
Ultrasound Obstet Gynecol 2020; 56: 498–505
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.22122.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

State-of-the-Art Review

Introduction to artificial intelligence
in ultrasound imaging in obstetrics
and gynecology

L. DRUKKER1 , J. A. NOBLE2

and A. T. PAPAGEORGHIOU1*
1Nuffield Department of Women’s & Reproductive Health,
University of Oxford, John Radcliffe Hospital, Oxford, UK;
2Institute of Biomedical Engineering, University of Oxford,
Oxford, UK
*Correspondence. (e-mail: aris.papageorghiou@wrh.ox.ac.uk)

ABSTRACT

Artificial intelligence (AI) uses data and algorithms to
aim to draw conclusions that are as good as, or even
better than, those drawn by humans. AI is already
part of our daily life; it is behind face recognition
technology, speech recognition in virtual assistants (such
as Amazon Alexa, Apple’s Siri, Google Assistant and
Microsoft Cortana) and self-driving cars. AI software has
been able to beat world champions in chess, Go and
recently even Poker. Relevant to our community, it is
a prominent source of innovation in healthcare, already
helping to develop new drugs, support clinical decisions
and provide quality assurance in radiology. The list of
medical image-analysis AI applications with USA Food
and Drug Administration or European Union (soon to
fall under European Union Medical Device Regulation)
approval is growing rapidly and covers diverse clinical
needs, such as detection of arrhythmia using a smartwatch
or automatic triage of critical imaging studies to the top
of the radiologist’s worklist. Deep learning, a leading
tool of AI, performs particularly well in image pattern
recognition and, therefore, can be of great benefit to
doctors who rely heavily on images, such as sonologists,
radiographers and pathologists. Although obstetric and
gynecological ultrasound are two of the most commonly
performed imaging studies, AI has had little impact on
this field so far. Nevertheless, there is huge potential
for AI to assist in repetitive ultrasound tasks, such as
automatically identifying good-quality acquisitions and
providing instant quality assurance. For this potential
to thrive, interdisciplinary communication between AI
developers and ultrasound professionals is necessary. In
this article, we explore the fundamentals of medical
imaging AI, from theory to applicability, and introduce
some key terms to medical professionals in the field of
ultrasound. We believe that wider knowledge of AI will

help accelerate its integration into healthcare. © 2020
The Authors. Ultrasound in Obstetrics & Gynecology
published by John Wiley & Sons Ltd on behalf of the
International Society of Ultrasound in Obstetrics and
Gynecology.

Introduction

Artificial intelligence (AI) is described as the ability of a
computer program to perform processes associated with
human intelligence, such as reasoning, learning, adapta-
tion, sensory understanding and interaction1. In his sem-
inal paper published in 19502, Alan Turing introduced a
test (now called ‘the Turing test’) in which, if an evaluator
cannot distinguish whether intelligent behavior is exhib-
ited by a machine or a human, the machine is said to have
passed the test2. John McCarthy coined the term ‘artificial
intelligence’ soon after3. The Journal of Artificial Intelli-
gence commenced publication in 1970, but it took several
years for computing power to match theoretical possibil-
ities and allow development of modern algorithms.

In simple terms, traditional computational algorithms
are software programs that follow a sequence of rules
and perform an identical function every time, such as
an electronic calculator: ‘if this is the input, then that
is the output’. In contrast, an AI algorithm learns the
rules (function) from training data (input) presented to
it. Major milestones in the history of AI include the Deep
Blue computer outmatching the world chess champion,
Gary Kasparov, in 1997 and AlphaGo defeating one of
the best players (ranked 9-dan) of the ancient Chinese
game of Go, Lee Sedol, in 20164.

Both chess and Go are games that require strategy,
foresight and logic, all of which are qualities typically
attributed to human intelligence. Go is considered much
more difficult for computers than chess, because it involves
far more possible moves (approximately 8 million choices
for three moves as opposed to 40 000 for chess). The
victory in Go represents the progress in computational
algorithms, improved computing infrastructure and access
to enormous amounts of data. The same evolution has led
to several widely popularized AI consumer applications,
including autocomplete on Google search, virtual
assistants (such as Alexa, Cortana, Google Home and
Siri), personalized shopping recommendations, the emer-
gence of automatic self-driving cars and face recognition
(for instance, searching by a face in Google photos).

In clinical medicine, the interest (and recent hype)
in AI technologies stems from their potential to
transform healthcare by deriving new and impor-
tant insights from the vast amount of digital data
generated during delivery of healthcare. Promising
medical AI applications are emerging in the areas of
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screening5,6, prediction7–9, triage10,11, diagnosis12,13,
drug development14,15, treatment16,17, monitoring18

and imaging interpretation19,20. Several original studies
published in this Journal have used AI methodology to
evaluate adnexal masses21, the risk of lymph node metas-
tases in endometrial cancer22, pelvic organ function23,24

and breast lesions25–27, assess aneuploidy risk28, predict
fetal lung maturity29, perinatal outcome30, shoulder
dystocia31 and brain damage32, estimate gestational age
in late pregnancy33 and classify standard fetal brain
images as normal or abnormal34 (Table 1). The number
of AI-related papers is increasing; at the 29th World
Congress of the International Society of Ultrasound in
Obstetrics and Gynecology (ISUOG) in 2019, there were
14 abstracts specifically mentioning AI, in comparison to
a total of 13 abstracts in the preceding six ISUOG World
Congresses (2013–2018).

As with any scientific discipline, the AI scientific
community uses technical language and terminology that
can be difficult to understand for those outside the area.
This in addition to the rapid advancement in the field can
make it challenging for other disciplines to keep abreast
of developments in AI. Indeed, one of the key concerns
that has been expressed regarding AI in medicine is that
there are relatively few interdisciplinary professionals
who work at the interface of AI and medicine and can
‘translate’ between the two35. A recent review of 250
AI papers emphasized the need for greater collaboration
between computational scientists and medical profession-
als to generate more scientifically sound and impactful
work integrating knowledge from both domains36.

To contribute to this discussion, this article aims to
explain key AI-related concepts and terms to clinicians in
the field of ultrasound in obstetrics and gynecology. For
simplicity, we use the general term ‘artificial intelligence
(AI)’, which is commonly used by others in the field,
although most articles referring to AI in clinical medicine
are based on deep learning, a subset of AI (Box 1,
Figure 1). It is also important to appreciate that relatively
few AI-based ultrasound applications have advanced the
whole way from academic concept to clinical application
and commercialization. Therefore, we also use examples
from radiology, being our closest sister field.

Artificial intelligence and medical imaging

The current interest in AI in medical imaging stems from
major advances in deep learning-based ‘computer vision’
over the past decade. The field of computer vision concerns
computers that interpret and understand the visual world.
Within computer vision, object recognition (‘what can I
see in this image?’) is a key task which can be posed
as an image classification problem. Researchers in this
field use ‘challenge’ datasets to benchmark the progress
in accuracy of image classification. One such challenge
dataset, called the ImageNet project, is a database of more
than 14 million images of every day (non-medical) objects
that have been labeled by humans into more than 20 000
categories. This large database was first made available
to the scientific community in 2010 to train algorithms
for image classification. In 2015, the ImageNet annual
competition reached a milestone when the error rate of
automatic classification of images dropped below 5%,
which is the average human error rate (Figure S1)17. This
was largely due to advances in deep learning, the branch
of AI that learns from large amounts of data.

Deep learning excels in pattern recognition and we
believe that medical professions which rely on imaging will
be the first to see the benefits of this tool (Appendix S1).
One of the largest driving forces behind AI in medical
imaging is the enormous amount of digital data gener-
ated around the world that may be useful in training
algorithms. As of May 2020, there are more than 50
deep learning-based imaging applications37 approved by
the USA Food and Drug Administration (FDA) or the
European Union, spanning across most imaging modal-
ities, including X-ray, computerized tomography (CT),
magnetic resonance imaging, retinal optical coherence
tomography and ultrasound. Approved AI applications
are designed to provide increased productivity by per-
forming automated screening, assisting in diagnosis or
prioritizing a radiology study that needs to be ‘at the top
of the list’. Applications include identification of cere-
brovascular accidents, diabetic retinopathy, skeletal frac-
tures, cancer, pulmonary embolism and pneumothorax37.
Recently, the first ultrasound AI application that guides
the user received FDA approval; the software uses AI

Table 1 Examples of reported and expected future artificial intelligence (AI) applications in obstetric and gynecological ultrasound

AI application Description Clinical utility

Probe guidance Operator is guided how to manipulate probe to
acquire fetal biometric plane

Facilitate sonographer training; basic scanning can
be performed by non-expert (e.g. general
practitioner)

Fetal biometric plane finder Standard fetal biometric planes are automatically
acquired, measured and stored

Reduce repetitive caliper adjustment clicks; reduce
operator bias; instant quality control

Anomaly scan completeness Anomaly scan checklist of mandatory planes is
populated automatically

Ensure completeness of imaging and that all parts
of anatomy are checked

Anomaly highlighting Unusual fetal findings are identified in a standard
plane

Highlight suspected abnormal finding; assist
sonographer with referral decision

Cyst classification Ovarian cysts are classified according to IOTA criteria Improve consistency; reduce likelihood of error
Lung scans for Ob/Gyn Ob/Gyn experts are taught how to perform lung

ultrasound in patients with COVID19
Reduce learning curve

COVID19, coronavirus disease 2019; IOTA, International Ovarian Tumor Analysis.
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Box 1 Glossary of commonly used artificial intelligence terms

Artificial intelligence (AI) refers to a machine or software performing tasks that would ordinarily require human
brainpower to accomplish, such as making sense of spoken language, learning behaviors or solving problems
(Figure 1). This means that an AI program can learn from real-world data as well as experience, and encompasses
the capacity to improve its performance given more data. Nevertheless, there is no accepted definition of AI, and
therefore, the term is often misused71. AI can be broken down into general AI, which is human-like intelligence (i.e.
ability to think, learn, reason) and narrow AI, which is the ability to perform a specific task (i.e. image detection,
translation, chess-playing).

Convolutional neural networks (CNNs), also known as artificial neural networks, are computational algorithms
inspired by the biological neural networks that constitute animal brains and consist of multilayered artificial neurons
(Figure 1). A CNN is displayed as a system of hidden connections between input and output. CNNs have the ability
to determine the relationship between input (such as brain computerized tomography (CT)) and labels (presence or
absence of hemorrhage). This is in contrast to traditional software, in which predetermined logic rules set the output
to specific stimuli. In reality, there is little resemblance to human neurons.

Black box is the term often used to describe the process occurring inside the hidden layers of CNNs. For example,
a new AI product is launched aimed at detecting intracranial hemorrhage. When this software reads a CT scan that
has signs of intracranial hemorrhage, it will correctly output the result of evidence of intracranial hemorrhage to
the care team, yet it may not report why it reached this conclusion. There is an ongoing effort aimed at providing
‘explainability’ to AI, to report the ‘how’ in addition to the result (Explainable AI).
Explainable AI is an emerging subfield of AI that attempts to explain how black box decisions of AI systems are
made. Explainable AI aims to understand the key steps involved in making computational decisions. This should
theoretically allow decisions taken by an algorithm to be understood by end-users.

Model, application or algorithm are all terms used interchangeably for the ready-to-use AI software/product.

Machine learning is a branch of AI, defined by the ability to learn from data without being explicitly programmed
(Figure 1). Machine learning can be understood as a statistical method that gradually improves as it is exposed to
more data, by extracting patterns from data.
Deep learning is a branch of machine learning (Figure 1). In deep learning, the input and output are connected by
multiple layers of hidden connections, also known as CNNs. Deep learning involves learning from vast amounts
of data and performs especially well in pattern recognition within data; therefore, it can be particularly helpful in
medical imaging. Deep learning is usually divided into two major classes:

1) Supervised learning, in which labeled (annotated) data are used as an input to a CNN (Appendix S1). For example,
to build an application detecting brain hemorrhage on a CT scan, the CNN is first trained using labeled data, i.e.
normal scans and scans with hemorrhage labeled with the correct diagnosis by a radiologist (label = hemorrhage
present/absent). Following training using the training dataset, evaluation of the CNN is carried out using a test
dataset that contains unlabeled data; these are new CT scans (not contained in the training dataset) with and without
hemorrhage that do not have labels. The CNN outputs its prediction based on the test data. After validation of the
prediction accuracy, the model is ready to use. For instance, the final model is a software that can read a brain
CT scan (input = CT scan) and decide whether or not intracranial hemorrhage is present or absent (output = yes/no
hemorrhage).

2) Unsupervised learning is a training process that does not require labeling. This saves the time-consuming,
labor-intensive and expensive human labeling process. In the intracranial hemorrhage example, the learning input
would be CT scans of patients with and without hemorrhage that are not labeled (i.e. the machine is never told if
bleeding is absent or present). The CNN will learn by clustering scans that look similar to one another (learn from
similarities and differences), which should result in classifying images to either hemorrhage or no hemorrhage.

Big data: In order to achieve good performance, supervised AI applications require a large volume of labeled training
data (usually images) from which to learn. Establishing a clinically relevant, well-curated dataset that can be used to
train an algorithm can be a very time-intensive process, and the accuracy of such curation determines the quality of
the derived model.

to help the user capture images of acceptable diagnostic
quality during adult echocardiography38. The market of
AI applications in medical imaging alone is forecasted to
top $2 billion by 202339.

What about ultrasound? Ultrasound AI software needs
to fit into the workflow differently from, for example,
in the analysis of a CT scan; in ultrasound, real-time
analysis at the point of acquisition is ideally needed,
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Convolutional (artificial) neural network(a)

(b)

Deep network
(hidden layers)

Artifical intelligence

Algorithms that gradually
improve with experience;
Learning without being
explicitly programmed.

Examples: Amazon shopping
recommendations, email spam
filter, Google search algorithm

Learning from vast
amounts of data

Computer mimic human
behavior: sense, reason,
act and adapt

Example:
Deep Blue chess program

Examples: AlphaGo,
self-driving cars,
ARDA

Machine learning

Deep learning

Output Input Brain neurons OutputInput

Human neural network

Figure 1 Graphic representation of artificial intelligence. (a) Human neural network architecture and its resemblance to a deep artificial
neural network. (b) Relationship between artificial intelligence, machine learning and deep learning. ARDA, automated retinal disease
assessment (Appendix S1).

while in CT, automated reading is only needed at the
end of the examination. Compared to the image acqui-
sition and analysis abilities of a sonologist, no known
current AI method is generic enough to be applied on a
wide range of tasks (e.g. an AI application designed for
the second trimester is unlikely to be applicable to the
first-trimester scan). For each ultrasound task, there are
several image acquisition and analysis capabilities that
can be met by an AI application, including classification
(‘what objects are present in this image?’), segmentation
(‘where are the organ boundaries?’), navigation (‘how
can I acquire the optimal image?’), quality assessment (‘is
this image fit for purpose to make a diagnosis?’) and
diagnosis (‘what is wrong with the imaged object?’).
Active academic research and emerging examples
of AI-assisted applications for ultrasound include
plane-finding (navigation) and automated quantification
for analysis of the breast, prostate, liver and heart40–42.
In obstetric and gynecological ultrasound, promis-
ing workload-changing advancements include automatic
detection of standard planes and quality assurance in
fetal ultrasound43–45, detection of endometrial thickness
in gynecology46 and automatic classification of ovarian
cysts (Table 1).

Challenges

The introduction of AI into clinical practice offers many
potential benefits, but there are also many challenges and
uncertainties that may raise concerns.

The impact of AI on jobs is among the most widely
discussed concerns47–49. Major technological advances
frequently impact the job market, and the current wave of
AI-based automation is no exception. However, this does
not automatically imply technological unemployment;
rather, it may trigger a transformation in the way we
work, resulting in professional realignment. AI can
enhance both the value and the professional satisfaction
of sonographers and maternal–fetal medicine experts by
reducing the time needed for routine tasks and allowing
more time to perform tasks that add value and influence
patient care49,50. An important advantage that machines
have over humans is reproducibility: machines retain
absolute consistency over time whereas the performance
of a clinician varies depending on many factors, such as
years of experience, fatigue or simple distractions, such
as a late-running clinic or a ringing phone. Additionally,
an AI application has higher capacity, theoretically
being able to read thousands of scans, while a radio-
grapher reads 50–100 scans per day49. Evidence in the
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literature suggests that the first wave of AI applications
is likely to constitute assistive technology, taking over
repetitive tasks to improve consistency, such as reading
radiographs51. Specifically in ultrasound, automation will
assist in shortening the total scan duration by removing
the need for some of the tiresome or ‘simple’ repetitive
tasks, such as acquiring standard planes, annotation or
adjustment of calipers (Table 1). This may allow more
time to analyze additional scan planes or to communicate
the results to patients52. Automation should also be seen
in the context of a global shortage of imaging experts,
including sonographers and radiographers, while demand
for diagnostic imaging is rising53.

Applicability is another concern relating to the imple-
mentation of AI in clinical medicine. Imaging features
alone are often not sufficient to determine diagnosis and
management. Consider, for instance, an AI application
developed to report on ovarian cysts that is designed to
produce a binary outcome of malignant features being
absent or present based on an ovarian imaging training
dataset. Clinicians also take into account the clinical
context, including many factors such as age, menopausal
status and familial risk factors, when making a diagnosis.
While it could be argued that the clinician may be
biased by clinical information, this example highlights
the importance of understanding when an AI solution is
applicable and when it is not. AI models can account only
for information ‘seen’ during training, so in this example,
non-imaging clinical information is not taken into
account by the AI model. Hence, an important emerging
area of healthcare AI research focuses on building AI
models that integrate imaging and electronic health
record data for ‘personalized diagnostic imaging’54,55.

Another fear, which is largely unwarranted, relates to
adaptable systems, which are AI applications that con-
tinue to learn, adapt and optimize based on new data
and hence may jeopardize the application’s safety. Reg-
ulatory bodies, including the FDA, currently approve
only AI applications with models that have ‘locked’
parameters56,57. This means that all current AI applica-
tions are static models that can no longer adapt, and there-
fore, the approved product does not change over time.

The ‘black box’ design of AI applications is attractive
at one level, as there is no need to understand how
the complex non-linear optimization works, but is also
a source of concern as clinicians want to understand
any associated bias and likely modes of failure. Most
AI models are derived by using ‘supervised learning’,
meaning that the model learns from data annotated by
humans (Box 1). Since human involvement can potentially
introduce bias to the learning process, the resulting model
could also be biased. Understanding model bias is an
important aspect of AI model design and an active area
of research58. For example, as operators seem to be at
risk of expected-value bias when acquiring fetal biometry
measurements, an algorithm training to measure standard
biometric planes by supervised learning might end up
having a built-in bias when automatically calculating
fetal biometry59. To better understand AI model bias, as

well as to provide insights into how AI algorithms make
decisions, ‘explainable AI’ is an emerging subfield of AI
research aiming to demystify the black box design.

Deep learning excels in pattern recognition, but it is
important to recognize that most methods are supervised
(training data are manually annotated). Manual anno-
tation is resource-intensive and is often subjective. Most
academic publications use data annotated a single time
by one or more human annotators, which means that
the derived model will be biased by (or skewed towards)
the human annotator’s preferred method of annotation.
If, instead, each image is annotated by multiple humans,
then there need to be rules about how to agree on
consensus if their annotations differ. There is no one
way to do this. Thus, one can appreciate that the process
of annotation and subsequent data cleaning is both
resource-intensive and determines the success of model
performance. Furthermore, traditional deep-learning
methods require a considerable volume of data to build
accurate models, which are not always available. There
are some ways to address this limitation which are the
subject of current deep learning in medical imaging
research. These include using pre-trained models, which
essentially allow initialization of the parameters of a new
model with those of a model built for another problem,
and allowing new data to update model parameters.
Another issue deep-learning scientists have to consider
is deployability, as traditional deep-learning models can
have millions of parameters and take up lots of computer
memory. Models can be reduced in size empirically, and
there is an emerging area of interest in designing small
deep neural networks, such as MobileNet and SESNet, as
the backbone for deployable AI application models.

Unfortunately, there are high expectations of AI appli-
cations which have yet to be backed up by wide-scale
convincing multicenter clinical studies and, when
appropriate, randomized clinical trials. An interesting
overview of the current standards of AI research in medi-
cal imaging is provided in a recent publication60. Indeed,
most of the reported AI applications to date use data from
a single site and focus on algorithm performance rather
than looking at clinical utility or health economics60. It
is particularly challenging to assess an AI model when
the accuracy of a human expert for the same task is
difficult to determine or is unknown60. It is important to
appreciate that healthcare AI is an emerging technology
and, as such, it will take time to determine the best ways
to validate and regulate AI applications. Towards this
goal, a recent multinational academic report addressing
both medical and non-medical AI systems, entitled
‘Toward Trustworthy AI Development: Mechanisms for
Supporting Verifiable Claims’61, provides a list of mea-
sures and mechanisms for AI developers and regulatory
bodies to ensure responsible AI development. Among
the recommendations, the report calls for introduction
of third-party auditing of AI systems, creating a system
for reporting AI incidents and encouraging researchers in
academia to verify claims made by industry.
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No discussion about AI would be complete without
mentioning ethics62. Recently, the classic theoretical
‘trolley problem’ experiment was applied to self-driving
cars, as part of an online experimental platform designed
to explore human perspective on moral decisions made
by autonomous vehicles63. The question is whose safety
should be prioritized in the event of an accident.
Essentially, the problem asks: if your car brakes suddenly
fail as you speed toward a crowded crosswalk, and you are
confronted with the dilemma to veer right and crash into
an old man or veer left and crash into a concrete wall and
kill the car driver and passengers, what would you choose?
Now, what if instead of an old man, it was a woman
pushing a stroller or a homeless person crossing the road?
Human drivers who are badly injured or die in a car crash
cannot report whether they were faced with a dilemma.
However, self-driving cars can be programmed to act in a
certain way. Similarly, the use of AI-based solutions may
raise several moral questions in medicine64,65: would we
trust computers to screen for disease, prioritize treatment,
diagnose, treat, discharge? Would we let a fully automated
AI-based solution choose the patient to occupy the only
available intensive care unit bed?

Ethical concerns also surround the issue of privacy65,66.
Developing AI applications typically requires a large
volume of data about patients and their diagnoses.
Such personal data are usually collected by health
authorities or hospitals. Under what conditions (if any)
should hospitals be allowed to share patient data with
developers of AI solutions, who may be commercial
entities? If healthcare data are completely anonymized,
does a patient need to expressly consent to their use for
such improvements in healthcare? These questions, which
relate to data governance and privacy, are not unique to
healthcare AI and are currently being debated widely by
regulators, policy-makers, technologists and technology
end-users (including the public). An emerging technology
area, called privacy-enhancing technologies, may offer
data-sharing and analysis options to reduce some of the
current barriers and concerns.

Potential professional liability for physicians using
AI is another challenge67. Should hospitals and doctors
be accountable for decisions that an AI application
makes? Information provided by an AI application may
be used to inform clinical management, diagnosis or
treatment. However, algorithms, like humans, can err.
Let us suppose that an AI algorithm classifies an ovarian
cyst as most likely benign and recommends follow-up
imaging in 6 months according to the standard of care;
at the next appointment, the patient is diagnosed with
metastatic ovarian cancer and retrospective image review
suggests that the ‘cyst’ may have had malignant features
previously. This raises the question: who is liable when
AI-based diagnosis is incorrect? Questions of this kind are
currently being considered by regulators, in consultation
with legal professionals, medical professionals and AI
developers in the industry.

Research in context

As we begin to see more interdisciplinary research related
to AI in clinical medicine, difficulties arise when readers
and reviewers with a clinical background attempt to
critically assess the methodology of scientific AI papers in
a field that is, for now, largely unfamiliar to many medical
professionals. How can the clinical research community
ensure that highly technical aspects of a scientific
work have been conducted and presented correctly68?
Ultrasound professionals understand the full meaning
of ‘sonographer with 10 years of experience’ or ‘images
were reviewed by two specialists’, but may struggle with
descriptions such as ‘A feed-forward network of neurons
consisting of a number of layers that are connected to each
other was built.’28 or ‘To train the model, we first provided
the sample input, x, to the first layer and acquired the
best parameters (W, b) and activated the first hidden
layer, y, and then utilized y to predict the second layer.’30.
When assessing the clinical effectiveness and legitimacy of
scientific work for publication, several crucial questions
should be raised, including: which of the authors are AI
scientists and what is their experience; how were training
and test data acquired; what were the input variables;
how was the algorithm trained; how was the algorithm
evaluated and validated, and was the validation internal
or external; are the results reproducible. We believe that
one simple solution is to include in the Editorial Board of
journals technical reviewers with expertise in AI who are
able to ensure the soundness of the technical aspects of a
paper and assess interdisciplinary research.

To facilitate reporting of AI trials, the CONSORT
(Consolidated Standards of Reporting Trials) and SPIRIT
(Standard Protocol Items: Recommendations for Interven-
tional Trials) steering groups are expected to publish the
first international consensus-based reporting guidelines
for clinical trials evaluating AI interventions in 202069.

Summary

AI uses data and algorithms to derive computational
models of tasks that are often as good as (or better than)
humans. AI is already a part of our daily life and is a
prominent source of innovation in healthcare, helping to
develop new drugs, support clinical decisions and provide
quality assurance. Deep learning performs particularly
well in image pattern recognition and solutions based on
this approach can benefit healthcare professionals who
depend heavily on information obtained from images,
such as radiographers, pathologists and sonologists.

We have presented an overview of AI technology and
some of the issues related to the introduction of this
emerging technology into clinical practice, in the context
of ultrasound in obstetrics and gynecology. At this stage,
AI applications are in the early stages of deployment and
a systematic review would be premature. In addition,
performing a clinical systematic review in this area is
challenging because most of the published peer-reviewed
scientific articles appear in the engineering literature which
usually focuses on the AI methodology and few studies
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have assessed clinical applicability. Lastly, algorithms and
results of approved AI applications are often not published
in scientific journals due to commercial sensitivities.

In the past, advances in women’s ultrasound have
been largely achieved through better imaging, advances in
education and training, adherence to guidelines and stan-
dards of care, and improvement of genetic technologies70.
Despite all these advances, the fundamental way in
which ultrasound images are acquired and interpreted has
remained relatively unchanged. AI opens an opportunity
to introduce in the patient–carer relationship a third ‘par-
ticipant’ that is able to contribute to healthcare. Improved
quality through automatic categorization or interpreta-
tion of images and ensuring images are fit for purpose
can increase confidence in imaging-based diagnosis. In
high-income settings, this could contribute to health-
care efficiency and workflow improvements in screening.
In under-resourced settings, it opens the prospect of
strengthening ultrasound imaging by replicating basic
obstetric ultrasound where there is none which could
allow, for example, gestational-age estimation or diagno-
sis of placenta previa. For this potential to be realized,
interdisciplinary communication between AI developers
and ultrasound professionals needs to be strengthened. A
greater understanding of how AI methods work is impor-
tant to enable clinicians to trust AI solutions. To ensure
seamless integration of AI, medical professional organi-
zations should start considering how AI affects them,
recommend that physicians publish their experiences of
using AI technologies, and consider appropriate guidelines
or committees on aspects of AI.
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SUPPORTING INFORMATION ON THE INTERNET

The following supporting information may be found in the online version of this article:

Appendix S1 Example: ophthalmology at the forefront of artificial intelligence

Figure S1 Error rates on ImageNet Large-Scale Visual Recognition Challenge between 2010 and 2017.
Accuracy improved dramatically with introduction of deep learning in 2012 and continued to improve
thereafter. Humans perform with an error rate of approximately 5%. Figure reproduced with permission from
Langlotz et al.17.
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