nature research | Corresponding author(s): | Andrea Ganna | |----------------------------|--------------| | Last updated by author(s): | Jun 1, 2021 | ## **Reporting Summary** Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist. For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section. | _ | | | | | |---|-----|----|----------|------| | C | - ~ | +i | ct | ics | | _ | _ | | \sim 1 | 11 \ | | n/a | Confirmed | |-------------|--| | | \square The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement | | | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly | | | The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. | | | A description of all covariates tested | | | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons | | | A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) | | | For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i> | | \boxtimes | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings | | \boxtimes | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes | | | Estimates of effect sizes (e.g. Cohen's <i>d</i> , Pearson's <i>r</i>), indicating how they were calculated | | | Our web collection on statistics for biologists contains articles on many of the points above. | ### Software and code Policy information about <u>availability of computer code</u> Data collection No code was used to collect data in the study. Data analysis Each individual study that contributed genetic-phenotype association summary statistics to the consortium carried out their association analyses independently of the consortium (study-specific information outlined in Supplementary Table 1). However, the consortium did release phenotyping and analysis guidelines as a recommendation (https://www.covid19hg.org/). For quality control of genotype data we recommended using the Ricopili pipeline (PMID: 31393554). For genotype phasing and imputation we recommended the TopMed Imputation Server (PMID: 27571263) or Michigan Imputation Server (PMID: 27571263). For genome-wide association study (GWAS), we recommended SAIGE (PMID: 30104761), but some studies used PLINK (PMID: 17701901). Each study then submitted their GWAS summary statistics to the consortium for meta-analysis. LD score regression v 1.0.1 [PMID: 25642630] was used for heritability and partitioned heritability analyses. Variants for Mendelian randomization instruments were selected using PLINK version 1.90b6.18 (PMID: 17701901). Exposure and outcome datasets were harmonized, and MR statistical analysis conducted using R version 4.0.3. with the R-package TwoSampleMR version 0.5.5 (PMID: 29846171) (which included Fixed-effects IVW analysis (PMID: 24114802), weighted median estimator (WME) (PMID: 27061298), weighted mode based estimator (WMBE) and MR Egger regression (PMID: 26050253)) and additionally MR-PRESSO version 1.0 (PMID: 29686387). Code availability statement: The code for summary statistics liftover, projection PCA pipeline including precomputed loadings and metaanalysis are available at https://github.com/covid19-hg/ and the code for Mendelian randomization and genetic correlation pipeline at https://github.com/marcoralab/MRcovid. For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information. #### Data Policy information about availability of data All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: - Accession codes, unique identifiers, or web links for publicly available datasets - A list of figures that have associated raw data - A description of any restrictions on data availability #### Data availability statement: Summary statistics generated by COVID-19 HGI are available at https://www.covid19hg.org/results/r5/ and are available on GWAS Catalog (study code GCST011074). The analyses described here utilize the freeze 5 data. COVID-19 HGI continues to regularly release new data freezes. Summary statistics for non-European ancestry samples are not currently available due to the small individual sample sizes of these groups, but results for 13 loci lead variants are reported in Supplementary Table 3. Individual level data can be requested directly from contributing studies, listed in Supplementary Table 1. We used publicly available data from GTEx (https://gtexportal.org/home/), the Neale lab (http://www.nealelab.is/uk-biobank/), Finucane lab (https://www.finucanelab.org), FinnGen Freeze 4 cohort (https://www.finngen.fi/en/access_results), and eQTL catalogue release 3 (http://www.ebi.ac.uk/eqtl/). ### Field-specific reporting | Please select the one below | v that is the best fit for you | r research. If you are not su | re, read the appropriate sections be | fore making your selection. | |-----------------------------|--------------------------------|-------------------------------|--------------------------------------|-----------------------------| | ☐ Life sciences | Behavioural & social s | sciences Ecological, | evolutionary & environmental scier | nces | For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf ### Life sciences study design All studies must disclose on these points even when the disclosure is negative. Sample size The consortium meta-analysed genome-wide association study (GWAS) summary statistics from any individual study that had included a minimum of n=50 cases and n=50 controls in their analysis. The cutoff at n=50 cases and n=50 controls was aimed at reducing noise to the meta-analysis, but also to be inclusive of studies that had not yet accumulated large numbers of COVID-19 patient data. No statistical calculation for adequate sample size was performed, but the results identifying multiple genomic regions at genome-wide significance threshold indicates adequate power for genetic discovery. Data exclusions Individual level phenotype and genotype data exclusions were performed by each individual study, following the consortium analysis plan recommendations (www.covid19hg.org). Possible reasons for sample exclusion included removing genetic ancestry outliers within a study (using principal components analysis), poor quality of genetic data or lack of phenotypic data for a sample. The consortium manually examined GWAS summary statistics data submitted by each study (for each submitted analysis separately), including sample size used for analysis, allele frequency check against gnomad reference panel, and distribution of test statistics. After meta-analysis, the results were checked for heterogeneity variant effects between contributing studies, and Table 1 excludes two genome-wide significant loci that were deemed to have extremely heterogeneous effects, but these variants are reported in the released consortium summary statistics (with heterogeneity test values). Replication No replication was performed. The consortium meta-analysed GWAS summary statistics, bringing together as many studies as possible to achieve the largest possible sample size and statistical power for association. this meant that the consortium included most large studies of COVID-19 host genetics that have been performed to date, so it was not possible to perform replication analyses in external cohorts. Therefore we performed manual checks on each study contributing summary statistics before entering them into the meta-analysis. In addition, after meta-analysis, we performed a check for heterogeneity between variant association estimates across studies contributing data. This allowed us to better understand whether the variant effects differed much between individual studies. Randomization No randomization was performed because there was no allocation of samples to experimental groups. Blinding Blinding was not relevant to the study. The case status and severity of symptoms was evaluated for each sample by investigators from each study respectively. The consortium recommended using covariates to control for confounding: age + age2 + sex + age*sex + 20 principal components (obtained using genetic data) + study specific covariates (if any). The consortium meta-analysed summary statistics from these case/control studies, not individual level data. Details of which variables each study used and how the calculated PCs for their analysis are available in Supplementary Table 1. ## Reporting for specific materials, systems and methods We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. | Materials & experimental systems | Methods | | | |---|---|--|--| | n/a Involved in the study | n/a Involved in the study | | | | Antibodies | ChIP-seq | | | | Eukaryotic cell lines | Flow cytometry | | | | Palaeontology and archaeology | MRI-based neuroimaging | | | | Animals and other organisms | | | | | Human research participants | | | | | Clinical data | | | | | Dual use research of concern | | | | | ' | | | | | Human research participants | | | | | Policy information about <u>studies involving human research participants</u> | | | | | studies was 55.3 y
South Asian; 43,33 | from 46 independent studies were included in consortium meta-analyses. Mean age of cases across ears. The effective sample size for genetic ancestry populations was: n=11,598 Middle Eastern; n=28,918 2 East Asian; 48,714 African; 70,902 Ad-mixed American; 738,538 European. Population characteristics and exact case and control sample numbers for each contributing study are given in Supplementary Table | | | | independently by following the Diag COVID-19 group in CoV-2 infection an hospitalized COVIC confirmed SARS-Co CoV-2 infection or questionnaire), wi were sourced from | e-defined phenotype criteria for cases and controls, but the specific recruitment was carried out each contributing study. COVID-19 disease status (critical illness, hospitalization status) was assessed nosis and Treatment Protocol for Novel Coronavirus Pneumonia (PMID: 32358325). The critically ill cluded patients who were hospitalized due to symptoms associated with laboratory-confirmed SARS-d who required respiratory support or whose cause of death was associated with COVID-19. The p-19 group included patients who were hospitalized due to symptoms associated with laboratory-ov-2 infection. The reported infection cases group included individuals with laboratory-confirmed SARS-electronic health record, ICD coding or clinically confirmed COVID-19, or self-reported COVID-19 (e.g. by the or without symptoms of any severity. Genetic ancestry-matched controls for the three case definitions in population-based cohorts, including individuals whose exposure status to SARS-CoV-2 was either on- negative for questionnaire/electronic health record based cohorts. | | | Ethical statements for each contributing study are given in Supplementary Table 1. Note that full information on the approval of the study protocol must also be provided in the manuscript. Ethics oversight