and creatinine levels (Supplementary Figure13f). CACNA1S and CACNA1D are targeted by 

dihydropyridine calcium channel blockers, which have been reported to produce small improvements in lung 

function in asthma37. The low frequency missense variant rs1800888 in ADRB2 (T, 1.49% EUR), associated with lower 

FEV1 and lower FEV1/FVC, showed strongest association in the PheWAS with increased eosinophil count.  

Druggable targets 
Using the Drug Gene Interaction Database (DGIDB), we surveyed 559 genes supported by ≥2 criteria. We found 292 

drugs indicated by ChEMBL interactions mapping to 55 genes (Supplementary Table 17), including ITGA2, encoding 

Integrin Subunit Alpha 2. The reduced expression of ITGA2 in lung tissue with the C allele of rs12522114 mimics 

vatelizumab-induced ITGA2 inhibition; this allele is associated with higher FEV1 and FEV1/FVC, indicating a potential 

to repurpose vatelizumab, which increases T regulatory cell populations38, for COPD. 

Pathway analysis 
Using ConsensusPathDB39, we tested whether specific biological pathways were enriched for the 559 causal genes 

supported by 2 or more criteria, highlighting multiple pathways consistent with developmental pathways, tissue 

integrity and remodelling (Supplementary Table 18). These include pathways not previously implicated in pathway 

enrichment analyses for lung function such as PI3K-Akt signalling, integrin pathways, endochondral ossification, 

calcium signalling, hypertrophic cardiomyopathy, and dilated cardiomyopathy, as well as those previously implicated 

via individual genes5 such as TNF signalling, actin cytoskeleton, AGE-RAGE signalling, Hedgehog signalling and 

cancers. We also show strengthened enrichment by newly identified genes in pathways we previously described, 

such as extracellular matrix organisation (34 new genes), elastic fibre formation (8 genes), and TGF-Core (4 new 

genes). Consistent with our ConsensusPathDB findings, Ingenuity Pathway Analysis 

(https://digitalinsights.qiagen.com/IPA)40 highlighted enrichment of cardiac hypertrophy signalling and osteoarthritis 

pathways, and additionally implicated pulmonary and hepatic fibrosis signalling pathways, axonal guidance and PTEN 

signalling, and upstream regulators TGFB1 and IGF1 (Supplementary Table 19).  

Multi-ancestry genetic risk score associations with FEV1/FVC and COPD 
We built multi-ancestry and ancestry-specific genetic risk scores weighted by FEV1/FVC effect sizes and tested for 

association with FEV1/FVC and COPD (GOLD stage 2-4) using independent testing datasets in different ancestry 

groups in UK Biobank (Methods). Our new GRS noticeably improved the predictive power for quantitative lung 

function and COPD compared with our previous GRS based only on European ancestry samples5 (Figure 3a and 3b, 

Supplementary Table 20) and the multi-ancestry GRS outperformed the ancestry-specific GRS in all ancestry groups 

in UK Biobank. We then tested the association of the multi-ancestry GRS with COPD susceptibility in five 

independent COPD case-control studies (Supplementary Table 21, Methods). Improved association results were 

observed across all the five European ancestry studies compared with previous GRS5 (Figure 3c, Supplementary 

Table 22). The odds ratio for COPD per standard deviation of the weighted GRS was 1.63 (95% CI: [1.56, 1.71], 

P=7.1×10-93) in the meta-analysis of these EUR studies compared to 1.55 (95% CI: [1.48, 1.62], P=2.9×10-75) using the 

previous GRS5. In SPIROMICS African ancestry individuals, results were comparable to UK Biobank African ancestry 

individuals, but of a lower magnitude in the COPDGene African ancestry population (Figure 3c). 

To aid clinical interpretation, we divided individuals in each of the five European ancestry COPD case-control studies 

into ten deciles according to their values of the multi-ancestry GRS. The odds ratio for COPD in members of the 

highest GRS decile compared to the lowest GRS decile was 5.16 (95% CI: [4.14, 6.42], P=1.0×10-48, Supplementary 

Table 23). Across the multi-ancestry GRS deciles, the odds ratio for COPD showed a greater monotonic upward trend 

than across the previous GRS deciles (Figure 3d). 



Phenome-wide associations of trait-specific genetic risk scores  
To study the aggregate effects of genetic variants associated with each specific lung function trait on a wide range of 

diseases and disease-relevant traits, we created genetic risk scores (GRS) for each of , one for each trait FEV1, FVC, 

FEV1/FVC and PEF, and used each of these GRS in PheWAS. To construct each GRS, we included all sentinel variants 

associated with the trait (P <5×10-9), using the weights estimated from the multi-ancestry meta-regression 

(Methods), for a total of 425, 372, 442 and 194 variants in each trait-specific GRS respectively. 

GRS constructed from the four lung function traits showed distinct patterns of associations with a range of 

respiratory and non-respiratory phenotypes in our PheWAS (Figure 4, Supplementary Table 24). A GRS for lower 

FEV1 was most strongly associated with increased risk of asthma and COPD, as well as family history of chronic 

bronchitis/emphysema, lower hand grip strength, increased fat mass, increased HbA1c and type 2 diabetes risk, and 

elevated C-reactive protein (CRP). Additionally, associations were seen with increased asthma exacerbations and 

lower age of onset for COPD (Figure 4a). The GRS for lower FEV1/FVC was associated with key respiratory 

phenotypes: increased risk of COPD and asthma, increased family history of chronic bronchitis/emphysema, 

increased emphysema risk, and increased risk of respiratory insufficiency or respiratory failure, younger age of onset 

for COPD but a slightly lower risk of COPD exacerbations (Figure 4b). In contrast, the GRS for lower FVC was strongly 

associated with many traits – among the strongest associations were with high CRP, increased fat mass, raised 

HbA1c and type 2 diabetes, raised systolic blood pressure, lower hand grip strength and raised alanine 

aminotransferase, as well as showing increased risk of clinical codes for asthma and COPD (Figure 4c). Whilst the GRS 

for lower FEV1/FVC was associated with increased standing height and sitting height, the GRS for lower FEV1 and FVC 

were associated with increased standing height but reduced sitting height. Broadly similar phenome-wide 

associations were seen for the PEF GRS as for the FEV1 GRS (Figure 4d). 

Phenome-wide associations of genetic risk scores partitioned by pathway 
Finally, we hypothesised that partitioning our lung function GRS into pathway-specific GRSs according to the 

biological pathways the variants influence could inform understanding of mechanisms underlying lung function and 

COPD, and the likely consequences of perturbing specific pathways. Informed by the above prioritisation of putative 

causal genes and classification of these genes by pathway (Pathway analysis, above), we undertook PheWAS for 

FEV1/FVC GRSs partitioned by each of the 29 pathways enriched (FDR <10-5) for the 559 genes implicated by ≥2 

criteria. In each case, we weighted the GRSs using the FEV1/FVC multi-ancestry meta-regression results (Methods). 

Partitioning GRSs in this way highlighted marked differences in patterns of phenome-wide associations (full results in 

Supplementary Figure 14 and Supplementary Table 25). We highlight four examples in Figure 5; whilst all four 

pathway-specific GRSs illustrated showed association with COPD clinical codes and with a family history of chronic 

bronchitis/emphysema, associations with other traits varied. The GRS for lower FEV1/FVC specific to elastic fibre 

formation was associated with increased risk of inguinal, abdominal, diaphragmatic and femoral hernia, 

diverticulosis, arthropathies, hallux valgus and genital prolapse, but reduced risk of carpal tunnel syndrome, as well 

as reduced BMI, and increased asthma risk (Figure 5a). In contrast, the GRS for lower FEV1/FVC specific to PI3K-Akt 

signalling was associated with increased asthma risk, lower IGF-1, liver enzymes (ALT, AST, gamma 

glutamyltransferase (GGT)) and lower lymphocyte count, raised eosinophils, lower fat mass and BMI and reduced 

diabetes risk (Figure 5b). The GRS for lower FEV1/FVC specific to the hypertrophic cardiomyopathy pathway was 

associated with reduced liver enzymes (ALT, GGT), lower apolipoprotein B and lower LDL, lower IGF-1 and lower 

mean platelet volume (Figure 5c). The GRS associations for lower FEV1/FVC partitioned to signal transduction were 

specific to respiratory traits, including asthma and emphysema (Figure 5d). Variable height associations were 

evident: the GRS for lower FEV1/FVC showed association with increased height when partitioned to elastic fibre 

formation or hypertrophic cardiomyopathy (Figure 5a,c), reduced height when partitioned to ESC pluripotency 

(Supplementary Figure 14g), and no association with height when partitioned to PI3K-Akt signalling or signal 

transduction (Figure 5b,d). 

We hypothesised that individuals may have high GRS for one or more pathways and low GRS for other pathways. 

Comparing individuals’ GRS across pairs of pathways for each of 29 pathways (Supplementary Figure 15a) and in 

detail for the elastic fibre, PI3K-Akt signalling, hypertrophic cardiomyopathy and signal transduction pathways 

(Supplementary Figure 15b) show how GRS profiles may be concordant or discordant across pathways, which could 

have implications for choice of therapies. 



Discussion 
Our study represents the largest and most ancestrally diverse GWAS of lung function to date and the most 

comprehensive initiative to relate lung function and COPD associated variants to functional annotations, cell types, 

genes and pathways. It is also the first to investigate possible phenotypic consequences of intervening in relevant 

pathways through PheWAS studies, utilising pathway-partitioned GRS.  

The 1020 signals identified to date were enriched in functionally active regions in alveolar type 1 cells, fibroblasts 

and myofibroblasts, bronchial epithelial cells, adult and fetal lung. We showed effect heterogeneity attributable to 

ancestry for 109 signals (including LTBP4, THSD4, EFEMP1, MECOM), between ever-smokers and never-smokers 

(HTR4), and differences in effects between adults and children (including CCDC91 and NPNT). We mapped lung 

function signals to 559 genes putatively inferred as causal based on meeting at least two independent criteria. 

Exemplar genes supported by ≥4 criteria or by deleterious or rare putative causal missense variants implicated 

surfactant phospholipid metabolism, smooth muscle function, epithelial morphology and barrier function, innate 

immunity, calcium signalling, adrenoceptor signalling, lung development and regeneration. Among the pathways 

enriched for the putative causal genes, were PI3K-Akt signalling, integrin pathways, endochondral ossification, 

calcium signalling, hypertrophic cardiomyopathy, and dilated cardiomyopathy that have not been previously 

implicated in lung function using GWAS approaches.  

Combined as a genetic risk score weighted by FEV1/FVC effect size, the 1020 variants strongly predicted COPD in UK 

Biobank and in COPD case-control studies, with a more than five-fold change in risk between highest and lowest GRS 

deciles, illustrating the clinical relevance of our findings. This GRS more strongly predicted FEV1/FVC and COPD 

across all ancestries than a previously constructed risk score5. Partitioning this lung function GRS by the pathways 

defined by specific variants, informed by detailed, systematic variant-to-gene mapping and pathway analyses and 

using our new Deep-PheWAS platform41, illustrated unique patterns of phenotype associations for each pathway 

GRS. These patterns of PheWAS findings are relevant to the potential efficacy and potential side-effects of 

intervening in these pathways. As a proof-of-concept, the GRS associated with lower FEV1/FVC specific to PI3K-Akt 

signalling was associated with increased risk of COPD but a lower risk of diabetes; PI3K inhibition impairs glucose 

uptake in muscle and increases hepatic gluconeogenesis, contributing to glucose intolerance and diabetes42. The 

PheWAS and druggability analyses we conducted have potential to identify drug repurposing opportunities for 

COPD. 

The patterns of pleiotropy we show through PheWAS for individual variants, for trait-specific GRS and pathway-

partitioned GRS may help to explain variants and pathways that increase susceptibility to more than one disease, 

and thereby predispose to particular patterns of multimorbidity. For example, the elastic fibre pathway GRS was 

associated with increased risk of muscular (e.g. herniae) and musculoskeletal conditions related to connective tissue 

laxity. Our findings also help to further elucidate the complex relationship between height, body mass index or 

obesity, and lung function, and their genetic determinants5,43. We saw no overall correlation between the magnitude 

of lung function and height associations, and relationships differed between GRS for different lung function traits, 

and even between sitting and standing height for the same trait. The pathway-partitioned GRS indicate that the 

relationship between genetic variants, height and lung function traits depends on the pathways through which the 

variants act. 

Our discovery effort was enabled by the largest worldwide collaboration to bring together multi-ancestry 

populations with curated lung function and genomic data, and to map these signals to putative causal genes. The last 

comprehensive attempt to map lung function associated variants to genes identified 107 putative causal genes, 

mostly through eQTLs only, and only eight genes were then implicated by ≥2 criteria5. In contrast, we implicated 559 

causal genes meeting at least two criteria, through drawing upon new data and methodologies, such as single cell 

epigenome data, rare variant associations identified in sequencing data in UK Biobank and similarity-based approach 

PoPs9. Nevertheless, our study has limitations. Our focus was on discovery of multi-ancestry rather than ancestry-

specific signals, as sample sizes for lung function genomics studies in all non-European ancestry groups fall far short 

of those in European ancestries, particularly in African ancestry populations4. Indeed, non-European ancestries are 

under-represented generally in genomic studies3, constraining both genome-wide and especially phenome-wide 

approaches in these populations. Correcting this will require substantial global investment in studies with suitably 



phenotyped and genotyped individuals, coupled with appropriate models of community participation and workforce 

development. Improved sample sizes across all ancestries would improve power for discovery in for ancestry-specific 

studies43, and for fine-mapping genetic associations detected from multi-ancestry meta-analyses. 

Strategies for in-silico mapping of association signals to causal genes are constantly evolving and difficult to evaluate 

until a reference set of fully functionally characterised lung function-associated variants and causal genes is 

developed. The framework we used to map signals to genes parallels one recently adopted10, showing the consensus 

between approaches in implicating each putative causal gene. Such frameworks, whilst guiding prioritisation of 

genes for functional experiments, do not provide definitive guidance on how variant-to-gene criteria should be 

weighted or on a minimal number of variant-to-gene criteria required. Such in-silico evidence cannot firmly 

demonstrate causality, and confirmation of mechanism will require functional genomics experiments such as gene 

editing in suitable organoids with appropriate readouts. An additional limitation is that classifications of pathways 

may be imperfect; we used multiple pathway classifications as it is unclear which is superior across all component 

pathways, and we present the pathway-partitioned PheWAS results as a resource to others. 

In summary, our multi-ancestry study highlights new putative causal variants, genes and pathways, some of which 

are targeted by existing drug compounds. These findings bring us closer to understanding mechanisms underlying 

lung function and COPD and will inform functional genomics experiments to confirm mechanisms and consequently 

guide the development of therapies for impaired lung function and COPD. 
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Figure 1: Overview of (a) Discovery meta-analysis; Ancestry abbreviations: EUR – European, AFR – African, EAS – East Asian, SAS – South Asian, AMR – Admixed 
American/Hispanic. *For signals present in more than one trait, the signal is only counted once (for the most significant trait); (b) pathway analyses, genetic risk score 
(GRS) analyses and phenome-wide association studies (PheWAS) 
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Figure 2: 135 genes prioritised with 3 or more variant-to-gene criteria. 
The number of variant-to-gene criteria implicating the gene is in brackets after the gene name. The grey in the first 8 columns indicates that at least 1 variant implicates the 

gene as causal via the evidence for that column. The last 4 columns indicate the level of association of the most significant variant implicating the gene as causal with 
respect to the FEV1/FVC decreasing allele: the same direction of effect as the FEV1/FVC decreasing allele has red shades, the opposite direction has blue shades.



a) b) 

c)  d) 

Figure 3: GRS performance: a) Prediction performance of 3 GRS across ancestry groups for FEV1/FVC shown as 
standard deviation (SD) change in FEV1/FVC per SD increase in GRS in the individuals of UK Biobank ancestry groups 
(whiskers represent 95% confidence intervals); b) Prediction performance of 3 GRS for COPD shown as COPD odds 
ratio per SD increase in GRS; c) OR for COPD per S.D. change in GRS in COPD case-control studies; d) decile analysis. 



a) FEV1

b) FEV1/FVC 



c) FVC 

d) PEF 

Figure 4: PheWAS of lung function trait GRS: a) FEV1; b) FEV1/FVC; c) FVC; d) PEF 

CP=composite phenotype, DFP=Data-Field ID phenotype, cDFP=combined Data-Field ID phenotype, FP=formula 

phenotype, AP=Added phenotype (Methods). 



a) Elastic fibre formation (Reactome) 

b) PI3K-Akt signalling pathway Homo sapiens (human) (KEGG) 



c) Hypertrophic cardiomyopathy Homo sapiens (human) (KEGG) 

d) Signal Transduction (Reactome) 

Figure 5: PheWAS for FEV1/FVC weighted GRS partitioned by: a) Elastic fibre formation (Reactome); b) PI3K-Akt 
signalling pathway Homo sapiens (human) (KEGG); c) Hypertrophic cardiomyopathy Homo sapiens (human) (KEGG); 
d) Signal Transduction (Reactome). CP=composite phenotype, DFP=Data-Field ID phenotype, cDFP=combined Data-
Field ID phenotype, FP=formula phenotype, AP=Added phenotype (Methods). 


