
© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open 
Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and 
reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact 
journals.permissions@oup.com  1 

Transcriptomic and connectomic correlates of differential 1 

spatial patterning among gliomas 2 

Rafael Romero-Garcia,1,2 Ayan S. Mandal,2,3 Richard A. I. Bethlehem,2 Benedicto Crespo-3 

Facorro,4 Michael G Hart5 and John Suckling2,6,7 4 

Abstract 5 

Unravelling the complex events driving grade-specific spatial distribution of brain tumour 6 

occurrence requires rich datasets from both healthy individuals and patients. Here, we combined 7 

open-access data from The Cancer Genome Atlas, the UKBiobank and the Allen Brain Human 8 

Atlas to disentangle how the different spatial occurrences of Glioblastoma Multiforme (GBM) 9 

and Low-Grade Gliomas (LGG) are linked to brain network features and the normative 10 

transcriptional profiles of brain regions.  11 

From MRI of brain tumour patients we first constructed a grade-related frequency map of the 12 

regional occurrence of LGG and the more aggressive GBM. Using associated mRNA 13 

transcription data, we derived a set of differential gene expressions from GBM and LGG tissues 14 

of the same patients. By combining the resulting values with normative gene expressions from 15 

postmortem brain tissue, we constructed a grade-related expression map indicating which brain 16 

regions express genes dysregulated in aggressive gliomas. Additionally, we derived an 17 

expression map of genes previously associated with tumour subtypes in a GWAS study (tumour-18 

related genes). 19 

There were significant associations between grade-related frequency, grade-related expression, 20 

and tumour-related expression maps, as well as functional brain network features (specifically, 21 

nodal strength and participation coefficient) that are implicated in neurological and psychiatric 22 

disorders.  23 

These findings identify brain network dynamics and transcriptomic signatures as key factors in 24 

regional vulnerability for GBM and LGG occurrence, placing primary brain tumours within a 25 

well-established framework of neurological and psychiatric cortical alterations. 26 

 27 
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 24 

Introduction 25 

Adult diffuse gliomas are devastating and lethal types of cancer. According to the World Health 26 

Organization (WHO) grading system, survival rates drastically vary from Low-Grade Gliomas 27 

(LGG) with median survival between 4.7 and 9.8 years1 to Glioblastoma Multiforme (GBM), or 28 

grade IV astrocytoma, with survival limited to around 15 months.2 Brain tumours occur via 29 
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several aetiologies and are located heterogeneously across the brain. Although the location of the 1 

tumour determines the likelihood of complete resection, and thus long-term survival3, its specific 2 

location can influence the accompanying cognitive changes that patients often experience. In this 3 

study, we leverage well-established open access data sources to construct a map of the 4 

distribution of brain tumours of varying grade, and investigate the reasons for these distributions 5 

in the underlying genetic expression and functional networks. 6 

LGGs, most frequently astrocytomas and oligodendrogliomas, are slow-growing, infiltrative 7 

tumours that account for 10-20% of all primary brain tumours.1 Most, usually younger patients, 8 

will die due to the malignant (anaplastic) transformation of the tumour to a higher grade. The 9 

rate of malignant transformation is diverse amongst patients, and usually determined 10 

radiologically. GBM is the most common type of primary malignant brain tumour. In about 11 

∼90% of cases, they develop de novo as primary tumours with a high grade without histologic 12 

evidence of a precursor lesion.4  13 

The traditional grading system based on histological appearance does not always reflect the 14 

biological behaviour of tumours, and in 2016 WHO incorporated molecular classification criteria 15 

for adult diffuse gliomas that were revisited in 2021 to focus almost exclusively on this 16 

approach.5,6 A major motivator for this change is that tumour molecular profiles have a greater 17 

prognostic value and are better predictors of tumour growth kinetics regardless of grade or 18 

histology.7,8 For example, mutations of Telomerase Reverse Transcriptase (TERT) and Isocitrate 19 

Dehydrogenase 1 (IDH1-M), methylation of the O-6-methylguanine-DNA  methyltransferase 20 

gene (MGMT-met) and codeletion of chromosomes 1p and 19q (1p19q-cod) lead to germline 21 

variants that are driven by distinct pathogenic mechanisms characterised by specific proliferation 22 

rates and aggressiveness. Molecular signature also influences tumour location, with IDH-M 23 

gliomas preferentially located in the frontal lobe adjacent to the rostral extension of the lateral 24 

ventricles.9 It has been hypothesised that the high glutamate flux present in prefrontal cortex 25 

creates a metabolic niche that supports IDH-M gliomas.10 Beyond these well-known genetic 26 

mutations, a GWAS including >12,000 glioma patients and 18,000 controls identified 25 risk 27 

loci associated with glioma risks in adults.11 These tumour-related genes are heterogeneously 28 

distributed across glioma subtypes and grades, suggesting that they also play a major role in 29 

tumour appearance and progression.12  30 
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At the end of the Nineteenth Century, Paget described the seed and solid hypothesis that 1 

successful tumour growth depends on interactions between the properties of cancer cells (seeds) 2 

and their potential target tissue (soil).13,14 Although this hypothesis has been extensively explored 3 

as a conceptual scaffold for understanding tumour metastasis, we propose its re-examination in 4 

the context of the cellular origins of primary gliomas and their progression.  5 

It has been hypothesised that gliomas originate from neurogenic niches of Neuronal-Stem Cells 6 

(NSCs) and Oligodendroctye Precursor Cells (OPCs) in the subventricular zone15 that migrate 7 

along large-scale axonal tracts to populate distributed cortical areas.16 Neural-glioma cellular 8 

interactions are key determinants of glioma growth and migration17 forming a positive feedback 9 

loop by which glioma progression is promoted by molecules secreted in neuronal 10 

communication18, and increased glutamate release from gliomas inducing hyperexcitability of 11 

cortical networks.19 We recently demonstrated that regions with a high number of functional 12 

connections (i.e., hubs) and with elevated participation coefficient (i.e., regions interconnecting 13 

constituent network communities) are more vulnerable to the instantiation of gliomas.20 14 

Collectively, this evidence suggests that structural and metabolic factors are key determinants in 15 

tumour progression. However, it neglects the potential contribution of molecular and 16 

transcriptomic factors. Here, we investigate whether the cellular and gene expression profiles of 17 

the brain regions where glioma cells migrate are related to grade-specific occurrence.     18 

International collaborative efforts have not just generated genomic, epigenomic, transcriptomic, 19 

proteomic and neuroimaging data, but have also provided publicly accessible platforms to a 20 

growing research community to advance our understanding of the molecular basis of glioma. 21 

Datasets incorporating molecular and radiological information are particularly valuable for 22 

connecting genotypic and phenotypic profiles. A representative example of this effort is The 23 

Cancer Genome Atlas (TCGA)21 which, in coordination with the Cancer Imaging Archive 24 

(TCIA)22, recruited LGG and GBM patients and gathered transcriptomic data from tumour tissue 25 

and MRI scans from the same patients. Despite the unquestionable utility of this resource, gene 26 

expression in tumour tissue largely diverges from that in normal tissue, which can be collected 27 

from near the tumour, but only in a limited number of cases. Complementarily, the Allen Human 28 

Brain Atlas (AHBA) currently has the most exhaustive spatial coverage of gene expression data 29 

in brain tissue derived from six post-mortem normative donors.23 Despite these donors having 30 
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had no brain disease, their spatially resolved gene expression profiles are useful in shedding light 1 

on the transcriptomic vulnerabilities of the different brain areas.24–26  2 

In this study, we exploited the TCGA dataset to identify genes differentially expressed in GBM 3 

and LGG, and combine these expressions with the ABHA to construct a map of grade-related 4 

expression across the entire cortex from normative control data. We additionally incorporated 5 

functional connectivity data from the UK Biobank (UKB), one of the most ambitious MRI 6 

studies to date.27 We hypothesized that LGG and GBM will have a differentiated spatial profiles 7 

with higher frontal and parieto-temporal incidence, respectively.9,16 Also, that glioma tissue will 8 

differentially express tumour-related genes,12 and, finally, that those spatial profiles and 9 

expression differences are associated in normative post-mortem controls, revealing a grade-10 

sensitive pattern of regional vulnerability to brain tumours. 11 

Methods 12 

TCGA MRI brain tumour masks 13 

The TCGA dataset (https://www.cancer.gov/about-nci/organization/ccg/research/structural-14 

genomics/tcga/studied-cancers/glioblastoma) includes solid samples of GBMs and LGGs of 15 

which 135 and 107, respectively, were matched to MRI scans from The Cancer Imaging Archive 16 

(TCIA) dataset (https://wiki.cancerimagingarchive.net/display/Public/Brain-Tumor-Progression) 17 

collected at 13 institutions. Diagnoses of GBM and LGG were established at the contributing 18 

institutions and reviewed by neuropathologists in the TCGA consortium (WHO 2016 19 

criteria).21,28 Additionally, all transcriptomic and imaging findings described here were 20 

reproduced after grouping patients according to the WHO 2021 molecular criteria based on IDH-21 

1 mutation status (see Supplemental Material). This classification included 129 IDH-1 wild-type 22 

and 88 IDH-1 mutated tumours.  23 

T1-weighted MRIs were skull-stripped, co-registered and resampled to 1 mm3 resolution. The 24 

segmentation algorithm GLISTRboost was used to classify voxels into four categories: contrast-25 

enhancing tumour, necrotic non-enhancing core, peritumoural oedema and normal brain tissue. 26 

Labels were then manually corrected by board-certified neuroradiologists.29 Group-level GBM 27 

and LGG occurrence was obtained by concatenating glioma masks across patients. Frequency 28 

maps were first calculated at the voxel level as the proportion of times that a given voxel was 29 

overlapped by a tumour mask, and then at regional level as the average overlapping of all voxels 30 
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within each parcel of an atlas. As expression data were primarily available only for one 1 

hemisphere, inter-hemispheric differences were not considered here. Accordingly, frequency 2 

maps were built by averaging data from left and right hemispheres.  See yellow box in Figure 1 3 

for a summary. 4 

TCGA bulk transcriptomic analysis 5 

Following a previously reported workflow,30 we derived bulk mRNA transcripts of the whole 6 

genome (14,899 genes after exclusions) from the N=672 individuals from the TCGA dataset. 7 

Using the edgeR package,31 differential expression analyses compared tissue from patients with 8 

GBM (n=156) and LGG (n=516). As a result, we obtained a log count per million differentiation 9 

index per gene where positive values indicate higher expression in GBM compared to LGG bulk 10 

tissue. This pipeline was additionally performed by comparing IDH wild-type and IDH mutated 11 

bulk tissue to derive differential expression values to establish potential similarities with the 12 

grade-related expression. This pre-processing is described in more detail elsewhere.32 13 

Enrichment for cellular and biological components of the resulting differentially expressed genes 14 

were assessed using Enrich (https://maayanlab.cloud/Enrichr/).33 15 

ABHA normative gene expression map 16 

The ABHA provides microarray expression data from six normative donors sampled from over 17 

3,000 locations that covered the whole left hemisphere and were analysed using >62,000 probes 18 

per profile.23 As the spatial location of the samples was annotated and brains were scanned prior 19 

to tissue resection, it is possible to match a gene expression profile with a specific brain area.34 20 

The dataset was preprocessed using standard protocols implemented in the Abagen toolbox 21 

(https://abagen.readthedocs.io/)35: (i) microarray probes were reannotated (probes not matching a 22 

valid Entrez ID were discarded), (ii) probes with expression intensity less than the background 23 

noise in >50% of samples were discarded, (iii) the probe with the most consistent pattern of 24 

regional variation across donors was selected when more than one probe indexed the expression 25 

of the same gene, (iv) samples were assigned to a brain region if the coordinates were within 2 26 

mm of the region boundary, and (v) gene expression was normalised across tissue samples.  27 

We used a parcellation resulting from subdividing the Desikan–Killiany anatomical atlas into 28 

316 cortical parcels of approximately equal surface area (around 500 mm2; 29 

https://github.com/RafaelRomeroGarcia/subParcellation_symmetric).36 All analyses were 30 
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7 

restricted to the left hemisphere (LH) because it was exhaustively covered in all donors. This 1 

procedure resulted in a 159 x 15634 (number of LH regions by genes) expression matrix 2 

describing the complete molecular profile of the normative LH. 3 

Constructing the grade-related expression map 4 

The differential expression values derived from comparing GBM and LGG bulk tissue from the 5 

TCGA dataset were used as weights, where high positive weights correspond with genes that are 6 

over-expressed in GBM compared to LGG, and vice-versa. These weights were multiplied by the 7 

normative expression values across the cortex (ABHA data) to obtain a grade-related expression 8 

map. Thus, combining tumour mRNA and the spatial expression of genes in normative 9 

individuals, we derived an expression map representing brain regions that tend to express genes 10 

that are overexpressed in GBM compared to LGG. This map is hypothesised to reflect 11 

transcriptomic vulnerability to GBM. See purple box in Figure 1 for a summary. 12 

Principal components of brain-related and tumour-related genes 13 

expression 14 

The high co-expression between genes and the spatial distance effect of gene expression (i.e., 15 

closer regions tend to have similar expression profiles) implies that the dimensionality of the 16 

ABHA data can be effectively reduced to a few components which explain the vast majority of 17 

expression variability. We performed a Principal Component Analysis (PCA) over the normative 18 

gene expression matrix (159 regions x 15,634 genes) derived from the ABHA to obtain the most 19 

relevant regional expression patterns of brain-related genes. As in previous studies, we exploited 20 

the first two components (PCA1 and PCA2), resulting in a 159 regions by 2 PCA matrix 21 

revealing how each of the two gradients weight a given region.37 This linear dimensionality 22 

reduction technique allows visual and analytical exploration of the gene expression profiles. 23 

Additionally, we identified a set of 15 genes derived from 25 loci that have been associated with 24 

tumour grading in a GWAS study12: IDH1, ATRX, TERT, MGMT, EGFR, PDGFRA1, TP53, 25 

NF1, MDM2, CDKN2A, CDKN2B, PTEN, PIK3CA, MYCN, CIC, FUBP1, NOTCH1and 26 

PI3K. The same PCA procedure was performed over this set of genes (i.e., using a 159 regions x 27 

15 genes expression matrix) to derive the most relevant regional expression patterns of tumour-28 

related genes. See green box in Figure 1 for a summary. 29 

Brain network attributes 30 

ACCEPTED M
ANUSCRIPT D

o
w

n
lo

a
d

e
d

 fro
m

 h
ttp

s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
ra

in
/a

d
v
a

n
c
e

-a
rtic

le
/d

o
i/1

0
.1

0
9

3
/b

ra
in

/a
w

a
c
3

7
8

/6
7

6
3

1
3

6
 b

y
 g

u
e

s
t o

n
 2

9
 O

c
to

b
e

r 2
0

2
2
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The 35,830 individuals that were available and pre-processed by the UK Biobank at the time of 1 

these analyses were used to derive robust brain connectivity markers in normative participants. 2 

Pre-processing included motion correction, intensity normalisation, high pass temporal filtering, 3 

EPI unwarping and artefacts removal by ICA+FIX processing, and are described elsewhere.38 4 

Parcellations were transformed from structural T1-weighted image space to functional (EPI) 5 

MRI space using linear transformations. Regional time-series were computed as the average 6 

time-series of all voxels in the grey matter of each region. Functional connectivity between 7 

regions was calculated as the Pearson correlation between regional time-series.  8 

Nodal strength was calculated for each individual as the average functional connectivity, 9 

representing regions that are more strongly functionally synchronized with other regions (hubs). 10 

As nodal strength does not take into account the community structure of the brain and is 11 

influenced by community size,39  we additionally computed participation coefficients (PC) as 12 

  ( )    ∑       ⁄ 
   , where K is the number of communities, ki is the degree of the node i, 13 

and ki,s is the intra-community degree of node i (representing the inter-modular connections of 14 

each node). The PC captures the nodes that facilitate communication between communities that 15 

make up the brain network. Communities were identified using a consensus approach based on 16 

the Louvain algorithm. Because the algorithm is not deterministic, we used consensus clustering 17 

to detect a stable community structure (1000 permutations).34 Finally, canonical (group-level) 18 

nodal strength and PC indices used in further analyses were calculated as the average regional 19 

values across all individuals. See red box in Figure 1 for a summary.     20 

Statistical analyses 21 

Associations were calculated using Pearson correlation when the Kolmogorov–Smirnov tests 22 

retained the hypothesis that both the independent and dependent variable arises from standard 23 

normal distributions. Spearman’s Rho correlation was used otherwise.  24 

Both traditional parametric and non-parametric methods for relating brain maps ignore the 25 

inherent spatial auto-correlation of brain features (i.e., the data independence assumption is 26 

violated). To avoid inflated estimations of significance values, correspondence among regional 27 

maps (i.e., gene expression, glioma frequency and network metrics) was statistically tested by 28 

generating 10,000 random rotations (i.e., spins) of the cortical parcellation to estimate the 29 

distribution of r-values (or rho values for Spearman’s correlations) under the null hypothesis. 30 

This process provided a reference (null-)distribution for significance testing (Pspin) of brain 31 
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feature associations across regions while controlling for spatial contiguity of the cortical 1 

surface.40,41 Given that brain lobes have characteristic gene expression patterns, points on 2 

scatterplots (representing brain regions) were colour coded according to lobes: Frontal (green), 3 

Parietal (purple), Temporal (yellow), Occipital (light blue) and Insula (blue).  4 

Two separate hypotheses were tested when exploring the associations between regional patterns 5 

of brain- and tumour-related gene expressions with functional brain network measures and 6 

grade-related expression maps: (i) that the associations between both brain-related and tumour-7 

related gene expressions maps with network and grade-related markers across brain regions 8 

would be significantly different from zero (Pspin, computed as described above); and, (ii) that the 9 

associations between tumour-related gene expression and each marker would be stronger (i.e., 10 

explained more variance) than between brain-related genes and each marker (Pperm). As tumour-11 

related genes were constituted by 15 genes with an associated co-expression value, each of the 12 

10,000 permutations was calculated by randomly selecting 15 genes with similar co-expression 13 

(between 95% and 105% of the real co-expression value) and by correlating them with the 14 

regional marker. Pperm was then calculated as the proportion of randomly permuted cases that 15 

explained more variance than the observed set of tumour-related genes. Pperm<0.05 was the 16 

threshold for significance.  17 

Data Availability 18 

All data used is publicly available. Anonymized lesion data for GBM and LGG, respectively, are 19 

available at: https://www.cancerimagingarchive.net/access-data/. Clinical and genomic data from 20 

TCGA can be downloaded in R by following the workflow described in 21 

https://www.bioconductor.org/packages/release/workflows/vignettes/TCGAWorkflow/inst/doc/T22 

CGAWorkflow.html. UK BioBank neuroimaging data are available at: 23 

https://www.fmrib.ox.ac.uk/ukbiobank/. 24 

RESULTS 25 

Regional distributions of GBM and LGG are overlapping, but 26 

distinct 27 

Demographic and clinical information regarding the 242 patients with glioma with matched MRI 28 

scans from TCIA is included in Table 1. Group-level GBM and LGG occurrence was obtained 29 

by concatenating glioma masks across patients (Figure 1, yellow box). 30 
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 1 

 2 

GBM and LGG occurrences were heterogeneously distributed across the cortex with GBM 3 

predominantly located in insular and temporal cortices and LGG preferentially presenting in 4 

frontal and insular cortices (Figure 2A). Consequently, despite the spatial distribution of high 5 

and low grade tumours being significantly correlated (rho=0.54, Pspin<10-4), a substantial part of 6 

the variance remains unexplained (Figure 2B). Maps were subtracted to construct the grade-7 

related frequency map, a regional map reflecting the preferential occurrence of GBM compared 8 

with LGG. This map revealed a gradient of tumour grade occurrence across the cortex, with 9 

frontal and insular cortices having greater LGG occurrence and temporal and occipital cortices 10 

having greater GBM occurrence.  11 

Genes differentially expressed in GBM and LGG tissues show a characteristic expression pattern 12 

across brain regions  13 

We initially determined how each gene of the genome was differentially expressed in GBM 14 

compared with LGG bulk tissue using the TCGA dataset (Figure 1 purple box, Supplemental 15 

Data 1). The top 1000 genes showing the highest differentiation between these two grades of 16 

glioma were significantly (P<10-8) enriched for neuronal elements, neurotransmitter activity and 17 

synaptic transmission by reference to the Gene Ontology resource (http://geneontology.org) 18 

(Table 2, 3 and Supplemental Data 2). Expression values were also computed comparing IDH1 19 

wild-type and IDH1 mutated tumours resulting in a similar differential expression profile 20 

(Spearman´s rho = 0.87, P ≃ 0). Correlation between differential expression values was weaker, 21 

but still significant when comparing grade-related expression with IDH1 mutated and 1p19q 22 

codeleted tumours (Spearman´s rho = 0.73, P ≃ 0), and also with IDH1 mutated and 1p19q non-23 

codeleted tumours (Spearman´s rho = 0.60 P ≃ 0) (Figure S1). 24 

The tumour grade-related expression values were multiplied by the canonical gene expression 25 

values from the brain tissue of post-mortem control donors in the AHBA to derive a weighted 26 

average of genes differentially expressed in GBM and LGG across regions (Figure 3A).  The 27 

resulting grade-related expression map showed that genes over-expressed in GBM tissue are 28 

preferentially expressed in occipital and parietal cortices, while genes overexpressed in LGG 29 

tissue are expressed in anterior cingulate, motor, parahippocampal and entorhinal regions. This 30 

pattern was aligned with the two most important gradients of regional expression of 14,899 31 
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11 

brain-related genes in healthy individuals as captured by PCA 1 (32% explained variance; rho = -1 

0.40; Pspin=0.006) and PCA 2 (25% explained variance; rho = 0.54; Pspin=0.006) (Figure 3B left 2 

panels and 3C).  3 

Most genes that, according to a previous GWAS study12, present frequent molecular alterations 4 

on the five WHO 2016 subtypes of adult diffuse glioma (i.e. tumour-related genes) were 5 

significantly differentially expressed in GBM and LGG tissues (Figure 1 green box,13 out 15 6 

were significant Pfdr<0.01; Supplemental Table S1). When deriving the gene expression 7 

profiles of these tumour-related genes from the ABHA dataset (Figure 1 blue box), we found 8 

two principal gradients of expression in healthy individuals: PCA 1 explaining 39% of the 9 

variance, PCA 2 explaining 16% of the variance; Figure 3B right panels. Brain-related and 10 

tumour-related gene expression were highly correlated across regions (Brain PCA1 vs. Tumour 11 

PCA1, rho=0.42, Pspin=0.24; Brain PCA1 vs. Tumour PCA2, rho=0.45, Pspin=0.01; Brain PCA2 12 

vs. Tumour PCA1, rho=0.59, Pspin=10-4; Brain PCA2 vs. Tumour PCA2, rho=0.86, Pspin<10-4; 13 

Figure S2). 14 

Tumour-related principal components were also aligned with the grade-related expression map 15 

(PCA 1 - rho = 0.40; Pspin=0.01; PCA 2 - rho = -0.65; Pspin=0.0001; Figure 3D). The tumour-16 

related genes expression map significantly explained more variance of the grade-related gene 17 

expression map than randomly selected sets of brain-related genes under a null hypothesis 18 

(10,000 permutations preserving the number of tumour-related genes and their coexpression, 19 

Pperm=0.003). Despite both expression maps being constructed using different approaches (i.e., 20 

considering genes differentially expressed in tumour tissue and GWAS-derived genes12), they 21 

both captured a similar transcriptional gradient of tumour grade vulnerability. Differential 22 

expression values derived from comparing IDH1 wild-type vs. IDH mutated tumour tissue were 23 

more strongly associated with tumour-related genes than with brain-related genes (Pperm=0.008, 24 

Figure S3). 25 

Tumour grade-related frequency is associated with brain network 26 

features  27 

We compared the glioma frequency maps with regional brain network measurements derived 28 

from healthy individuals of the UK Biobank dataset: nodal strength (i.e., regions that are more 29 

strongly functionally synchronized) and participation coefficient (i.e., regions with more inter-30 
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12 

modular connections) (Figure 1 red box). As expected, modular partition resembled known 1 

subnetworks of the brain (Figure S4). The GBM frequency map was correlated with 2 

participation coefficient (rho = 0.24; Pspin=0.0026), but not nodal strength (rho = 0.14; 3 

Pspin=0.09; Figure 4A). Conversely, the LGG frequency map was significantly correlated with 4 

nodal strength (rho = -0.42; Pspin=0.0001), but not participation coefficient (rho = 0.03; 5 

Pspin=0.71; Figure 4B). Similar results were obtained when considering the IDH1 wildtype vs. 6 

mutated classification (Figure S5). 7 

This evidence indicates that regions playing a central role in healthy brain network topology may 8 

be key sites of vulnerability for aggressive tumours. 9 

The regional expression pattern of genes differentially expressed in GBM and LGG tissues is 10 

associated with grade-related frequency and brain network features 11 

We next compared the regional patterns of the grade-related gene expression (Figure 3) with 12 

brain network features (Figure 4). Grade-related gene expression was not associated with glioma 13 

frequency (GBM and LGG occurrences combined; R2 =0.15; Pspin=0.127), but was significantly 14 

associated with the grade-related frequency map (difference between GBM and LGG 15 

occurrences; rho = 0.51; Pspin=0.038; Figure 5A). In other words, the grade-related gene 16 

expression pattern is related to the gradient of tumour grade occurrence across the cortex rather 17 

than with the total (pooled) tumour occurrence.  18 

When comparing the grade-related gene expression with brain network features we found that it 19 

was significantly associated with both nodal strength (R2 =0.11; Pspin=0.006) and participation 20 

coefficient (R2 =0.07; Pspin=0.016; Figure 5B).  Similar results were found when comparing 21 

IDH1-related gene expression with glioma frequency (R2 = 0.20; Pspin=0.15), IDH1-related 22 

frequency (rho = 0.51; Pspin=0.04) and brain network features (Nodal strength, rho = 0.33; 23 

Pspin=0.01; Participation coefficient, rho = 0.24; Pspin=0.036) (Figure S6). These associations 24 

suggest that specific network features and normative gene expression contribute to regional 25 

vulnerability for aggressive tumours. 26 

Expression of tumour-related genes is associated with grade-related 27 

frequency map and with nodal strength 28 

The regional expression pattern of tumour-related genes was associated with grade-related 29 

frequency and brain network features. Specifically, grade-related frequency was significantly 30 
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13 

associated with tumour-related PCA 2 (rho = -0.64; Pspin=0.003), but not PCA 1 (rho = 0.42; 1 

Pspin=0.08) (Figure 6A). Similarly, PCA 2 but not PCA 1 was associated with both brain 2 

network features: nodal strength (Figure 6B) and participation coefficient (Figure 6C) (Nodal 3 

Strength – PCA 1, rho = 0.32; Pspin=0.08; Nodal Strength – PCA 2, rho = -0.51; Pspin=0.003; 4 

Participation Coefficient – PCA 1, rho = 0.17; Pspin=0.12; Participation Coefficient – PCA 2, rho 5 

= -0.26; Pspin=0.039).  6 

Associations were stronger for PCA 2 of tumour-related genes than for PCA 2 of brain-related 7 

genes (10,000 permutations; grade-related frequency Pperm=0.006; Nodal Strength Pperm=0.004; 8 

Participation Coefficient; Pperm=0.004). This ordering of effect sizes in the relationships between 9 

tumour-related gene expression and network features, and grade-related frequency recapitulate 10 

our findings using the gene set derived by GWAS (Figure 3). 11 

Discussion 12 

Glioma occurrence across the cortex is not random, but is greater in frontal, temporal and insular 13 

lobes.42,43 From prior work that identified both genetics and brain function as key factors 14 

determining the spatial distribution of glioma,20 we hypothesized that they would similarly 15 

influence the differential pattern of occurrence related to tumour grade. Indeed, the 16 

transcriptomic and connectomic vulnerability factors in tumour emergence remain incompletely 17 

explored44. 18 

We have shown that the pattern of differentially expressed genes in GBM and LGG tissues 19 

matches the corresponding frequency of their differential (i.e. grade-related) occurrence. 20 

Furthermore, the pattern of differentially expressed genes is also related to the topology and 21 

magnitude of the functional connectivity network, and to the expression of well-established 22 

tumour-related genes in normative controls. In combination, we found significant associations 23 

between functional connectivity, tumour-related gene expression and grade-related glioma 24 

frequency. 25 

The interaction between glioma and neuronal elements has been known for over 80 years since 26 

HJ Scherer noted the predilection for gliomas to grow along and around normal neurons.45 Using 27 

MRI, we found that the GBM, but not the LGG frequency distribution was significantly 28 

associated with the participation coefficient of functional networks in a way that suggests that 29 

bridges inter-connecting constituent communities are more vulnerable to the appearance of 30 

malignant tumours. Interestingly functional network architecture, particularly regions with high 31 
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14 

connectivity, has been reproducibly linked with structural changes characteristic of psychiatric 1 

and neurological diseases.46,47 2 

An extensive literature demonstrates that gliomas are electrically and synaptically integrated into 3 

neural circuits. Micro-scale experimental studies in animal models indicate that electrochemical 4 

communication occurs through bona fide AMPA receptor-dependent neuron-glioma synapses.48 5 

At the macroscale circuit level, Numan et al. (2022) describes gliomas with increased 6 

malignancy preferentially occurring in regions characterized by higher brain activity in human 7 

controls.49 Functional brain networks have also been implicated as the substrate for structural 8 

lesions in a wide variety of psychiatry disorders, and appear to influence the location of primary 9 

tumours, albeit with a reduced effect size relative to genetic co-expression.16 Additionally, 10 

tumour functional integration within the global brain signal has been linked with cognitive 11 

recovery after glioma surgery.50 This study demonstrates that the principle of intimate 12 

entanglement between brain networks and patterns of neuropathological change is also relevant 13 

to tumour emergence and development. 14 

Understanding the interplay between the molecular alterations that occur in gliomas and the 15 

transcriptomic signature of the normative brain identifies vulnerability factors that help explain 16 

the origins and progression of tumours. Here, we found that the differential expression profiles 17 

between GBM and LGG tissues were associated with the expression of brain-related genes and 18 

tumour-related genes (previously identified in the literature) in normative controls. The 19 

association with brain-related genes is likely mediated by cell type as the main contributing 20 

factor of the regional expression profile.51 Accordingly, Tan et al. (2013) reported the first PCA 21 

component of the ABHA dataset as composed of two anti-correlated patterns enriched in 22 

oligodendrocyte and neuronal markers, respectively52, a pattern that has been also described in 23 

the mouse brain.53 The potential role of neuronal components in the distribution of gliomas is 24 

additionally supported by the enrichment of neuronal elements, neurotransmitter activity and 25 

synaptic transmission that were found in the gene ontology analysis of the GBM and LGG 26 

tissues. Variance of the grade-related gene expression map was significantly better explained by 27 

PCA2 expression patterns for tumour-related than for brain-related genes (despite being partially 28 

overlapped), indicating that cell types are only one contributing factor. 29 

Transcriptomic risk factors of glioma occurrence are poorly understood due to limited data on 30 

healthy brain tissue. Conversely, the genetic vulnerability of glioma has been widely studied. 31 

ACCEPTED M
ANUSCRIPT D

o
w

n
lo

a
d

e
d

 fro
m

 h
ttp

s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
ra

in
/a

d
v
a

n
c
e

-a
rtic

le
/d

o
i/1

0
.1

0
9

3
/b

ra
in

/a
w

a
c
3

7
8

/6
7

6
3

1
3

6
 b

y
 g

u
e

s
t o

n
 2

9
 O

c
to

b
e

r 2
0

2
2



15 

The contribution of environmental factors is small (except for moderate to high doses of ionising 1 

radiation) compared with genetic risk.54 For example, first-degree relatives of glioma patients 2 

have a twofold increased risk of developing primary brain tumours compared with first-degree 3 

relatives of unaffected individuals.55,56 Genetic vulnerability does not only influence the risk of 4 

glioma appearance, but also the susceptibility to GBM and non-GBM tumours, reflecting their 5 

different aetiologies.11 How a molecular signature impacts prognosis is still a matter of debate. It 6 

has been proposed that specific molecular profiles allow more time for neuroplastic 7 

reorganisation, reducing the “lesion momentum” and improving not only survival rates, but also 8 

having a protective effect on neurocognitive functioning.57   9 

Using similar approaches that exploit the ABHA dataset, a number of studies have shown 10 

regional expression patterns in normative controls that can be linked to structural and functional 11 

brain alterations of disease-related genes in psychiatric25,26,58 and neurological59,60 conditions. 12 

Here we extended, for the first time, this principle of transcriptomic vulnerability to 13 

neurooncology by showing that grade-related occurrence was associated with the expression in 14 

controls of tumour-related genes and genes that were differentially expressed in GBM and LGG.  15 

Despite the discovery by GWAS of 25 susceptibility variants associated with GBM and non-16 

GBM tumours, the expression profile across the normative cortex of the associated genes 17 

remains to be explored. Characterizing the transcriptomic signature is particularly important for 18 

understanding causal genetic associations in this context because the majority of the 25 loci 19 

reside in non-coding regions.11 Complementarily, a recent transcriptomic-wide association study 20 

identified 31 genes differentially expressed in GBM and non-GBM tumours,61 highlighting the 21 

important role that expression regulation has on tumour grade. For this reason, here we 22 

augmented the analysis of tumour-related genes (identified by the 25 loci) with a gene expression 23 

weighted average based on the differential expression between GBM and LGG bulk tissues. We 24 

found not only a significant association between both regional expression patterns, but also with 25 

connectivity features. 26 

What emerges from these investigations is that a correspondence between tumour and brain 27 

genetic expression is an important factor in the instantiation of tumour cells at particular 28 

locations in the cerebral cortex. This goes some way to explaining the heterogeneous distribution 29 

of GBM and LGG which has a clear anterior-posterior gradient in differential frequency of 30 

occurrence (Figure 2). A large component of variance of the grade-related gene expression was 31 
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significantly related to the grade-related frequency map (Figure 5), which was supported by the 1 

significant association of the regional expression pattern of tumour-related genes with grade-2 

related frequency (Figure 6). Thus, as an overall motivating framework the seed-and-soil 3 

hypothesis, first suggested for brain metastases, could also be invoked for primary tumours, with 4 

the genetic signature of precursor cells (seed), and later the tumour itself, preferentially locating 5 

in brain regions with an appropriate gene expression (soil).  6 

The success of this framework depends on the accommodation of other well-replicated factors 7 

that lie beyond the scope of this article. Age is a key factor, with GBM typically occurring in 8 

older adults relative to LGG, and a higher incidence in males relative to females.62 Although 9 

genes are crucial to understanding cancer and its treatment, our comprehension of genetic 10 

expression in brain remains incomplete and at an early stage. Nevertheless, it appears that there 11 

is variation of gene expression between the sexes63 and across the lifespan in a sex-dependent 12 

manner.64 As further, more detailed genetic data become available it should be possible to test if 13 

these broad differences are sufficient to explain the observed patterns as part of a seed-and-soil 14 

approach. 15 

The reported frequency of LGGs undergoing malignant transformation ranges from 25% to 16 

72%.65,66 Based on the analyses here, and if the seed-and-soil hypothesis is adopted then we can 17 

hypothesise that the probability of transformation is dependent on the degree of grade-related 18 

gene co-expression between tumour and brain. Circumstantial evidence for this comes from the 19 

identification of molecular classification of the tumour as well as male sex as risk factors for 20 

transformation.65 Our hypothesis would suggest that transforming tumours will be 21 

heterogeneously distributed across the brain, although to our knowledge this has not yet been 22 

measured.  23 

Overall, given the myriad of studies that have linked brain conditions with normative expression, 24 

it is likely that the complex genetic architecture of brain diseases points toward a combined 25 

effect of genetic variants and transcriptomic factors that underlie regional brain vulnerability.37  26 

Limitations 27 

As established by the WHO in 2016, the criteria to separate LGG and GBM are largely based on 28 

tumour histogenesis which classifies gliomas according to microscopic features reflecting 29 

different putative cells of origin and levels of differentiation.5 However, given that tumour 30 

molecular features have greater prognostic value than histological markers7,8, the classification 31 
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protocol was revised in the fifth edition in 2021 advancing the role of molecular diagnosis. 6 1 

Results presented in this manuscript are based on the WHO 2016 approach with a reanalysis 2 

based on the IDH-1 mutation status (WHO 2021) included in the Supplemental Material. 3 

An intrinsic limitation of combining datasets from normative individuals (UK Biobank and 4 

ABHA) is that templates do not contain information about the brains of glioma patients (TCGA 5 

dataset). As a result, neurotypical functional networks and regional gene expression maps are 6 

averages of a normative sample and are not sensitive to intrinsic interindividual differences, 7 

omitting important tumour-specific idiosyncrasies.44  8 

The brain tissue samples used for RNA sequencing in the AHBA were not homogeneously 9 

distributed across the cortex, so estimates of regional expression are based on different numbers 10 

of experimental measurements at each of the 159 regions. However, equally sized regions were 11 

used to minimise the heterogeneity of sample distribution. Additionally, samples could not be 12 

matched across datasets for changes across the life span of gene expression67 profiles and 13 

functional connectivity68. 14 

Conclusions 15 

Regional vulnerability to glioma frequency of occurrence is associated with normative brain 16 

expression patterns of tumour-related genes and grade-related differentially expressed genes. 17 

Moreover, this tumour grade-related regional vulnerability was associated with features of the 18 

functional connectivity network suggesting an interaction between tumour molecular, 19 

histological and functional brain architecture. Despite the limitations of establishing associations 20 

between multimodal markers derived from individuals with different demographic and clinical 21 

profiles, our study demonstrates the potential of combining transcriptomic data with MRI for a 22 

richer understanding of the neuropathological processes disrupting brain functioning in patients 23 

that can adversely affect quality of life.   24 
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Figure legends 1 

Figure 1 Flow chart of data processing and analysis. Grade-related frequency maps were 2 

derived from the TCGA brain tumour masks (yellow box) and brain network features were 3 

extracted from the UK Biobank fMRI dataset (red box). Grade-related expression regional values 4 

(purple box) were calculated by combining the differential expression in bulk tumour tissue with 5 

the ABHA (blue box). The spatial expression pattern of 15 genes from a previous GWAS glioma 6 

study12 was computed from the ABHA (green box). 7 

 8 

Figure 2 GBM and LGG regional distributions. A) Grade-related frequency map created from 9 

subtracting and z-scoring the GBM and LGG frequencies (i.e., occurrences) across brain regions. 10 

B) Association between LGG and GBM frequencies. 11 

 12 

Figure 3 Regional pattern of genes differentially expressed in GBM and LGG tissues and 13 

tumour-related genes. A) Regional expression of brain-related genes in controls weighted by 14 

differential expression in GBM and LGG tissues (z-scored). B) Regional expression pattern 15 

derived from the ABHA of the first and second principal components of brain-related (left) and 16 

tumour-related (right) genes. C) Association between grade-related expression (shown in A) and 17 

the first and second principal components of brain-related genes from the ABHA. D) Association 18 

between grade-related expression and principal components of tumour-related gene expression. 19 

 20 

Figure 4 The regional distribution of GBMs and LGGs is associated with brain network 21 

features. A) Association between GBM regional frequency and nodal strength and participation 22 

coefficient. B) Association between LGG regional frequency and nodal strength and 23 

participation coefficient.  24 

 25 

Figure 5 Genes differentially expressed in glioma tissue are associated with imaging 26 

markers. A) Grade-related gene expression association with glioma frequency (i.e., GBM and 27 

LGG occurrences combined) and grade-related frequency. B) Grade-related gene expression 28 

association with brain network nodal strength and participation coefficient. 29 

 30 
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Figure 6 Associations between expression of grade-related frequency, tumour-related genes 1 

and brain network markers. A) Association between the two principal components of tumour-2 

related gene expression and grade-related frequency. B) Association between the two principal 3 

components of tumour-related gene expression and network Nodal Strength. C) Association 4 

between the two principal components of tumour-related gene expression and network 5 

Participation Coefficient. 6 

  7 
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Table 1 Demographic and clinical variables for 242 patients with glioma from The Cancer Imaging Archive 1 
Demographic variables  

Age (years) 52.9 (15.2) 

Gender (M/F/NA) 133/107/2 

Clinical variables  

Grade (GBM/LGG) 135/107 

Molecular subtype (IDH-wt/IDH-mut-1p19q-codel/IDH-mut-1p19q-noncodel/NA) 124/27/61/30 

M = male; F = female; NA = not available; GBM = glioblastoma; LGG = low-grade glioma; IDH = isocitrate dehydrogenase; SD = standard 2 
deviation.   3 
  4 
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Table 2 Enrichment for molecular function and cellular components of the top 1000 genes with greatest differential 1 
expression in GBM and LGG glioma tissues 2 

 P-value Adjusted P-value Odds 
ratio 

Molecular function    

Voltage-gated cation channel activity (GO:0022843) 3.03 × 10−10 1.88 × 10−7 6.02 

Voltage-gated potassium channel activity (GO:0005249) 1.59 × 10−8 0.00000493 5.82 

Ligand-gated cation channel activity (GO:0099094) 3.43 × 10−7 0.00007108 5.2 

GABA receptor activity (GO:0016917) 5.19 × 10−7 0.00008064 13.26 

Calcium-dependent phospholipid binding (GO:0005544) 7.13 × 10−7 0.00008855 6.75 

GABA-gated chloride ion channel activity (GO:0022851) 1.007 × 10−6 0.00009956 22.32 

Transmitter-gated ion channel activity involved in regulation of postsynaptic 
membrane potential (GO:1904315) 

1.122 × 10−6 0.00009956 9.59 

GABA-A receptor activity (GO:0004890) 1.753 × 10−6 0.000136 13.92 

Platelet-derived growth factor binding (GO:0048407) 5.726 × 10−6 0.0003556 22.93 

Calcium ion binding (GO:0005509) 5.467 × 10−6 0.0003556 2.38 

Potassium channel activity (GO:0005267) 1.029 × 10−5 0.0005808 4.1 

Ligand-gated anion channel activity (GO:0099095) 1.497 × 10−5 0.0007749 12.17 

delayed rectifier potassium channel activity (GO:0005251) 2.448 × 10−5 0.001169 7.18 

cation channel activity (GO:0005261) 2.697 × 10−5 0.001196 3.75 

adenylate cyclase inhibiting G protein-coupled glutamate receptor activity 
(GO:0001640) 

3.293 × 10−5 0.001278 23.86 

Cellular components    

Neuron projection (GO:0043005) 3.27 × 10−17 8.87 × 10−15 3.33 

Collagen-containing extracellular matrix (GO:0062023) 2.65 × 10−14 3.59 × 10−12 3.57 

Integral component of plasma membrane (GO:0005887) 2.38 × 10−13 2.15 × 10−11 2.13 

Exocytic vesicle membrane (GO:0099501) 4.70 × 10−7 0.00002121 7.95 

Synaptic vesicle membrane (GO:0030672) 4.70 × 10−7 0.00002121 7.95 

Potassium channel complex (GO:0034705) 3.43 × 10−7 0.00002121 5.2 

GABA-A receptor complex (GO:1902711) 1.753 × 10−6 0.00006785 13.92 

Dendrite (GO:0030425) 2.017 × 10−6 0.00006832 2.7 

Voltage-gated potassium channel complex (GO:0008076) 2.616 × 10−6 0.00007877 4.97 

Axon (GO:0030424) 1.133 × 10−5 0.0003072 2.82 

Postsynaptic density membrane (GO:0098839) 0.0000334 0.0008228 10.3 

Postsynaptic specialization membrane (GO:0099634) 4.794 × 10−5 0.001083 9.56 

Dense core granule (GO:0031045) 7.994 × 10−5 0.001667 11.46 

Excitatory synapse (GO:0060076) 0.0001663 0.003218 7.43 

Cytoskeleton of presynaptic active zone (GO:0048788) 0.0001926 0.003479 25.43 

 3 
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Figure 1 2 
159x74 mm (0.8 x  DPI) 3 
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Figure 2 2 
152x86 mm (0.8 x  DPI) 3 
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Figure 3 2 
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Figure 4 2 
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Figure 6 2 
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