THE LANCET Microbe

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Cordery R, Reeves L, Zhou J, et al. Transmission of SARS-CoV-2 by children to contacts in schools and households: a prospective cohort and environmental sampling study in London. *Lancet Microbe* 2022; published online Aug 24. https://doi.org/10.1016/S2666-5247(22)00124-0.

Supplementary Appendix for Transmission of SARS-CoV-2 by children to contacts in schools and households: a prospective cohort and environmental sampling study in London

Supplementary Tables		Page
Table S1	Items swabbed in schools, households and university	2
Table S2	Environmental sampling results from university	4
Supplementary Figures		
Figure S1	Whole genome sequencing results from clinical samples testing positive for SARS-CoV2 by setting	5
Figure S2	Surface contamination with SARS-CoV2 by category over sampling period (households).	6
Figure S3	Comparison of human target detection in household and school environmental samples	7
Supplementary Methods		8
Supplementary References		10

Supplementary Table 1 Items swabbed in schools and households and university

Household Surface samples		School Surface samples	School Surface samples		University building –surface samples	
Case Bedroom	Bed frame	Classrooms (BC or SC)	Chair	Offices	Chair	
	Chair		Desk		Computer	
	Computer		Door handle		Desk	
	Desk		Hand sanitiser		Door handle	
	Door handle		Indoor toys		Food packaging	
	Electronic game		Light switch		Light switch	
	Laptop		Locker		Mug	
	Light switch		Outdoor toys		Printer	
	Mobile phone		Reading books		Clothing	
	Musical instrument		Soap dispenser		Stationery	
	Pillow		Stationery		Personal equipment	
	Plastic toys		Student diary		Surgical mask	
	School bag		Taps		Telephone	
	Soft toys		Window handle			
	Toy shelf		Work folder			
	Wardrobe handle		Work tray			
Bathroom	Door handle	Washrooms	Door handle	Laboratory	Desk	
	Light switch		Soap dispenser		Door handle	
	Taps		Taps		Laboratory equipment	
	Toilet flush		Toilet flush		Refrigerator handle	
	Toilet seat		Toilet seat		Soap dispenser	
	Toothbrush and paste				Taps	

Communal room	Card game		Kitchen	Countertop
	Chair			Cupboard handle
	Door handle			Kettle
	Electronic tablet			Refrigerator handle
	Laptop			Taps
	Light switch			Water machine
	Mobile phone		Washroom	Door handle
	Musical instrument			Soap dispenser
	Pet cage			Taps
	Pet fur/feathers ^{Ψ}			Toilet flush
	Plastic bottle			Toilet seat
	Refrigerator handle		Lobby & Lifts	Card reader
	Sofa			Desk
	Soft toys			Door handle
	Stationery			Entry keypad
	Table			Lift buttons
	Taps			Stair handrail
	TV buttons			
	TV remote			
	Wall mirror			
	Water jug			

^ΨIncluded 3x cat fur, 2x dog fur, 1x bird plumage. Abbreviations, BC, Bubble contact. SC, non-bubble school contact

Supplementary Table 2 Environmental sampling results from university

		Surface	Air
Office A [¶]	Sampling 1 [‡]	3/10	1/1
	Sampling 2	0/10	0/1
	Total	3/20	1/2
	Sampling 1	0/10	0/1
Office B [§]	Sampling 2	0/10	0/1
	Total	0/20	0/2
	Sampling 1	0/10	0/1
Shared offices	Sampling 2	0/10	0/1
	Total	0/20	0/2
	Sampling 1	0/5	0/1
Laboratory	Sampling 2	0/5	0/1
	Total	0/10	0/2
	Sampling 1	0/5	0/1
Kitchen	Sampling 2	0/5	0/1
	Total	0/10	0/2
	Sampling 1	0/10	0/2
Toilets	Sampling 2	0/10	0/2
	Total	0/20	0/4
	Sampling 1	0/8	0/1
Lobby & Lifts	Sampling 2	0/8	0/1
	Total	0/16	0/2

Second sampling was undertaken 14-15 days after first sampling except in offices A and B

[‡] Values for surface samples were: 7589.1; 31199.7; and 4493.4 E gene copies/swab. Air sample was 3104 E gene copies/cubic metre.

[¶]Second sampling was 12d after first; [§]Second sampling was 3d after first

Supplementary Figures

Supplementary Figure S1 Phylogenetic relation between sequenced SARS-CoV2 isolates from participants with positive swabs

Figure S1. Phylogenetic tree and ORF mutation profile generated through whole genome sequencing of positive SARS-CoV-2 samples from TraCK study participants. The phylogenetic tree is rooted to reference sequence Wuhan-Hu-1 (GenBank accession number NC_045512.2). Samples are grouped by household cluster where possible, always considering phylogenetic tree constraints. S = Subject (Child/Adult/Reference), C = Cluster (setting or household). Participants with samples that had low E gene copy number could not be sequenced and are not shown.

Supplementary Figure S2 Surface contamination with SARS-CoV-2 in households by category over sampling period.

Figure S2. Environmental samples from 16 households by item category as listed in legend. E gene copy number per swab is shown for each item at each weekly time point. All items swabbed within a household were consistently sampled again on each sampling occasion within a given household; some households were swabbed for less than 4 weeks. Pet sampling included 3x cat fur, 2x dog fur, 1x bird plumage but no mucosal sampling.

Figure S3. Human RNaseP and 18s rRNA detected in surface swabs and air samples collected from schools and households. Surface and air samples were obtained from the same items and locations weekly in each school and households. Data are shown as median and IQR Ct values determined by real-time PCR. Results between household and schools' samples were compared using Mann-Whitney U test (GraphPad Prism) were shown with corresponding p values as indicated.

Supplementary Methods

Context for Case and Bubble definitions and quarantine periods

During the study period, children in England were tested for SARS-CoV-2 by PCR if exhibiting any of the recognised symptoms of COVID-19 through community or postal testing programmes. From September 1st 2020 – July 19th 2021, schools and nurseries were required by the UK government to undertake contact tracing for suspected or confirmed cases of COVID-19 in pupils or staff. Children with confirmed SARS-CoV-2 infection were excluded from onset of symptoms (or a positive test if no symptoms). The duration of exclusion was initially 14 days (1 Sept 2020 – 14 Dec 2020) later changing to 10 days (14 Dec – 19 July 2021). The same duration of quarantine applied to household contacts of cases regardless of vaccination status. Contacts identified by schools were excluded for the same duration. In early years and primary school settings the whole class were considered close contacts (the so-called "bubble"). In secondary school settings risk assessment identified individual close classroom contacts (face to face contact; contact within 1m for >1 minute; within 2m for >15 minutes).

Prevailing interventions in schools and school closures.

Schools in England re-opened in the first week of September 2020 to all children aged 5-18, having adopted a suite of preventive measures including social distancing, hand hygiene, and secondary school-aged pupils and staff advised to wear masks when in crowded spaces outside the classroom; any PCR-confirmed positive SARS-CoV-2 cases arising in schools resulted in bubble contacts quarantining for 14 days. Schools closed in mid-December 2020 for the Christmas holidays at a time when cases involving the alpha or 'Kent' variant increased. Between January 4th and March 8th 2021 schools in England partially re-opened for vulnerable children, children of keyworkers, and secondary school-aged pupils undertaking exams in years 11 and 13 only. From March 9th 2021 schools re-opened to all pupils and, in addition to the aforementioned measures, secondary school-aged pupils were asked to undertake lateral flow antigen testing for SARS-CoV-2 twice weekly and wear masks inside and outside the classroom.

Contact definition.

Bubble contacts (BC) were children identified by schools who were required to isolate at home. For nurseries and primary schools, BC were in the same 'bubble' or class as the index case; for secondary schools, BC had been individually identified by the school as meeting the contact definitions above.

Non-bubble school contacts (SC) were children from a different 'control' class in the same school. SC were from a class that was adjacent in terms of age-group or geographical proximity in the school. They had not been identified by school as contacts required to isolate, but were drawn from the same wider community and, despite best efforts to keep bubbles separate, may have been exposed to similar common areas in the school as the index case the BC. Household contacts (HC) were adults and children of any age normally resident with the Index Case, and required to isolate.

Sample size.

The study was pragmatic in that it enrolled as many bubble contacts as possible within the school year. A prevalence of 25% infection was previously detected in classroom contacts exposed to scarlet fever (1). A sample size of 40 bubble contacts was sought to detect a difference between the Null hypothesis proportion, π_0 of 0.03 and the Alternative proportion, π_1 , of 0.25 with 98.4% power using an exact binomial test with a nominal 5% two-sided significance level; for a sample size of 28, power was 94.49%.

Contact sampling

Combined nose and throat samples were obtained by the research team from each participating contact (BC, SC, or HC) as soon as possible (<48 hours) after case identification, and thereafter weekly for up to 28 days. Flocked nylon swabs (Sterilab Services, Harrogate, UK) were rubbed on the posterior fauces and then rotated gently in the nostrils no deeper than the length of the flocked end of the swab, then placed into universal transport medium. BC and HC were sampled at home by the study team, while SC were sampled at school by the same study team. Swabs were delivered to the laboratory the same day and immediately refrigerated until processed the following working day.

Environmental sampling.

For households, surface and air samples were obtained in each of three rooms (child's bedroom, communal room, bathroom) weekly. For schools, surface and air samples were obtained from the bubble classroom, school contact classroom, and washroom weekly. Details of environmental samples obtained are listed in supplementary table 1.

For environmental surface sampling, swabs moistened in viral transport medium were used to swab 25 cm² of four or five surfaces in each of three rooms (child's bedroom, communal room, bathroom), identified as frequently touched or handled by the case, with attention on personal items (total 14 swabs). Where household pets were available, surface samples (fur or feathers) were obtained from these at the same time as other household items; mucosal samples were not obtained.

Air sampling was undertaken in the same three rooms for periods of 10 minutes (300 litres/minute, Coriolis micro, Bertin Instruments, France), with the Index Case present in the communal room during sampling. Environmental sampling in the home started at time of household recruitment and surfaces were re-swabbed weekly for up to 28 days at the time of household sampling.

For schools, surface swabs were taken from four or five surfaces in three locations: Bubble classroom (n=5); School contact classroom (n=5); Washroom (n=4). Schools were asked to delay cleaning of bubble classrooms (as out of use) until after the week 1 swabs were taken but this was not always possible. Surfaces were re-swabbed weekly for up to 28 days. Air sampling was undertaken in the same three locations, repeated weekly. Where children were present in school, sampling was undertaken immediately after children had left the class.

For the university building, surface swabs were obtained on two occasions from two academic offices; a research laboratory; washroom; kitchen area; elevator and communal lobby area.

Environmental samples were coded then tested by a research laboratory for SARS-CoV-2 RNA content using a quantitative RT-PCR detecting SARS-CoV-2 E and Orf1ab genes (2) using human RNAseP and 18s rRNA as controls for sample quality and as an indicator of human contact. Samples with high SARS-CoV-2 viral load (Ct value <30) were inoculated into Vero cells for culture of infectious virus as previously reported (2).

Whole genome sequencing, lineage assignments and phylogenetic trees

RT-qPCR was performed using an in-house protocol (3). Samples with a positive RT-qPCR result were submitted for Whole Genome Sequencing to assign lineages and generate phylogenetic trees. Samples with the highest viral loads were chosen. Automated RNA extraction was performed using a CyBio FeliX (Analytik Jena) and innuPREP Virus TS RNA Kit 2.0 (Analytik Jena) according to the manufacturer's instructions, with a sample volume of 200 µl, without carrier RNA and with an elution volume of 50 µl. cDNA synthesis was then performed using the LunaScript RT SuperMix Kit (NEB) according to the manufacturer's instruction volume of 20 µl and extracted sample volume of 5 µl. Libraries were generated using the EasySeq[™] RT-PCR SARS CoV-2 (novel coronavirus) Whole Genome Sequencing kit v1 or v2 (Nimagen) according to the manufacturer's instructions. Samples were then pooled and purified with AMPure XP (Beckman Coulter) magnetic beads. Suitable quality of libraries was confirmed using a Tapestation (Agilent) and

concentrations were measured using the Qubit 1x dsDNA High Sensitivity Assay Kit (Thermofisher Scientific) and Qubit 4 Fluorometer (ThermoFisher Scientific). Pooled libraries were then diluted down to 55 pM. The final pool was then run on an iSeq 100 (Illumina) with a total of 322 cycles (151 bp paired reads and 10 bp indices). Generated fastq files were processed using the EasySeq variant pipeline (v0.6.0)(4) which is a Nextflow (5) pipeline that uses fastp (6), BWA MEM (7), SAMtools (8), BCFtools (8), LoFreq (9), mosdepth (10), BEDtools (11), SnpEff (12) and MultiQC (13) to QC, trim and assemble the reads (using reference sequence NC_045512.2) and then generate a consensus sequence and variant report before assigning a PANGO lineage (14) using pangolin (v3.1.16, lineages version 2021-10-18) (15). Sequences were aligned using Clustal Omega (16) and the alignment was then used to generate a phylogenetic tree using IQ-TREE (v2.1.3) (17). The phylogenetic tree and heatmap were generated using R (18) and the ggtree package (19).

Gingival Crevicular Fluid (GCF). GCF (oral fluid) was collected from each participant at each swabbing time point (Oracol swabs, Malvern Medical, Worcester, UK). Foam swabs were rubbed on the gums for one minute at each sampling time point stored at 4° C until elution in transport medium (phosphate-buffered saline (PBS), supplemented with 10% fetal calf serum, 0.2% Amphotericin B, and 0.5% gentamicin) and then stored at -20°C until analysis by the reference laboratory (20).

References for Supplementary Appendix

- Cordery R, Purba A, Begum L, Mills EA, Mosavie M, Vieira A, Jauneikaite E, Leung RCY, Siggins MK, Ready D, Hoffman P, Lamagni T, Sriskandan S. Frequency of transmission, asymptomatic shedding, and airborne spread of *Streptococcus pyogenes* among schoolchildren exposed to scarlet fever: a longitudinal multicohort molecular epidemiological contact tracing study in England, UK Lancet Microbe, 2022 https://doi.org/10.1016/S2666-5247(21)00332-3.
- Zhou J, Otter JA, Price JR, Cimpeanu C, Garcia DM, Kinross J, Boshier PR, Mason S, Bolt F, Holmes AH, Barclay WS. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin Infect Dis. 2020 Jul 8:ciaa905. doi: 10.1093/cid/ciaa905
- 3. Rowan AG, May P, Badhan A, et al. Optimized protocol for a quantitative SARS-CoV-2 duplex RT-qPCR assay with internal human sample sufficiency control. *J Virol Methods*. 2021;294:114174. doi:10.1016/j.jviromet.2021.114174
- 4. Jordy P.M. Coolen, Femke Wolters, Alma Tostmann, Lenneke F.J. van Groningen, Chantal P. Bleeker-Rovers, Edward C.T.H. Tan, Nannet van der Geest-Blankert, Jeannine L.A. Hautvast, Joost Hopman, Heiman F.L. Wertheim, Janette C. Rahamat-Langendoen, Marko Storch, Willem J.G. Melchers. SARS-CoV-2 whole-genome sequencing using reverse complement PCR: For easy, fast and accurate outbreak and variant analysis. Journal of Clinical Virology 2021; 144, 104993. doi.org/10.1016/j.jcv.2021.104993.
- Di Tommaso, P., Chatzou, M., Floden, E. *et al.* Nextflow enables reproducible computational workflows. *Nat Biotechnol* 35, 316–319 (2017). doi:10.1038/nbt.3820
- 6. Shifu Chen, Yanqing Zhou, Yaru Chen, Jia Gu, fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, 34, Volume Issue 17. 01 September 2018. Pages i884i890, doi.org/10.1093/bioinformatics/btv560
- 7. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013. https://arxiv.org/abs/1303.3997v2

- Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. Twelve years of SAMtools and BCFtools. Gigascience. 2021 Feb 16;10(2):giab008. doi: 10.1093/gigascience/giab008.
- Wilm A, Aw PP, Bertrand D, Yeo GH, Ong SH, Wong CH, Khor CC, Petric R, Hibberd ML, Nagarajan N. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 2012 Dec;40(22):11189-201. doi: 10.1093/nar/gks918.
- Brent S Pedersen, Aaron R Quinlan. Mosdepth: quick coverage calculation for genomes and exomes. *Bioinformatics*, Volume 34, Issue 5, 01 March 2018, Pages 867–868, doi: 10.1093/bioinformatics/btx699
- Aaron R. Quinlan, Ira M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, *Bioinformatics*, Volume 26, Issue 6, 15 March 2010, Pages 841–842, doi: 10.1093/bioinformatics/btq033
- Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012 Apr-Jun;6(2):80-92. doi: 10.4161/fly.19695.
- 13. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354.
- Rambaut, A., Holmes, E.C., O'Toole, Á. *et al.* A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. *Nat Microbiol* 5, 1403–1407 (2020). <u>https://doi.org/10.1038/s41564-020-0770-5</u>
- 15. Áine O'Toole, Emily Scher, Anthony Underwood, Ben Jackson, Verity Hill, John T McCrone, Rachel Colquhoun, Chris Ruis, Khalil Abu-Dahab, Ben Taylor, Corin Yeats, Louis du Plessis, Daniel Maloney, Nathan Medd, Stephen W Attwood, David M Aanensen, Edward C Holmes, Oliver G Pybus, Andrew Rambaut, Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool, *Virus Evolution*, Volume 7, Issue 2, December 2021, veab064, doi:10.1093/ve/veab064
- Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011 Oct 11;7:539. doi: 10.1038/msb.2011.75.
- Bui Quang Minh, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf, Michael D Woodhams, Arndt von Haeseler, Robert Lanfear, IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era, *Molecular Biology and Evolution*, Volume 37, Issue 5, May 2020, Pages 1530–1534, doi: 10.1093/molbev/msaa015
- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <u>https://www.R-project.org/</u>.
- Yu G, Smith DK, Zhu H, Guan Y, Lam T-Y. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. (2017) Methods in Ecology and Evolution, 8: 28-36. <u>https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.12628</u>
- 20. Hoschler K, Ijaz S, Andrews N, Ho S, Dicks S, Jegatheesan K, Poh J, Warrener L, Kankeyan T, Baawuah F, Beckmann J, Okike IO, Ahmad S, Garstang J, Brent AJ, Brent B, Aiano F, Brown KE, Ramsay ME, Brown D, Parry JV, Ladhani SN, Zambon M. SARS Antibody Testing in Children: Development of Oral Fluid Assays for IgG Measurements. Microbiol Spectr. 2022 Feb 23;10(1):e0078621. doi: 10.1128/spectrum.00786-21.