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Abstract
Cerebral small vessel disease (SVD) is common in older people and is associated with lacunar stroke, white matter hyper-
intensities (WMH) and vascular cognitive impairment. Cerebral blood flow (CBF) is reduced in SVD, particularly within 
white matter.
Here we quantified test–retest reliability in CBF measurements using pseudo-continuous arterial spin labelling (pCASL) in 
older adults with clinical and radiological evidence of SVD (N=54, mean (SD): 66.9 (8.7) years, 15 females/39 males). We 
generated whole-brain CBF maps on two visits at least 7 days apart (mean (SD): 20 (19), range 7-117 days).
Test–retest reliability for CBF was high in all tissue types, with intra-class correlation coefficient [95%CI]: 0.758 [0.616, 
0.852] for whole brain, 0.842 [0.743, 0.905] for total grey matter, 0.771 [0.636, 0.861] for deep grey matter (caudate-putamen 
and thalamus), 0.872 [0.790, 0.923] for normal-appearing white matter (NAWM) and 0.780 [0.650, 0.866] for WMH (all 
p<0.001). ANCOVA models indicated significant decline in CBF in total grey matter, deep grey matter and NAWM with 
increasing age and diastolic blood pressure (all p<0.001). CBF was lower in males relative to females (p=0.013 for total 
grey matter, p=0.004 for NAWM).
We conclude that pCASL has high test–retest reliability as a quantitative measure of CBF in older adults with SVD. These 
findings support the use of pCASL in routine clinical imaging and as a clinical trial endpoint.
All data come from the PASTIS trial, prospectively registered at: https:// eudra ct. ema. europa. eu (2015-001235-20, registered 
13/05/2015), http:// www. clini caltr ials. gov (NCT02450253, registered 21/05/2015).
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Introduction

Cerebral small vessel disease (SVD) is common in older 
people, observed radiologically as focal lacunar infarcts, 
micro-haemorrhages and diffuse white matter hyperin-
tensities (WMH) on T2-weighted MRI scans [1, 2]. SVD 
is the main cause of clinical lacunar stroke and a major 
source of vascular contributions to cognitive impair-
ment and dementia (VCID) [3–6]. SVD is associated with 
reduced cerebral blood flow (CBF) [7, 8]. Resting CBF is 
lower in individuals with SVD compared to healthy aged 
control subjects, particularly in subcortical white matter 
[7–14].

Arterial spin labelling is now well developed as an MRI-
derived quantitative measure of CBF. As the test–retest 
reproducibility of this method has not been quantified in 
people with SVD, it has not entered routine use for clini-
cal assessment or as a clinical trial outcome measure. Here 
we report whole-brain CBF maps measured by pseudo-con-
tinuous arterial spin labelling (pCASL) [15, 16] in a well-
characterised cohort of older adults with symptomatic SVD 
[17]. First, we aimed to test whether pCASL is an effective 
method for quantitative assessment of CBF in people with 
SVD, particularly in white matter areas where absolute CBF 
values are low [7, 10, 18]. Second, we aimed to quantify 
test–retest reliability in CBF measured by pCASL within 
this participant group, using CBF maps derived from two 
successive visits, at least 7 days apart.

Methods

Study population

All data are from a cohort of older adults with radiologi-
cal and clinical evidence of symptomatic SVD (N=54, 
demographic details in Table 1). These participants were 
all recruited as part of a double-blinded, placebo-controlled, 
phase-II clinical trial, Perfusion by Arterial spin labelling 
following Single dose Tadalafil In Small vessel disease 
(PASTIS; European Union Clinical Trials Register num-
ber 2015-001235-20, registered 13/05/2015) [17]. The trial 
received ethical approval from the UK National Research 
Ethics Service (REC reference: 15/LO/0714). Further details 
are given in the Supplementary file.

Participants attended an initial screening visit (“visit 0”) 
and completed an eligibility check and gave informed con-
sent. During the screening visit, education level and Mon-
treal Cognitive Assessment (MoCA) scores were recorded 
(see Table 1). Following consent, participants attended two 
study visits (visit 1, visit 2) at least 7 days apart as specified 
in the study protocol [17]. At each study visit, participants 
underwent systolic/diastolic blood pressure (SBP/DBP) 
measurement, a cognitive test battery (see Supplementary 
file) and brain MRI scanning including pCASL. Participants 
then received either drug or placebo, according to the cross-
over design, after which blood pressure, cognitive and MRI 
measurements were all repeated. All data reported here are 

Table 1  Participant 
demographics for the study 
cohort

All data are reported as mean (SD), except modified Rankin score, NIH Stroke score and WMH volume 
which are reported as median [interquartile range]. Haematocrit data are given for visit #1 (available for 45 
participants). Montreal Cognitive Assessment (MoCA) was used to detect cognitive impairment. Scoring in 
MoCA ranges from 0 to 30, with a score of 26 or higher indicating normal cognitive ability. These scores 
have been adjusted for educational level (+1 if the participant had 12 or more years of education). SBP and 
DBP data are the average over visit 1 and visit 2. P-values were derived from Student’s t tests, except for 
modified Rankin score, NIH Stroke scale score and WMH volume where Mann–Whitney tests were used.

Variable All Female Male P-value

N 54 15 39
Age in years 66.9 (8.7) 69.9 (8.65) 65.7 (8.55) 0.116
Age range (years) 52-87 56-87 52-83
Haematocrit (mean, (SD), n) 0.412

(0.044)
45

0.388
(0.035)
13

0.423
(0.044)
32

0.00920

MoCA score (range 0-30) 25.6 (3.45) 25.5 (3.50) 25.6 (3.48) 0.939
Education (years) 12.7 (3.21) 11.7 (3.46) 13.1 (3.07) 0.172
Time from stroke to consent (months)1 14.3 (12.0) 12.9 (8.83) 14.8 (13.1) 0.531
Modified Rankin score (range 0-6) 1 [1, 2] 1 [0, 2] 1 [0, 2] 0.873
NIH Stroke Scale (range 0-42) 1 [1, 2] 1 [0, 2] 1 [0, 2] 0.999
WMH volume  (cm3) 14.6 [7.14, 32.1] 11.8 [6.78, 14.9] 15.3 [8.75, 32.8] 0.0822
Systolic Blood Pressure (mm Hg) 141 (13.9) 139 (16.5) 141 (12.9) 0.738
Diastolic Blood Pressure (mm Hg) 80.0 (9.19) 78.2 (10.4) 80.7 (8.74) 0.417
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from the set of measurements prior to treatment with drug 
or placebo.

Inclusion criteria were as follows. 1, radiological evi-
dence of SVD, defined as: MRI evidence of lacunar 
infarct(s) ≤ 1.5 cm maximum diameter and/or confluent 
deep white matter leukoaraiosis (≥ grade 2 on the Fazekas 
scale). 2, Clinical evidence of cerebral small vessel disease 
defined as either: lacunar stroke syndrome with symptoms 
lasting >24 hours, occurring at least 6 months prior to visit 
1; or: transient ischaemic attack lasting < 24 hours with limb 
weakness, hemi-sensory loss or dysarthria at least 6 months 
previously and with MR DWI performed acutely showing 
lacunar infarction. If MRI was not performed within 10 days 
of TIA, a lacunar infarction in an anatomically appropri-
ate position as demonstrated on a subsequent MRI was also 
deemed eligible. 3, Age ≥ 50 years. 4, imaging of the carotid 
arteries with Doppler ultrasound, CT angiography or MR 
angiography in the previous 12 months, demonstrating < 
70% stenosis in both internal carotid arteries or < 50% ste-
nosis in both internal carotids if measured in previous 12-60 
months.

Exclusion criteria included: known diagnosis of demen-
tia; cortical infarction (>1.5 cm maximum diameter); sys-
tolic BP < 90 and/or diastolic BP < 50 mmHg; creatinine 
clearance <30ml/min; stroke or TIA within 6 months. For a 
full list of exclusion criteria see the published protocol [17].

Blood Pressure measurement

SBP/DBP measurements were taken from each participant 
for visits 1 and 2, first on arrival after resting and then again 
after MRI scanning, using a validated Omron MX3 Plus 
machine.

Magnetic Resonance Image Acquisition

Whole-brain perfusion MRI was acquired using a 3T scan-
ner (Achieva TX MRI scanner, Philips Medical Systems, 
Eindhoven, Netherlands) at St George’s University Hospi-
tals NHS Foundation Trust. Whole-brain T1-weighted, Fluid 
Attenuated Inversion Recovery (FLAIR) and pseudo-contin-
uous arterial spin labelling (pCASL) images were acquired. 
All MRI data were acquired from brain scans performed on a 
Tuesday or Thursday between the hours of 10:00 and 12:00.

T1‑weighted MRI Whole-brain sagittal 3D T1-weighted 
images were acquired to enable tissue segmentation with 
the following protocol: Turbo Field Echo (TFE) sequence 
with an inversion pre-pulse, TFE factor 240 in multi-shot 
mode with 3000-ms shot interval, 8° flip angle, TR 7.9 ms, 
TE 3.8 ms, 1mm×1mm×1.5mm acquired resolution with 
interpolation to 1 mm isotropic resolution, 1 average and 
SENSE factor 2 for a 3-minute 47-second acquisition time.

FLAIR MRI 2D T2-weighted axial FLAIR images were 
acquired to detect WMH using the following protocol: T2 
weighted turbo-spin-echo sequences with selective fat sup-
pression (TSE-SPIR), TR 11000 ms, TE 120 ms, TI 2800 
ms, 0.65 mm×1.00 mm acquired resolution interpolated to 
0.45×0.45 mm over 24-thick slices (5 mm thickness), with 2 
averages and a 1.75 SENSE factor for a 3-minute 51-second 
acquisition time. Examples are shown in Figs. 1, 2.

pCASL MRI Our pCASL protocol was developed based on 
the consensus recommendations of the ISMRM Perfusion 
study group and European consortium for ASL in dementia 
[15] using the Philips product pCASL sequence in the scan-
ner 5.3 software release. A 64×64 acquisition matrix with 16 
slices was used to acquire data with 4mm×4mm×7mm voxel 
size. Image readout was in 2D Echo-Planar Images (EPI).

Background tissue suppression was performed based 
on the ASL consensus recommendations [15]. Two inver-
sion pulses were provided for background suppression as 
these represent an effective trade-off between tissue sup-
pression and ASL signal. Background suppression pulses 
were applied at the beginning of the pulse sequence [15]. 
Spectral Pre-saturation with Inversion Recovery (SPIR) 
for fat suppression was applied to improve the contrast to 
noise of the blood perfusion signal. SPIR fat suppression 
did not add additional time to each slice acquisition. Pair-
wise acquisition of label and control images was performed. 
A total of 140 volumes (alternating with and without the 
spin labelling inversion pulse) were acquired in two separate 
10-minute acquisitions using SENSE 2.3, and TE 8ms and 
TR 4300 ms with a labelling duration (τ) = 1800 ms and 
post-labelling delay (PLD) = 2000 ms. This was performed 
twice to increase ASL signal-to-noise ratio in the white mat-
ter [19]. This corresponds to a total acquisition time for the 

Figure  1  Example of white matter hyperintensities (WMH) in an 
older adult with small vessel disease. A, axial FLAIR scan, showing 
WMH. B, the same axial slice following semi-automated highlighting 
of WMH using Jim 7.0 software. Participant #022, female aged 77 y, 
with total WMH volume of 34,510  mm3 (across all scan slices).
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Figure 2  An example of 
regional anatomical and CBF 
mapping, with tissue segmenta-
tion. A, FLAIR image at full 
resolution. B, FLAIR image 
co-registered to the cerebral 
blood flow map, with voxels 
re-sized to be comparable 
with pCASL map. C, cerebral 
blood flow map, derived from 
pCASL. The calibration bar 
shows 0.0 - 80.0 ml/min/100g. 
D, tissue segmentation map for 
CBF computation. Each voxel 
has been defined as either: grey 
matter (GM), normal appearing 
white matter (NAWM), white 
matter hyperintensity (WMH) 
or cerebrospinal fluid (CSF). E, 
F: graphs show the probability 
density functions of cerebral 
blood flow values in voxels 
assigned as grey matter (in E) 
and normal appearing white 
matter (F). For this participant, 
median CBF in grey matter 
was 51.3 mm/min/100g and 
in NAWM 21.8 ml/min/100g. 
Participant #023, female, aged 
56 y, visit 1.
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pCASL data of 20 min 6 s. A fixed labelling distance of 85 
mm from the centre of the imaging block was used with the 
labelling slice positioned below the cerebellum at an angle 
perpendicular to the carotid arteries (visualized by time of 
flight angiography). Proton density-weighted images were 
acquired, to enable computation of CBF, using the pCASL 
sequence without the inversion pulse and background sup-
pression, but with fat suppression and an increased TR 5000 
ms to minimize T1 weighting (TE 9 ms with 8 averages). 
Proton density-weighted images were acquired in 40 s.

Computation of CBF maps

The pCASL data acquisitions at each visit were corrected for 
subject movement using the FMRIB software library (FSL) 
function eddy_correct (https:// fsl. fmrib. ox. ac. uk/ FSL) [20]. 
An average pCASL map was then separately computed for 
each pCASL data acquisition. The average pCASL maps and 
the second proton density-weighted image were aligned to 
the initial proton density-weighted image in each scan ses-
sion using the FSL Linear Image Registration Tool (flirt) 
[21]. These transformations were applied to the motion-cor-
rected pCASL data to ensure all proton density-weighted and 
pCASL images were aligned in the same space. The aligned 
proton density-weighted images were averaged, and CBF 
was computed using oxford_asl (part of the FSL-BASIL 
toolset, https:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki/ BASIL) [22]. 
Cerebral blood flow in each voxel was calculated in physi-
ological units of ml/min/100g using the standard equation 
for pCASL with (Equation 1) [15]:

where  SIcontrol and  SIlabel are the time-averaged signal inten-
sities in the pCASL control and label images, respectively, 
and  SIPD is the signal intensity of a proton density-weighted 
image. Standard values were inserted into Equation 1 for the 
brain/blood partition coefficient, λ=0.9 ml/g, the labelling 
efficiency, α=0.85, longitudinal relaxation time of arterial 
blood  T1,blood=1650 ms at 3T. An example pCASL map is 
shown in Fig 2C.

White matter hyperintensity (WMH) delineation

WMHs were semi-automatically highlighted on each axial 
slice of the visit 1 FLAIR images (Fig. 1) using Jim 7.0 soft-
ware (http:// www. xinap se. com/ jim-7- softw are/ Xinapse Sys-
tems Ltd, West Bergholt, Essex, UK). WMH were defined as 
hyperintense regions, which were (1) not due to the presence 
of blood vessels, and (2) not less than 10  mm2 in size, and 
(3) not a narrow band, one pixel wide, along the edge of the 
ventricles. A binary WMH image was generated, and the 

(1)CBF =
6000∙�∙(SIcontrol−SIlabel)∙exp

(

PLD

T1blood

)

2∙�∙T1blood∙SIPD∙
(

1−exp
(

−
�

T1blood

)) (inml∕100g∕min)

total WMH volume (in  mm3) was computed for each par-
ticipant. All WMH maps used here were produced by a sin-
gle operator, blind to treatment allocation and to all clinical 
details (FAHH). A second, blinded operator (MMHP) also 
produced maps for a subset of participants (n=51), and inter-
operator agreement was good (intra-class correlation coef-
ficient for total WMH volume ICC=0.855 [95% confidence 
interval: 0.760, 0.915], two-way random-effects model).

Tissue Segmentation

For each scan session, T1-weighted images in native space 
were segmented into grey matter, white matter and cerebro-
spinal fluid (CSF) tissue probability maps, using a modified 
form of the standard Statistical Parametric Mapping (SPM) 
(SPM Version 12, https:// www. fil. ion. ucl. ac. uk/ spm/) geo-
desic shooting segmentation and normalisation procedure 
described in full in our previous papers [23, 24]. This pro-
cedure captures population-specific features, e.g. enlarged 
ventricles, and allows superior delineation of deep grey mat-
ter structures compared to the standard SPM pipeline. The 
binary WMH mask (co-registered into native T1-weighted 
space) was used to repair the tissue probability maps for 
misclassification caused by WMHs.

Native space T1-weighted and native space FLAIR were 
skull-stripped using FSL’s brain extraction tool (https:// fsl. 
fmrib. ox. ac. uk/ fsl/ fslwi ki/ BET) [25] and co-registered to 
the average proton density-weighted image using bound-
ary-based registration (FSL epi-reg) [26]. These 12 param-
eter linear transformations were used to align the corrected 
T1-weighted tissue probability maps and the binary WMH 
map to the CBF maps. A tissue mask in the average proton 
density-weighted image space was computed assigning each 
voxel to either grey matter, normal appearing white mat-
ter (NAWM), WMH or CSF, based on the maximum tissue 
probability.

Computation of CBF in whole‑brain tissue

For the alignment of the T1-weighted tissue segmentation 
images to the low-resolution pCASL images, it was neces-
sary to apply a further segmentation step. This tissue seg-
mentation procedure employs a novel application of a tissue 
segmentation algorithm to CBF maps [27]. It is designed to 
assign voxels with high CBF values to grey matter and low 
CBF values to white matter segments. The distribution of 
CBF values within the grey matter and white matter tissue 
masks computed in the Tissue Segmentation section (above) 
was entered as empirical priors to a hidden Markov random 
field model and segmentation (FMRIB's Automated Seg-
mentation Tool, FAST) [27] to provide an improved seg-
mentation of grey and white matter tissue from the CBF 
maps. This technique reduces the effects of partial volume 

https://fsl.fmrib.ox.ac.uk/FSL
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BASIL
http://www.xinapse.com/jim-7-software/
https://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
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and tissue classification errors at the boundary between grey 
and white matter tissue caused by the large pCASL image 
voxel size and the relative difference between voxel sizes of 
the native pCASL and T1-weighted images. In particular, 
this method assigns voxels with high CBF values at the grey/
white matter tissue boundary to the grey matter segment and 
voxels with low CBF values at the grey/white matter tissue 
boundary to the white matter segment. To avoid misclassi-
fication of CSF and WMH regions, voxels in these regions 
were not entered into the FAST segmentation step. In our 
hands this approach was more successful than the more 
standard co-registration of tissue segmentations from high-
resolution T1-weighted images to low-resolution pCASL 
images (not shown). For each participant at each scan ses-
sion the median CBF values were calculated for total grey 
matter, NAWM and WMH. An example of tissue segmenta-
tion is shown in Fig. 2.

Computation of CBF in deep grey matter structures

Cerebral deep grey matter structures were segmented on 
native space T1-weighted images using Freesurfer (Free-
surfer Version 5.3.0, https:// surfer. nmr. mgh. harva rd. edu/ 
fswiki/). The binary segmentations of the caudate, putamen 
and thalamus were aligned to the CBF maps by application 
of the affine transformation computed in Tissue Segmenta-
tion (above). Median CBF values were calculated for each 
of these three anatomical deep grey matter structures across 
the left and right cerebral hemispheres. An average of these 
three median values is reported for CBF in deep grey matter 
(DGM).

Statistical Analysis

Statistical analyses were performed using SPSS (version 
25.0). Unless otherwise stated data are presented as mean 
(SD). Test–retest reliability of CBF values (in ml/min/100g) 
between visit 1 and visit 2 was computed using intra-class 
correlation coefficients for whole brain, total grey matter, 
DGM, NAWM and WMH. Within-subjects coefficient 
of variation (wsCV) was also calculated for CBF values 
in each of these tissue types. Correlation of CBF values 
between tissue types was calculated using Pearson’s cor-
relation coefficient. Bland-Altman plots were used to assess 
bias in CBF data between visit 1 and visit 2. Mean differ-
ence and upper and lower limits of agreement defined as 
±1.96 standard deviations around the mean difference are 
reported. ANCOVA models were used to test for associa-
tions between: age (years), sex (M/F), blood pressure (SBP, 
DBP in mmHg) and CBF values. CBF was the dependent 
variable, sex was a fixed factor and age, SBP and DBP 
were co-variates. For CBF, SBP and DBP an average of the 
values for visit 1 and visit 2 was used in these analyses. 

No corrections were made for multiple comparisons, and 
p<0.05 was considered significant.

Results

CBF maps were generated using pCASL in a cohort of 
older adults (age 66.9 (8.7) range: 52-87 years, N=54) all of 
whom had symptomatic SVD (Table 1, example in Figure 2). 
All participants had survived a lacunar stroke, and visit 1 
occurred at least six months post-stroke. All participants 
completed visit 1 and visit 2 at least 7 days apart (mean 
(SD): 20 (19) days, range 7-117 days). Only four partici-
pants completed visit 2 more than 30 days after visit 1 (range 
54-117 days). If these four participants were excluded, none 
of the parameters reported below changed significantly (P 
values in the range: 0.733 to 0.994; not shown).

For each participant CBF data were documented for visit 
1 and visit 2 in whole brain and in four tissue types: grey 
matter (derived from all voxels defined as grey matter), 
DGM (from grey matter voxels within the caudate-putamen 
and thalami), NAWM and WMH. Average CBF values are 
given in Table 2.

To explore internal consistency of the CBF measurement 
within participants, we compared CBF between visit 1 and 
visit 2. Scatter plots suggest good agreement between the 
two measurements (Figure 3). Bland-Altman plots further 
illustrate limits of agreement within CBF data between visits 
1 and 2 (see supplementary Table S1, Figure S1). Intra-class 
correlation coefficients confirm high test–retest reliability for 
CBF in total grey matter and NAWM (Table 2) and reason-
able test–retest reliability for whole brain, deep grey matter 
and WMH (Table 2).

CBF values were highly correlated between tissue types 
(Supplementary Table S2). There were positive correlations 
between total grey matter and deep grey matter, NAWM or 
WMH (R=0.924, 0.926, 0.642, respectively; p<0.001 for 
all, Table S2).

Comparing female participants with males, CBF was sig-
nificantly higher in women in all tissue types (see Table 3, 
Figure S2). The difference was 5.9 ml/min/100g in grey mat-
ter, 4.3 ml/min/100g in DGM, 4.0 ml/min/100g in NAWM 
and 4.0 ml/min/100g in WMH (Table 3).

ANCOVA models including sex, age and blood pres-
sure (SBP and DBP) showed reasonable fit to the CBF data, 
albeit with a substantial amount of unexplained variance  (R2 
= 0.378 or less; p<0.001; see Table 4). Models indicated a 
significant decline in CBF in total grey matter, DGM and 
NAWM with increasing age (Table 4, Figure 4). Increasing 
DBP associated significantly with a decline in CBF in total 
grey matter, DGM and NAWM (Table 4, Figure 4). The 
models confirmed a significant association between female 
sex and higher CBF in all tissue types (Table 4).

https://surfer.nmr.mgh.harvard.edu/fswiki/
https://surfer.nmr.mgh.harvard.edu/fswiki/
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Discussion

We have presented quantitative CBF maps in a well-charac-
terized cohort of older persons with SVD. Test–retest reli-
ability was high for total grey matter (which is dominated 
by cortical grey matter) and for NAWM, and reasonable for 
deep grey matter and WMH (Table 2). Based on these find-
ings we consider pCASL a potentially useful tool to follow 
changes in CBF in older adults with SVD.

The CBF values reported (Table 2) are low relative to 
textbook values, which are derived from studies in healthy 
control subjects [28–34]. CBF values for grey matter are typ-
ically in the range 40-60 ml/min/100g for healthy younger 
adults [28–33]. Our CBF values are similar to data from 
healthy older people in some previous reports [7, 32, 33] 
and are lower than some others [30, 35, 36]. A recent lon-
gitudinal study of 468 older people reported average CBF 
across the age range 50-90 [37]. The average GM CBF at age 
69 is reported as 38.2 ml/min/100g for women and 34.8 ml/
min/100g for men [37], both of which are comparable with 
our values (37.4 ml/min/100g for women, 31.5 ml/min/100g 
for men, Table 2).

All our participants were older patients with symptomatic 
SVD, which may explain why our values are in the lower 
range. Our data are compatible with those reported previ-
ously for SVD populations (see a recent systematic review) 
[14]. In people with SVD, grey matter CBF was typically 
20-46 ml/min/100g [7, 10, 12, 38, 39] (our measured value 
was 33 ml/min/100g). In those studies where white mat-
ter CBF was recorded, values were in the range 11-25 ml/
min/100g [7, 10, 12, 18, 38, 39] (our value was 13 ml/
min/100g).

In common with other ASL studies, owing to the large 
ASL voxel size, a potential confound in our data is the 
inclusion of some WM tissue in voxels classified as GM, 
and vice versa (termed the partial volume effect). Our 
technique for segmentation of CBF voxels does not pro-
vide an explicit partial volume correction within a voxel. 
This may lead to potential underestimates of grey matter 
CBF and overestimates of white matter CBF. The data for 
whole-brain CBF (Figure 3, Table 2) are not subject to this 
partial volume effect.

The ASL data in this study were all acquired with a 
single labelling delay, using methods derived from the 
ASL consensus recommendations [15]. No attempt was 
made to correct for variation between participants in terms 
of transit time or haemodynamic effects. This study was 
formulated to ensure high signal-to-noise ratios for CBF 
quantification in white matter. Consequently, there was a 
requirement to obtain sufficient perfusion signal within 
white matter, and an extensive, single post-labelling 
delay pCASL scanning protocol was adopted [17] based 
on methods for perfusion scanning in dementia [15]. The 
decision to acquire multiple averages with a single post-
labelling delay (rather than multiple PLDs, with fewer 
averages at each PLD) may have led to underestimation 
of CBF. A recent study using simulations and some grey 
matter data, suggests that quantification of CBF is under-
estimated with a single PLD [40]. Despite this, our CBF 
measurements in human brain grey matter are compara-
ble with those published by others using multiple post-
labelling delays [32] or for pCASL using a single PLD 
[37]. Future studies would benefit from the improvement 
in accuracy and precision of CBF measurements provided 

Table 2  Test–retest reliability of CBF data across visit 1 and visit 2, at least 7 days apart.

a Mean difference between visit 2 value and visit 1 value. CBF data are given in units of ml/min/100g.
b Intra-class correlation coefficient. Single-measure, two-way random-effects model where both people effects and measures effects are random. 
Type A intra-class correlation coefficients using an absolute agreement definition. P<0.001 for all.
c  Within-subjects coefficient of variation (wsCV), cited as actual value and as a percentage.
d {wsCV}2 was computed and the mean and SD for this quantity is reported.

Visit 1 CBF 
Mean
(SD)

Visit 2 CBF 
Mean
(SD)

Visit 2 – Visit 1 
CBF 
Mean
(SD)a

ICCb

[95% C.I.]
wsCV
(%)c

{wsCV}2 
Mean
(SD)d

Whole brain 25.45
(6.94)

27.00
(8.73)

1.55
(5.49)

0.758
[0.616, 0.852]

0.162
(16.2%)

0.0262
(0.0566)

Total grey matter 32.87
(7.71)

33.47
(8.82)

0.598
(4.67)

0.842
[0.743, 0.905]

0.123
(12.3%)

0.0152
(0.0255)

Deep grey matter 24.26
(6.19)

24.40
(6.94)

0.143
(4.48)

0.771
[0.636, 0.861]

0.146
(14.6%)

0.0213
(0.0282)

Normal appearing white matter 13.33
(4.75)

13.65
(4.98)

0.316
(2.46)

0.872
[0.790, 0.923]

0.168
(16.8%)

0.0282
(0.0557)

White matter hyperintensities. 9.185
(6.03)

9.75
(5.51)

0.561
(3.83)

0.780
[0.650, 0.866]

0.209
(20.9%)

0.0437
(0.0689)
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by acquisition with multiple PLDs and quantification of 
labelling efficiency and blood T1.

Our CBF data for total grey matter and NAWM showed 
high test–retest reliability (Table 2, Figure 3). It is notable 
that NAWM had the highest intra-class correlation coeffi-
cient (Table 2). This suggests that even in NAWM, with low 
absolute CBF and low signal/noise ratio, our quantitation 

of CBF is robust. Reliability within DGM and WMH was 
reasonable (ICC: 0.771, 0.780, respectively) but lower than 
in total grey matter or NAWM, likely reflecting the smaller 
number of voxels sampled. Though our inclusion criteria 
permit a significant degree of large artery stenosis (up to 
70%), this is unlikely to confound the test–retest reliability 
of CBF measurement within a given participant.

Figure 3  Test–retest reliability 
for CBF measurements (ml/
min/100g) between visit 1 and 
visit 2. A) total grey matter, 
B) deep grey matter nuclei 
(caudate-putamen, thalamus), 
C) normal appearing white mat-
ter, D) white matter hyperinten-
sities (WMH), E) whole brain. 
Each data point represents an 
individual participant, at study 
visit 1 (X-axis) relative to visit 2 
(Y-axis). Dashed lines show the 
line of identity.
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High test–retest reliability has previously been reported 
in healthy adult controls, comparing ASL-derived CBF 
measurements between scanners, investigators and time 
points [28, 29, 31, 36, 41]. In healthy controls (age 20-67 
y) the change in CBF on re-scanning at least 6 months later 
was ± 25% in grey matter and ± 20% in white matter [28]. 
A recent study using a similar protocol to ours explored 
test–retest reliability in older people, with scans on aver-
age 42 days apart [42]. They reported similar ICC values 
to ours (0.84 for whole brain, 0.77 for WM) though only 
a minority of their cohort had significant SVD (8 out of 
45, with severe subcortical WMH load) [42]. A study of 
pCASL in 40 healthy adults (age 18-65) found good consist-
ency across 4 different scanners [29]. There was reasonable 
test–retest reliability between ASL measurements one week 
apart, with limits of agreement in grey matter of 25 - 45% 
(expressed as a fraction of the group average) across the four 

Table 3  A comparison of CBF between females and males.

CBF (ml/min/100g) data are presented as mean (SD) across partici-
pants, derived from the average of data from visit 1 and visit 2 for 
each participant. Student’s t tests were used to compare the CBF (ml/
min/100g) values between females and males and between visit 1 and 
visit 2. WMH = white matter hyperintensities.

CBF (ml/min/100g)

Total
N=54

Female
n=15

Male
n=39

Females 
vs Males, 
P-value

Total grey matter 33.2
(7.95)

37.4
(9.2)

31.5
(6.8)

0.013

Deep grey matter 24.3
(6.18)

27.4
(7.1)

23.1
(5.6)

0.021

Normal appearing 
white matter

13.5
(4.70)

16.4
(4.9)

12.4
(4.2)

0.004

WMH 9.47
(5.45)

12.4
(6.5)

8.4
(4.6)

0.014

Table 4  Relationship between 
CBF and age, blood pressure 
and sex, from ANCOVA models

The table shows  R2 (unadjusted) for statistical model fit, and P values for ANCOVA with CBF were the 
dependent variable, sex (M/F) as a fixed factor and age, SBP and DBP as co-variates. For CBF, SBP and 
DBP an average of the values for visit 1 and visit 2 was used in these analyses. Abbreviations. CBF= cere-
bral blood flow; DBP = diastolic blood pressure; NAWM = normal appearing white matter; SBP = systolic 
blood pressure; WMH = white matter hyperintensities.

R2 Global Model
P value

Age
P value

SBP
P value

DBP
P value

Sex
P value

Total grey matter CBF 0.378 <0.001 0.005 0.656 0.007 0.003
Deep grey matter CBF 0.299 0.001 0.027 0.568 0.030 0.009
NAWM CBF 0.363 <0.001 0.016 0.884 0.007 0.001
WMH CBF 0.275 0.003 0.137 0.063 0.638 0.007

Figure 4  CBF with respect to 
age and diastolic blood pressure 
(DBP). CBF (ml/min/100g) for 
total grey matter (panels A, C) 
and normal appearing white 
matter (B, D) are plotted with 
respect to participant age (A, B) 
and DBP (C, D). CBF data are 
derived from the average across 
visit 1 and visit 2 for each 
participant (N=54). Solid lines 
show the least-squares linear 
best fit to the data.
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MRI scanners [29]. The limits of agreement in our data for 
older SVD patients were similar (28% for grey matter, 33% 
for NAWM, Table S1). Other groups have observed high 
test–retest reliability, comparing pCASL measurements less 
than 1 hour apart (correlation coefficients 0.93-0.96 in young 
controls, 0.82-0.93 in older controls) [33]. These values give 
an indication of the intrinsic variability in the measurement 
system. In light of these, the correlation coefficients we 
derived (ICC 0.842 for total grey matter, 0.872 for NAWM, 
Table 2) suggest low within-subject CBF variability over a 
timescale of 7 days in older adults with SVD.

We found significantly higher CBF in females than in 
males. This accords with many previous studies [28, 32, 
43–48] (though not all [34]). This difference may in part 
reflect differences in circulating blood composition. The 
physiological range for haematocrit in pre-menopausal 
women is 10-15% lower than in men, with the gap narrow-
ing above age 55. Female participants in our cohort had 9% 
lower haematocrit relative to male participants (Table 1), 
which may contribute to the observed difference in CBF. 
Other possible explanations include haemodynamic factors 
[34] and higher circulating levels of female sex hormones 
in women [45, 46].

In our statistical models, CBF declined with age as 
expected from previous reports [28, 30, 36, 44, 49, 50]. 
A large longitudinal study (309 healthy participants, age 
20-89) [30] demonstrated a 30% decline in whole-brain CBF 
between 20 and 80 years of age, with significant association 
between declining CBF and cognitive impairment in older 
subjects [30]. In people with overt brain vascular disease, the 
decline in CBF with age may be more pronounced [11, 18].

In our models DBP had significant negative association 
with CBF (Table 4, Figure 4). Other groups have reported 
that hypertensive subjects have lower CBF relative to nor-
motensive controls [51] and that high blood pressure, espe-
cially when uncontrolled, associates with declining CBF 
[52]. This may reflect chronic changes in the cerebral micro-
vasculature of older people [53].

Our study has several limitations. First, the cohort is 
small (N=54). Though highly significant, our findings on 
test–retest reliability require validation in larger cohorts. 
Second, our cohort has an unequal sex distribution, with 
only 15 (28%) female participants. Even so, sex differences 
emerged that were highly significant and consistent with 
previous literature [45, 46]. Third, we did not attempt to 
validate our pCASL data within subjects against a second 
CBF measurement modality (either SPECT, PET or DSC-
MRI) [16].

In conclusion, we report quantitative CBF mapping using 
pCASL in a clinically relevant older population with symp-
tomatic SVD. Test–retest data from our study and others [18, 
29, 30, 33] suggest that pCASL is well tolerated and may 
be a technique that can contribute to clinical practice. This 

method may be applicable for detecting group differences 
(as endpoints, for comparing interventions) or within-subject 
changes in longitudinal studies of disease progression. We 
found higher CBF in women than in men, in all tissue types 
studied. This highlights the importance of sex-matching in 
trials with CBF as an endpoint. Our data suggest that pCASL 
sequences are a robust tool for CBF measurement in clinical 
and research settings.
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