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Tables 

(a)   

Gene effect size 

Published population frequency of gene 

(PTVs) 

Power to detect (%) in study of 2,135 cases versus 51,377 controls 

Enriched Non-enriched 

Population MAF 

Population 

frequency DNA repair analysis WES analysis 

DNA repair 

analysis WES analysis 

BRCA1-like (OR=10.6) 1.01E-03 1 in 494 100.0% 100.0% 99.8% 98.2% 

BRCA2-like (OR=5.9) 1.63E-03 1 in 306 100.0% 100.0% 94.0% 80.9% 

PALB2-like (OR=5) 7.49E-04 1 in 667 100.0% 100.0% 31.0% 12.2% 

CHEK2-like (OR=2.5) 3.07E-03 1 in 163 99.2% 95.6% 22.0% 6.1% 

ATM-like (OR=2.1) 1.43E-03 1 in 350 31.1% 11.5% 1.6% 0.2% 

(b) 

     

  

Gene effect size 

Population frequency detectable with 90% power  

  
DNA repair gene analysis WES analysis 

  

Population MAF 

Population 

frequency Population MAF 

Population 

frequency 

  
BRCA1-like (OR=10.6) 4.30E-05 1 in 11628 5.59E-05 1 in 8945 

  
BRCA2-like (OR=5.9) 1.70E-04 1 in 2924 2.23E-04 1 in 2242 
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Table 1: Power analysis of current study. 

(a) Power afforded by study of 2,135 cases and 51,377 controls to discover genes of the OR/MAF profile of BRCA1, BRCA2, PALB2, CHEK2 and 

ATM with Bonferroni correction undertaking targeted (N = 286 DNA repair genes) or exome-wide analysis (N = 19,651 genes), comparing use of 

enriched or unenriched cases (b) Gene population frequency (MAFcombined) for genes of equivalent effect size to BRCA1, BRCA2, PALB2, CHEK2 

PALB2-like (OR=5) 2.60E-04 1 in 1946 3.39E-04 1 in 1475 

  
CHEK2-like (OR=2.5) 1.90E-03 1 in 260 2.62E-03 1 in 191 

  
ATM-like (OR=2.1) 3.70E-03 1 in 135 4.98E-03 1 in 100 

  

Gene effect size 

Population frequency detectable with 80% power  

  
DNA repair gene analysis WES analysis 

  

Population MAF 

Population 

frequency Population MAF 

Population 

frequency 

  
BRCA1-like (OR=10.6) 3.56E-05 1 in 14045 4.63E-05 1 in 10799 

  
BRCA2-like (OR=5.9) 1.35E-04 1 in 3704 1.82E-04 1 in 2747 

  
PALB2-like (OR=5) 2.04E-04 1 in 2451 2.81E-04 1 in 1779 

  
CHEK2-like (OR=2.5) 1.54E-03 1 in 325 2.16E-03 1 in 231 

  
ATM-like (OR=2.1) 2.98E-03 1 in 168 4.18E-03 1 in 120 
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and ATM for which this study of 2135 enriched cases/51377 controls had 90%/80% power to detect. OR for BRCA1, BRCA2, PALB2, CHEK2 and 

ATM are derived from Dorling et al.25 
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Abstract  

Background  

Breast cancer has a significant heritable basis, of which approximately 60% remains 

unexplained. Testing for BRCA1/BRCA2 offers useful discrimination of breast cancer risk within 

families, and identification of additional breast cancer susceptibility genes could offer clinical 

utility.  

   

Patients and methods  

We included 2,135 invasive breast cancer cases recruited via the BOCS study, a retrospective UK 

study of familial breast cancer. Eligibility criteria: female, BRCA-negative, white European 

ethnicity, and one of: i) breast cancer family history, ii) bilateral disease, iii) young age of onset 

(<30 years), iv) concomitant ovarian cancer.  
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We undertook exome sequencing of cases and performed gene-level burden testing of rare 

damaging variants against those from 51,377 ethnicity-matched population controls from 

gnomAD.  

   

Results  

159/2135 (7.4%) cases had a qualifying variant in an established breast cancer susceptibility 

gene, with minimal evidence of signal in other cancer susceptibility genes. Known breast cancer 

susceptibility genes PALB2, CHEK2 and ATM were the only genes to retain statistical significance 

after correcting for multiple testing. Due to the enrichment of hereditary cases in the series, we 

had good power (>80%) to detect a gene of BRCA1-like risk (odds ratio = 10.6) down to a 

population minor allele frequency of 4.6 x 10-5 (1 in 10,799, less than one tenth that of 

BRCA1)and of PALB2-like risk (odds ratio = 5.0) down to a population minor allele frequency of 

2.8 x 10-4 (1 in 1,779, less than half that of PALB2). Power was lower for identification of novel 

moderate penetrance genes (odds ratio = 2-3) like CHEK2 and ATM.  

   

Conclusions  

This is the largest case-control whole-exome analysis of enriched breast cancer published to 

date. Whilst additional breast cancer susceptibility genes likely exist, those of high penetrance 

are likely to be of very low mutational frequency. Contention exists regarding the clinical utility 

of such genes.  
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Highlights  

   

We report the largest exome sequencing study of hereditary breast cancer to date, comparing 

2,135 cases to 51,377 controls.  

   

We demonstrate that a novel breast cancer gene (odds ratio ≥ 5) is unlikely to exist at any 

appreciable population frequency.  

   

We had good power (>80%) to detect any PALB2-like breast cancer susceptibility genes (odds 

ratio = 5) existing at  population frequency 1/1,779 (< half that of PALB2).  

   

Our insights into the architecture of breast cancer susceptibility give context to the negative 

findings of the last decade.  
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Introduction  

Female breast cancer is now the most common cancer with 2.3 million cases diagnosed 

annually worldwide and a lifetime risk of ~15% 1, 2. The heritable basis of the disease is well 

established and evidenced by the increased risk in relatives of cases3, 4. It is now well recognised 

that the genetic architecture of breast cancer susceptibility encompasses a broad spectrum, 

from common polymorphisms individually conferring small risks through to breast cancer 

susceptibility genes (BCSGs; Supplementary Table S1) characterized by multiple disparate 

mutations. BCSGs are typically categorised by their disease penetrance, for example as very 

high penetrance (odds ratio [OR] ≥ 10), high (OR ≥ 5) or moderate/intermediate (OR ≥ 2)5.  

   

It is estimated that approximately 41% of the heritable risk of breast cancer has been 

deciphered6. Of the 23% attributable to rare variants, the majority is accounted for by BRCA1 

and BRCA2 (17%), with other established BCSGs (PALB2, ATM, CHEK2, TP53, STK11, PTEN, NF1, 

CDH1, BARD1, RAD51C, RAD51D) collectively accounting for about 6%7. It is estimated that 18% 

of genetic risk of breast cancer resides in common variants identified by genome-wide 

association studies (GWAS), with statistical modelling suggesting a further 23% is potentially 

tractable by larger GWAS8. Of the 59% of unexplained heritable risk, over half (36%) is thus 

potentially ascribable to hitherto unidentified rare variants. Whilst many of these variants may 

be non-coding and/or of low penetrance, there is considerable interest in the component that 

may be enshrined in further susceptibility genes of moderate to high penetrance which are 

both mechanistically important as well as potentially relevant to the clinical management of 

patients and their families. Numerous studies have used next generation sequencing (NGS) 
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technologies to search this space for novel BCSGs (Supplementary Table S2), though few if any 

convincing candidates to date have been identified.  

   

To look for novel BCSGs, we performed germline whole exome sequencing (WES) of 2,135 

BRCA1/BRCA2-negative genetically enriched breast cancer cases. We used a 3-phase analytical 

strategy (Figure 1). Firstly, we determined the contribution of pathogenic variants in 

established autosomal dominant cancer susceptibility genes (CSGs; N = 86 genes). Secondly, we 

assessed the contribution of candidate genes implicated on the basis of involvement in DNA 

repair (N = 276 genes), and/or a known oncogenomic role in cancer (N = 686 genes) by 

performing burden analyses collapsing at gene-level. Finally, we performed exome-wide rare 

variant burden testing, undertaking correction for cumulative performance of multiple tests.  
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Methods  

Subjects and data  

We included BRCA1/BRCA2 negative women with a diagnosis of pathologically confirmed 

invasive breast cancer (N = 2,430), recruited to the ICR Breast and Ovarian Cancer Susceptibility 

(BOCS) study. Eligibility criteria included one of: (i) a significant family history of breast 

cancer (breast cancer in at least one first degree-relative or two second degree relatives); ii) 

bilateral breast cancer; iii) early-onset breast cancer (< 30 years); iv) concomitant ovarian 

cancer9.  Cases were assigned a ‘genetic enrichment score’ based on allele sharing to reflect the 

degree of personal and family history of breast cancer as follows: bilateral disease in the 

proband received a score of 1, with additional points assigned for disease in first degree 

relatives (0.5 each), second-degree relatives (0.25 each) and third-degree relatives (0.125 each). 

We used a score of ≥ 1.5 to define a set of ‘high-risk’ cases (N = 855).  

   

The proportion of cases of self-reported Ashkenazi Jewish ancestry was < 1%.  

   

Written informed consent was obtained from all participants and the research was approved by 

the London Multicentre Research Ethics Committee (MREC/01/2/18).  

   

For controls, we used WES data from 51,377 non-Finnish European non-cancer individuals from 

the Genome Aggregation Database (gnomAD) (date of accession 21/05/2020).  
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Whole exome sequencing and quality control  

Germline DNA from cases underwent WES using Illumina technology. Data processing, variant 

calling, and annotation were performed according to Genome Analysis Toolkit (GATK) best 

practices. We excluded cases based on quality, cryptic familial duplicates, presence of occult 

BRCA1/BRCA2 mutations and ancestry analysis using principal components (Supplementary 

Figure S1, Supplementary Table S3).  

   

Case/control variant set alignment  

Variant level exclusions are described in Supplementary Table S4 and Supplementary Methods. 

Analyses were restricted to rare variants (MAF < 0.5%). We controlled against spurious inflation 

of the burden test statistic by filtering the bottom 5th centile of variants based on the GATK variant 

quality metric QualByDepth (QD) and restricting analyses to base positions with comparable 

levels of coverage (Supplementary Figure S2, Supplementary Figure S3, Supplementary Table S5, 

Supplementary Methods)10. 
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Statistical analyses  

We performed collapsed gene-level burden analyses in: i) autosomal dominantly acting CSGs (N 

= 86)11, 12; ii) DNA repair genes (N = 276)13; iii) somatic cancer driver genes (N = 686 genes); iv) the 

exome (N = 19,651 genes) (Supplementary Table S6).  

   

A single class of test was performed for the CSGs, comprising high confidence protein truncating 

variants (HC-PTVs, as defined by LOFTEE)15 plus variants (regardless of variant consequence or 

LOFTEE annotation) classified as Pathogenic/Likely Pathogenic (P/LP) on ClinVar with one or more 

stars using The American College of Medical Genetics and Genomics (ACMG) criteria16. A single 

class of test was also performed for missense/in-frame variants at recurrently somatically 

mutated residues in cancer driver genes (as defined in oncoKB; Supplementary Table S7). For the 

DNA repair/exome-wide analyses, two classes of test were performed: Class I (HC-PTVs only) and 

Class II (HC-PTVs + missense with REVEL score > 0.7)17, 18. The proportion of REVEL qualifying 

missense variants that were also pathogenic in ClinVar in known CSGs was 9/172 (5.2%).  

  

Association was measured using a Fishers exact test (2-sided) comparing case/control 

proportions with a qualifying variant. For declaring statistical significance, we imposed a 

Bonferroni correction of P < 0.05 for the number tests performed, accounting for cumulative 

testing in candidate-based followed by exome-wide analyses. For replication, we used WES data 

from UK Biobank comprising 15,017 female breast cancer cases and 199,479 healthy women 
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with no previous history of cancer, assigning P < 0.05 as nominal evidence of replication19. 

Analyses were carried out in R (v4.0.3).  

   

Calculation of study power  

Disease allele frequency in controls was taken as the baseline, and the frequency in cases was 

determined by a weighted average of the predicted enrichment in cases with bilateral disease 

and/or an affected first degree relative20. A Fisher's test (2-sided) was performed for each 

sampling of cases and controls, performed 10,000 times for each frequency/relative risk 

combination.  

   

Additional methodological information is available in the Supplementary Methods.  
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Results  

The final case dataset comprised 2,135 BRCA-negative breast cancer cases, of which 838 (39%) 

had bilateral disease, 1628 (76%) had a significant family history of breast cancer (at least one 

first degree-relative or two second degree relatives), 183 (9%) had breast cancer diagnosed ≤ 

30 years, and 261 (12%) had concomitant ovarian cancer (Figure 2). The cases were enriched 

for bilaterality, family history and early onset disease compared to unselected cases from the 

literature (Supplementary Figure S4)21, 22. Mean age at first diagnosis was 48 years (compared to 

the UK average of > 60 years1).  

   

Frequency of pathogenic germline variants in cancer susceptibility genes (CSGs)  

A total of 159/2135 (7.4%) of cases had a qualifying variant (HC-PTV and/or ClinVar P/LP) in one 

of the thirteen established BCSGs, including 44 (2.1%) in PALB2, 41 (1.9 %) in ATM and 53 

(2.5%) in CHEK2 (Figure 3, Supplementary Table S8). Eleven cases (0.5%) had a variant in genes 

associated with estrogen receptor (ER) negative disease: BARD1 (5, 0.2%), RAD51C (4, 0.2%), 

RAD51D (2, 0.1%). Eleven cases (0.5%) had a variant in a rare pleiomorphic cancer susceptibility 

gene, comprising TP53 (7, 0.3%), CDH1 (1, 0.05%), NF1 (2, 0.1%) and PTEN (1, 0.05%). There was 

no significant difference in the age of breast cancer diagnosis, burden of family history or 

frequency of bilateral disease between cases with and without a qualifying variant (P > 0.05 in 

relevant statistical test: see Supplementary Methods).  

   

There were no significant associations with breast cancer amongst the other CSGs, though 

there was an appreciable case frequency of qualifying variants in some, notably MSH6 (10 
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cases) and BRIP1 (5 cases), genes previously proposed as BCSGs (Figure 3, Supplementary Table 

S8)23, 24. Excluding the thirteen established BCSGs, the frequency of qualifying variants in CSGs 

was not significantly elevated in cases (53/2135 or 2.5%) compared to controls (1365/51377 or 

2.7%) (P = 0.68).  

   

Candidate gene burden testing  

Cognisant of the impact of correction for multiple testing, we firstly considered targeted 

candidacy-based approaches. On the functional basis of genes implicated to date in breast 

cancer susceptibility, we first considered 276 genes involved in DNA repair and performed 

burden analysis for rare variants (MAF < 0.5%) of Class I (HC-PTVs only) and Class II (HC-PTVs 

and deleterious nonsynonymous variants). PALB2, CHEK2 and ATM emerged from this analysis 

as strongly associated (Figure 3, Supplementary Table S8). WRN was the highest ranked (non- 

BCSG) DNA repair gene by P value, driven particularly by the HC-PTV frequency, but the 

association did not retain significance following Bonferroni correction (Class I test: 10/2135, 

0.47% cases vs 73/51377, 0.14% controls, P = 0.002). There was only nominal statistical support 

on querying of the UK Biobank data for association of this gene with breast cancer, (p=0.0087), 

which again did not withstand correction for multiple testing (Supplementary Table S9). 

Excluding the known BCSGs, collapsing across the remaining 263 genes involved in DNA repair 

the signal of association was not significant on analysis of variants of Class I (316/2135 versus 

7130/51377, P = 0.23) or Class II (756/2135 versus 18048/51377, P = 0.8).  
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Next, on the basis of exemplar genes associated with both autosomal dominant cancer 

susceptibility and somatic oncogenic mechanisms (e.g. RET mutations predisposing to thyroid 

cancer and KIT mutations predisposing to gastrointestinal stromal tumor [GIST]), we considered 

686 cancer driver genes for which recurrent somatic hotspot mutations have been reported. On 

burden analysis for rare missense/in-frame variants (MAF < 0.5%) overlapping with known 

oncogenic residues (Supplementary Figure S5, Supplementary Table S8), there were no 

significant associations after correcting for multiple testing. 

   

Exome-wide rare-variant burden analysis  

We performed exome-wide burden testing, again collapsing at gene level for association of rare 

variants (MAF < 0.5%) of each of Class I and Class II. Again, only for PALB2 (classes I and II), 

CHEK2 (classes I and II) and ATM (class II only) were the associations significant following 

Bonferroni correction (Figure 3, Supplementary Table S8). For all three genes, the odds ratios 

for breast cancer risk with class I variants were substantially inflated compared to published 

estimates from unselected breast cancers25, commensurate with the inflation predicted on the 

basis of the genetic enrichment in our cases (Supplementary Table S8). Amongst the top twenty 

associations ranked by smallest P value were C20orf141 (Class I and Class II) and EXPH5 (Class I 

and Class II), but the associations were not significant following Bonferroni correction. 

Furthermore, neither these genes nor any others in the top 20 associations showed evidence of 

replication in UK Biobank (P > 0.1; Supplementary Table S9).  
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Notable amongst the top 20 ranked gene associations in this analysis was PPM1D. Erroneously 

reported originally as a BCSG, PPM1D is characterized by somatic mosaic mutations arising in 

hematopoietic cells in response to chemotherapy26-28. Consistent with somatic mosaicism in 

blood cells, the PPM1D VAFs detected in this study were skewed downwards for protein 

truncating variants compared to synonymous variants (Kolmogorov-Smirnov P value = 0.11, 

Mood’s median P value = 0.17; Supplementary Figure S6).  

   

There was likewise no evidence of association for any genes on subsequent restriction to a 

smaller set of 855 ‘high-risk’ cases (see Methods, Supplementary Table S8).  

   

On gene-set enrichment analysis of gene ontology (GO) terms and KEGG pathways amongst 

genes with a Class I/Class II test P value ≤ 0.01 29, 30, multiple gene groups showed significant 

associations, primarily related to DNA replication and repair, but once corrected for the signal 

of association for constituent known BCSGs no gene groups showed significant residual 

association (Supplementary Table S10).  

   

Power analyses  

Recent large-scale genetic epidemiologic analyses have confirmed BRCA1 as being of almost 

twice the penetrance but much lower mutational frequency than BRCA2 (BRCA1: OR = 10.6, 

population MAFcombined = 0.10% or 1 in 494; BRCA2: OR = 5.9, population MAFcombined = 0.16% or 1 in 

306)25. However, PALB2 (OR = 5.0, population MAFcombined = 0.07% or 1 in 667) has substantially 
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lower ‘impact profile’ (penetrance x mutational frequency) with risk in the rough range of 

BRCA2 but a mutational frequency similar to BRCA1. Taking into account the enrichment as well 

as the size of our case and control series, we had very good power (90%) to identify a new high-

impact BCSG conferring a BRCA1-like breast cancer risk (OR = 10.6) with population combined 

mutation frequency (MAFcombined) down to (i) 0.0043% (or 1 in 11,628) in the targeted DNA repair 

gene analysis or (ii) MAFcombined of 0.0056% (or 1 in 8945) in the WES analysis. For a new gene of 

PALB2-like (OR=5) or ATM-like (OR=2.1) breast cancer risk, we had 90% power to identify a 

gene of MAFcombined down to (i) 0.026% (1 in 1946) or 0.37% (1 in 135) respectively in the DNA 

repair analysis and (ii) 0.034% (1 in 1475) and 0.5% (1 in 100) in the WES analysis (Figure 4, 

Table 1).  

   

These estimates are likely to be inherently conservative, for although we have accounted for 

bilateral disease and the first affected FDR in our series where present, we have not accounted 

for the additional family members with breast cancer, young age of cases, and concomitant 

occurrence of ovarian cancer20.  

   

Power calculations representing variability in population MAFcombined, the largest breast WES 

study published to date, and expansion of the current study with increasing sample size, are 

presented in Supplementary Tables S11, S12, and S13, respectively. 
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Discussion  

In our series of 2,135 enriched BRCA-negative female breast cancer cases, only 159 (7.4%) have 

a P/LP variant in an established BCSG. The vast majority (138/159, 87%) of these P/LP variants 

were in three genes: PALB2, CHEK2 and ATM. As would be anticipated from our ascertainment 

framework, the contribution of P/LP variants in genes associated with pleiomorphic tumor 

syndromes was very modest (0.5% of cases). Furthermore, given that P/LP variants in BARD1, 

RAD51C and RAD51D are of relatively low frequency even in the triple-negative breast cancers 

with which they are associated, their contribution was predictably low in this series ascertained 

agnostic to histology (0.5% of cases). The frequency in cases of P/LP variants in other autosomal 

dominant CSGs (2.5%) was not elevated compared to controls (2.7%), suggesting firstly that 

these variants are largely incidental to etiology of these breast cancers and secondly that 

amongst other established CSGs there is minimal unexplained residual pleiotropy for breast 

cancer.  

   

In our subsequent exploration of residual breast cancer genetic susceptibility attributable to 

rare variants, aside from ‘rediscovery’ of established BC susceptibility genes PALB2, CHEK2 and 

ATM, no gene attained statistically significant signal of association at the respective thresholds 

for either the candidate-based approaches or the exome-wide approach. Furthermore, there 

was no evidence for association found in a replication series (UK Biobank) for top-ranking genes 

with nonsignificant signals of association.  

   

Jo
urn

al 
Pre-

pro
of



To our knowledge, our study is the largest case-control analysis reported to date in enriched 

breast cancer cases, and better powered for discovery of a new rare high penetrance 

susceptibility gene than the largest reported case-control analysis to date of unselected breast 

cancers (7,859 cases/117,456 controls)19 (Supplementary Table S2, Supplementary Table S12  

   

Contextualization of our findings with previous studies  

In the 1990s, linkage analysis in modest numbers of multi-case pedigrees enabled identification 

of BRCA1 followed by BRCA231-34. Subsequent linkage analyses in larger series of BRCA1 and 

BRCA2 negative breast cancer families yielded no reproducible signals35. Thereafter followed 

case-control mutational screening for genes functionally related to BRCA1 and BRCA2, 

necessarily limited to modest numbers of samples on account of the low-throughput 

technologies available. Through these experiments, PALB2, CHEK2 and ATM were identified as 

BCSGs, with the less reproducible associations for BARD1, RAD51C and RAD51D subsequently 

confirmed as exclusive to ER-negative tumours25, 36-38.  

   

It was widely anticipated that the advent of NGS would allow identification of the elusive 

additional BCSGs. Initial applications of WES typically involved case-only segregation-type 

analyses of multiple members of breast cancer families (Supplementary Table S2). With wider 

public availability of control data, NGS breast cancer gene discovery studies progressed onto 

case/control analyses, with the vast majority focused on targeted sets of DNA repair genes 

selected on the basis of biological candidacy 39-41. Few case-control WES analyses for breast 

cancer have been reported. In 2021 Wang al. reported the largest WES case-control analysis in 
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breast cancer to date comprising 7,859 unselected breast cancer cases compared to 117,456 

controls in UKBiobank19. Overall, despite almost a decade of application of NGS via family-only, 

candidate and exome-wide case-control approaches, including the study presented here, none 

has yielded robust novel associations of genes with breast cancer susceptibility.  

   

Power analyses from this study demonstrate that whilst entirely plausible that additional high 

penetrance BCSGs exist, (i) for genes of BRCA1-like risks, the MAFcombined will be vanishingly low (ii) 

for any gene in the ~5-fold range of risk, the population mutational frequency is likely to be less 

than half that of PALB2 (i.e. less than 1 in 1500 in the population). These sobering power 

analyses contextualize the failure of those modest-sized early linkage studies to identify PALB2 

and of the WES familial segregation studies to yield reproducible findings.  

   

Conversely, our study was substantially less well powered for genes of more modest effect 

sizes, for which the use of enriched cases also offers less benefit (Table 1). For truncating 

variants in CHEK2, large genetic epidemiologic studies have demonstrated OR of 2.5 and 

population MAFcombined of 0.31% (1 in 163)25. Our power to detect a gene of this risk/MAFcombined 

profile was 95%, consistent with CHEK2 coming out in our analysis as statistically significant for 

Class I. However, for ATM we only had 12% power for detection of class I variants as the 

penetrance is lower (OR=2.1) and the population mutational frequency is half that of CHEK2 

(MAFcombined=0.14% (1 in 350)). Thus, it is entirely plausible that numerous additional moderate 

penetrance BCSGs exist of impact profiles (penetrance x mutational frequency) akin to that of 
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ATM and up to that of CHEK2, for which discovery studies to date (including ours) have been 

underpowered and/or not included in previously studied gene sets.  

   

High penetrance genes are widely agreed to offer high clinical utility. Even recognizing variation 

in background polygenic contribution, the breast cancer risks are deemed sufficiently high to 

dichotomize management within families, with aggressive interventions such as risk-reducing 

mastectomies justified in family members carrying the mutation and restoration to near-

population risk for those without. Contention persists regarding the utility for risk stratification 

offered by genes of more moderate penetrance, especially when conferring only sub-type 

specific risks and/or lacking recurrent founder mutations5.  

   

Limitations of study  

Data regarding receptor status and/or histopathology was only available for a subset of patients, 

thus limiting power for histologically driven subtype analyses. The gnomAD series is only available 

as summary level count data; as such, equivalently stringent sample and variant level QC for the 

case data were required to address the possibility of inflation due to systematic genotyping error 

and potential differences in depth of coverage. This also meant we were unable to perform 

robust analyses for recessive and co-dominant susceptibility.   

   

Another limitation was definitions by which missense variants were included as 

pathogenic/deleterious.  For the CSG analysis, we only included only missense variants 
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classified on ClinVar as pathogenic/likely pathogenic with at least one star.  Thus, any variants 

assigned on ClinVar as having ‘Conflicting interpretations’ were excluded. Likewise, for the DNA 

repair/exome-wide analyses, application of a threshold of REVEL > 0.7 was inevitably an 

imperfect filter, likely resulting both in inclusion of neutral variants and exclusion of deleterious 

variants.  

  

Additionally, we did not include exon-level (or greater) deletions and duplications in our 

analyses. Such variants (which are inherently more difficult to detect from short read NGS data) 

are thought to comprise a non-trivial fraction of disease-associated germline alterations in 

cancer susceptibility genes. In the case of BRCA1 and BRCA2, they are thought to account for 

somewhere between 10-20% of all alterations in those genes. Thus, any putative novel breast 

cancer gene where structural variation is the predominant mutation type would be missed by 

our analyses. Our power analyses, therefore, do not account for any gain in power that would 

be afforded by the inclusion of such variants.  

   

Future Studies  

Future analysis of 15,000 similarly enriched breast cancer cases against 400,000 ethnicity-

matched controls would be fully powered (> 99%) to identify all genes that might exist down to 

an ATM-like profile of risk and mutational frequency, as well as all genes of a PALB2-like risk 

(OR = 5), down to a population MAFcombined of 0.0075% (1 in 6702) (Supplementary Table S13).  
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Conclusion  

This is the largest study to date of enriched BRCA-negative breast cancer probands, in which 

7.4% were found to carry a BCSG pathogenic mutation. With appropriate correction for 

multiple tests, aside from ‘rediscovery’ of known BCSGs, neither the targeted DNA repair gene 

analysis nor the WES approach yielded robust additional BCSGs. Outstanding BCSGs of high 

penetrance (OR>5) must be extremely rare. However, many genes up to a CHEK2/ATM-like risk 

may exist. Whilst a WES study involving five- to ten-fold more enriched breast cancer samples is 

feasible and would allow comprehensive survey of all such genes, there is not unanimous 

agreement regarding utility of clinical testing for genes that are so rare or of such modest 

penetrance.  

  

1  
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Figure Captions  

   

Figure 1. Study Overview. Overview of case and control samples used, along with generation and 

integration of datasets and analyses performed. BC, breast cancer; dmg. missense, damaging 

missense variant; HC PTV, high confidence protein truncating variant; QC, quality control; TCGA, 

The Cancer Genome Atlas.  

   

   

Figure 2. Distribution of case phenotypic features. Distribution of phenotypes across 2,135 

probands with invasive breast cancer where ‘Family history’ denotes at least one first degree or 

two second degree relatives affected with breast cancer, ‘Ovarian’ denotes the proband also 

being diagnosed with invasive ovarian cancer, 'Young onset’ denotes the proband’s first cancer 

being diagnosed at age <30, and ‘Bilateral’ denotes a diagnosis of bilateral breast cancer.  

   

Figure 3: Frequency of deleterious variants in cases vs controls. Frequency of rare variants (MAF 

< 0.5%), collapsed by gene, comparing cases to controls for (a) high confidence protein truncating 

variants (HC-PTVs, as defined by LOFTEE) plus pathogenic/likely pathogenic variants (defined by 

≥ one star review status ClinVar entries) in 86 established autosomal dominant cancer 

susceptibility genes; (b) HC-PTVs plus damaging missense with REVEL score ≥ 0.7 in 276 genes 

involved in DNA repair (c) HC-PTVs plus damaging missense exome-wide. The left panel in each 
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sub-figure shows the percentage of cases/controls and the right panel shows the corresponding 

odds ratio. Genes are ordered by P value. For each analysis, only the top 20 associations have 

been shown and the comparison is also shown for all genes, all breast-cancer susceptibility genes 

(BCSGs) and all non-BCSGs.  

   

Figure 4: Power calculations in enriched vs unenriched breast cancer cases. The line plot 

demonstrates the power afforded by the current study of 2,135 genetically enriched breast 

cancer cases (solid lines) vs an unenriched (unselected) series of the same size (dashed lines) at 

exome-wide significance (P < 1.3 x 10-06). The histogram plot shows the number of genes with the 

corresponding control MAFcombined for each of the two variant class tests. OR, odds ratio.  
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