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For decades, it has been known that gliomas follow a non-random spatial distribution, appearing more often in some brain regions

(e.g. the insula) compared to others (e.g. the occipital lobe). A better understanding of the localization patterns of gliomas could

provide clues to the origins of these types of tumours, and consequently inform treatment targets. Following hypotheses derived

from prior research into neuropsychiatric disease and cancer, gliomas may be expected to localize to brain regions characterized by

functional hubness, stem-like cells, and transcription of genetic drivers of gliomagenesis. We combined neuroimaging data from

335 adult patients with high- and low-grade glioma to form a replicable tumour frequency map. Using this map, we demonstrated

that glioma frequency is elevated in association cortex and correlated with multiple graph-theoretical metrics of high functional

connectedness. Brain regions populated with putative cells of origin for glioma, neural stem cells and oligodendrocyte precursor

cells, exhibited a high glioma frequency. Leveraging a human brain atlas of post-mortem gene expression, we found that gliomas

were localized to brain regions enriched with expression of genes associated with chromatin organization and synaptic signalling.

A set of glioma proto-oncogenes was enriched among the transcriptomic correlates of glioma distribution. Finally, a regression

model incorporating connectomic, cellular, and genetic factors explained 58% of the variance in glioma frequency. These results

add to previous literature reporting the vulnerability of hub regions to neurological disease, as well as provide support for cancer

stem cell theories of glioma. Our findings illustrate how factors of diverse scale, from genetic to connectomic, can independently in-

fluence the anatomic localization of brain dysfunction.
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Introduction
Tumour location represents one of the most important prog-

nostic factors for patients suffering from primary brain can-

cers (Jeremic et al., 1994; Sagberg et al., 2019), yet little is

known about the mechanisms that determine the spatial dis-

tribution of gliomas across the brain.

The importance of glioma location for diagnosis and treat-

ment has been recognized since Percival Bailey and Harvey

Cushing’s seminal classification of brain tumours in the early
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20th century (Bailey and Cushing, 1926). Whilst brain imag-

ing, primarily MRI, plays an important and routine role in

diagnosis and treatment of brain tumours, there has been lit-

tle quantitative mapping of their distribution at a population

level. Comprehensive modelling of the key factors involved

in determining why gliomas might be heterogeneously dis-

tributed across the brain could shed light on the origins of

these tumours, and consequently inform treatment targets.

Three general hypotheses for the spatial distribution of

gliomas include a ‘connectomic hypothesis’, a ‘cellular

hypothesis’, and a ‘genetic hypothesis’, and each is now con-

sidered in turn.

The connectomic hypothesis posits that highly connected

brain regions, known as hubs, are especially vulnerable to

disorders, such as oncogenesis, due to the metabolic costli-

ness of maintaining many connections (Bullmore and

Sporns, 2012; Crossley et al., 2014). According to network

neuroscience theory, efficient communication across the

brain is crucially dependent upon hubs that facilitate infor-

mation transfer both within their own communities and be-

tween diverse subsystems (van den Heuvel and Sporns,

2013). Brain hubs are believed to be ‘costly’ due to the meta-

bolic demand of maintaining many connections (Bullmore

and Sporns, 2012), a factor that makes these regions vulner-

able to disease (Seeley et al., 2009; Crossley et al., 2014;

Warren et al., 2014; Aerts et al., 2016). Long distance axon-

al connections for instance, are physiologically expensive to

maintain since proteins in the neuron’s presynaptic terminal

must be produced in the nucleus, and thus travel the full dis-

tance of the axon to reach their target. This factor contrib-

utes to the vulnerability of upper motor neurons to

degeneration (Nijssen et al., 2017). In a similar way, long

distance connections important for the construction of large-

scale cortical networks also pose a challenge for glial cells

(in particular, oligodendrocytes) to support the requisite

axonal tracts (Buzsáki et al., 2004). Furthermore, brain hubs

also receive many connections, and therefore are populated

with many synapses that impose metabolic demand upon

supporting astrocytes (Magistretti and Allaman, 2015).

Metabolic demands on the glial cells of hub regions could

contribute to elevated cell turnover, enhancing the likelihood

of a cell acquiring an oncogenic mutation during mitosis

(Wodarz, 2007). Metabolic stress could also contribute to

oncogenesis via enhanced production of mutagenic reactive

oxygen species (Rinaldi et al., 2016). For these reasons, one

may expect gliomas to localize to hubs of the brain’s

connectome.

With their shared dedifferentiated and proliferative nature,

the commonalities between stem cells and cancer cells have

not gone unnoticed among cancer biologists. These com-

monalities form the basis of the stem cell hypothesis of can-

cer, which maintains that cancers tend to originate from

normal stem and stem-like cells in the body (Sanai et al.,

2005; Visvader, 2011; Jiang and Uhrbom, 2012). When

applied to adult glioma, this hypothesis points to two clear

suspects as possible cells of origin: neural stem cells (NSCs)

and oligodendrocyte precursor cells (OPCs; Sanai et al.,

2005; Jiang and Uhrbom, 2012). Neither are randomly dis-

tributed throughout the brain, and therefore their specific lo-

calization patterns have been hypothesized to play a role in

determining the non-random distribution of gliomas

(Zlatescu et al., 2001; Mueller et al., 2002). The notion that

neural stem cells exist and continue to proliferate in the

adult human brain is relatively new and historically contro-

versial, but a consensus has arisen that they can be found in

at least two locations: the dentate gyrus of the hippocampus,

and the subventricular zone (Sanai et al., 2005; Ma et al.,

2009). Rodent work has demonstrated that oligodendrocyte

precursor cells are widely distributed throughout the mam-

malian brain (Hughes et al., 2013). The patterning of oligo-

dendrocyte precursor cells in the adult human brain is

unclear, but could be estimated by utilizing brain-wide maps

of gene expression patterns (Hawrylycz et al., 2012; Seidlitz

et al., 2020).

Adult gliomagenesis is the result of glial cells acquiring a

series of somatic mutations that trigger uncontrollable cell

proliferation (Reifenberger et al., 2017; Molinaro et al.,

2019). Recent research has demonstrated that tumour loca-

tion is influenced by the genetic aberrations that guide tu-

mour development (Zlatescu et al., 2001; Tejada Neyra

et al., 2018). Gliomas may be expected to localize to brain

regions where the genetic risk factors for the disease are nor-

matively expressed. Furthermore, consequential to the con-

nectomic and cellular hypotheses, it may be expected that

brain regions frequented by glioma are enriched with the ex-

pression of genes associated with cell proliferation or meta-

bolically intensive processes required for long distance

neuronal signalling.

In this study, we tested these three hypotheses by examin-

ing the connectomic, cellular, and genetic correlates of brain

regions commonly plagued by glioma. We began by deriving

a replicable tumour frequency map from neuroimaging data

of 335 adult patients with high- and low-grade glioma.

Using this map, we compared glioma distributions across ca-

nonical subnetworks and correlated them with hub measures

calculated from averaged functional connectivity data from

a large number of healthy individuals. Then, we determined

if glioma frequency was elevated among brain regions

expected to be enriched with neural stem cells and OPCs.

Next, we conducted a transcriptomic analysis to find genes

with spatial expression patterns that followed the observed gli-

oma distribution. Finally, we combined all these factors of gli-

oma distribution into a single regression model to explore the

putative inter-relationships of predictors of glioma frequency.

Materials and methods

Tumour frequency map

Neuroimaging data of patients with low and high grade gliomas
were accessed from the Multimodal Brain Tumor Image
Segmentation Challenge 2019 (BraTS: http://braintumorsegmen
tation.org; Menze et al., 2015; Bakas et al., 2017, 2018).
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T1-weighted contrast-enhanced scans from 259 patients with
high-grade glioma and 76 patients with low-grade glioma were
segmented by board-certified neuroradiologists, denoting voxels

that constituted gadolinium enhancing tumour, non-enhancing
core, and peritumoural oedema (Bakas et al., 2017).
Segmentation was informed by multimodal imaging, including
T1-weighted, post-contrast T1-weighted, T2-weighted, and T2

fluid inversion attenuated recovery (T2-FLAIR) scans. Scans
were acquired at 19 different institutions (https://www.med.
upenn.edu/cbica/brats2019/people.html) with different sequences
and protocols. These data were preprocessed through the same

pipeline, undergoing linear registration to a common template
(SRI24; Rohlfing et al., 2010), resampling at 1 mm3 isotropic
resolution, and removing non-brain tissues from the image

(Bakas et al., 2018).

The minimally preprocessed images were downloaded from
the Center for Biomedical Image Computing and Analytics
Image Processing Portal (CBICA IPP). Images from each patient

were non-linearly warped to a common template (Rohlfing
et al., 2010) using Advanced Normalization Tools software
(ANTS; Avants et al., 2009), with cost-function masking of
abnormal brain tissue. The registered masks comprising the

gadolinium enhancing tumour and non-enhancing core were
taken to represent (and hereafter will be referred to as) the tu-
mour mask.

Tumour masks were concatenated across all 335 patients to

create a tumour frequency map, where the value at each voxel
denotes the percentage of tumours of the sample that over-
lapped with that voxel (Fig. 1A). Smoothing with a 2 mm full-
width at half-maximum (FWHM) Gaussian kernel was applied

to the map. An unsmoothed version of this map is shown in
Supplementary Fig. 1. To match genetic data for which most of
the samples come from one hemisphere (Hawrylycz et al.,
2012), we mirrored the tumour frequency map to the left hemi-

sphere for the following analyses. Given the large sample size
and concordance with other studies (Duffau and Capelle, 2004;
Larjavaara et al., 2007), this tumour frequency map was inter-
preted as representing general glioma spatial distribution.

Tumour frequency parcellation

To quantify tumour frequency by common anatomic subdivi-
sions, we applied to the tumour frequency map an in-house 334
region (with 167 left hemisphere regions) parcellation covering
16 subcortical and 318 neocortical areas. This symmetric parcel-

lation was created by applying a back-tracking algorithm that
restricts the parcel size to 500 mm2 with the Desikan-Killany
atlas boundaries as starting points (Romero-Garcia et al., 2012).
Although this parcellation was grey matter based, parcels were

extended 4 mm into the white matter to capture tumour fre-
quency in adjacent white matter regions. Tumour frequency for
a parcel was calculated by averaging the voxel value (represent-
ing percent tumour overlap) of the mirrored tumour frequency

map within each left hemisphere parcel.

Internal replicability

The internal replicability of our tumour frequency map was
tested by correlating tumour frequency maps derived from ran-

domly assigned, non-overlapping cohorts of 168 and 167
patients (Groups 1 and 2).

Simultaneously, we tested the generalizability of our results to

groups constituted of differing proportions of low grade versus
high grade gliomas. The first group (Group 1) had a 50%

higher proportion of low grade gliomas (�34%) as the full co-

hort (�23%), whereas the second group (Group 2) was consti-

tuted of a 50% lower proportion of low grade glioma patients

(�11%). These tumour frequency maps were constructed with

the same processing as that with the full sample (smoothing,

mirroring to the left hemisphere, and parcellation). A 95% con-
fidence interval (CI) for the inter-parcel correlation between

Groups 1 and 2 was determined by constructing a distribution

of 100 correlation coefficients where different patients were

selected for each group.

Statistical inference of brain map
correspondence

Several analyses in this study involved investigating the spatial

correspondence between different imaging-derived measures. In

general, this was accomplished by calculating the measures at

each parcel in the common parcellation scheme, then correlating

these measures across parcels for hypothesis testing. However,

since the spatial resolution (and thus the number of parcels) of

any parcellation scheme is essentially arbitrary, the actual
degrees of freedom cannot be estimated. This is aggravated by

the spatial autocorrelation of measures among neighbouring

parcels that violates the assumption of independent observa-

tions. We addressed this concern by applying a spatial random-

ization scheme to our relatively coarse-grained, 167-region

parcellation, to conduct non-parametric hypothesis testing of

brain map correspondence. To mitigate the effects of random-

ization on spatial autocorrelation, we used the ‘spin test’, which
has been used in past studies to address this problem

(Alexander-Bloch et al., 2013, 2018; Vandekar et al., 2015; Váa

et al., 2018). The spin test procedure is described in more detail

in the Supplementary material. In general, it involves comparing

the observed inter-parcel correlation between maps of two meas-

ures with a distribution of correlations calculated after one of

these maps has been spatially permuted in a way that preserves
contiguity among parcels.

Comparison of glioma frequency
across canonical subnetworks

One question of interest was whether gliomas localized to par-

ticular brain subnetworks. Seven canonical subnetworks of

the brain (https://surfer.nmr.mgh.harvard.edu/fswiki/Cortical
Parcellation_Yeo2011; Yeo et al., 2011) were mapped onto the

tumour frequency map. These networks were originally defined

using a clustering approach applied to resting state functional

MRI data from 1000 individuals (Yeo et al., 2011), which

revealed two local networks that covered primary cortex (the

visual network and the sensorimotor network, which covers

both sensorimotor and primary auditory cortex), four distrib-
uted association networks (dorsal attention network, ventral at-

tention network, frontoparietal network, and default mode

network), and the limbic system (limbic network). Raincloud

plots were constructed to compare the distribution of non-zero

tumour frequency values between voxels belonging to differing

canonical subnetworks.
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Functional connectome

Glioma frequency was compared to regional connectivity

(hubness) as quantified by graph theory metrics applied to

the functional connectome derived from resting state func-

tional MRI data (Miller et al., 2016; Alfaro-Almagro et al.,
2018) from over 4000 neurologically healthy UK BioBank

participants (age range 44–78 years; 53% female). The pub-

licly available ‘dense voxel-wise connectome’ of the first UK

BioBank cohort (https://www.fmrib.ox.ac.uk/ukbiobank/)

corresponds to a 4D image, where each voxel consists of

1200 principal components derived from a group-level principal

component analysis (PCA; Smith et al., 2014). A correlation be-

tween voxels across components gives a close, memory efficient

approximation to the correlation of blood oxygenation level-de-

pendent signal calculated across concatenated time points from

all individual participants (Smith et al., 2014). The aforemen-

tioned 334 region in-house parcellation, covering both subcor-

tical and cortical regions, was applied to the voxel-wise

connectome. PCA loadings for voxels within each parcel (i.e. re-

gion) were averaged (analogous to a mean timeseries) and corre-

lated between parcels to produce the weights of a graph

(Fig. 2C). Diagonal elements and negative correlations were set

to zero. The same parcellation was also applied to the tumour

frequency map to quantify tumour frequency within each parcel.

Tumour frequency for a parcel represented the average percent-

age of lesion overlap of voxels within that parcel. The common

parcellation allowed for comparison between measures of tu-

mour frequency and functional hubness.

Graph theory metrics of hubness

Once the weighted healthy connectome had been constructed,

we calculated graph theoretical metrics of hubness using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010). In

this graph theoretical approach to neuroimaging data, parcels of

the brain are conceived as ‘nodes’, whereas correlations in func-

tional activity between parcels are conceived as the weights of
connections between the nodes. Hub metrics derived included:

nodal strength (sum of all weighted connections for a particular

node), betweenness centrality (fraction of all shortest paths in a

network that pass through a certain node), clustering coefficient
(average weighted connections of triangular subgraphs associ-

ated with a node), local efficiency (inverse of the average short-

est path length between a node and every other node),

eigenvector centrality (the extent to which a given brain region
connects to other regions with higher centrality), participation

coefficient (the strength of connections outside of a node’s given

module relative to connections within that node’s module), and

within-module degree z-score (nodal strength of a node within
its module, compared to within-module nodal strengths of each

other node in the module). To reduce the impact of community

affiliation on participation coefficient and within-module degree

z-score, community affiliations were designated based on the
maximum spatial overlap of each node with one of the seven ca-

nonical subnetworks (Yeo et al., 2011).

Hub measures were calculated for each of the 334 nodes of

the functional connectome. Measures from homotopic nodes

were then averaged together, resulting in 167 observations for

Figure 1 Non-random spatial distribution of gliomas. (A) Tumour frequency map derived from lesion masks from 335 patients with high

and low grade glioma (LGG). (B) Glioma frequency by common anatomic subdivisions. (C) Glioma frequency represented at a parcel-level.

Internal replicability of glioma frequency tested by constructing two independent maps from even splits of the cohort, where the first comprised

�34% low grade gliomas and the other of �11% low grade gliomas.
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each subcortical and cortical parcel per hub metric. Many of the

hub measures were observed to have a high correlation with

nodal strength. Therefore, we screened out hub measures that

had a Spearman’s correlation of q40.95 with nodal strength.

This led to the removal of clustering coefficient, local efficiency,

and eigenvector centrality. While this threshold is arbitrary, the

same result was reached with thresholds ranging from 0.65

to 0.99 (Supplementary Fig. 3). Spearman’s correlations were

calculated between the remaining hub metrics and tumour fre-

quency and were assessed for significance by comparison to spa-

tially contiguous null models, via the spin test (Supplementary

material).

Cellular correlates of tumour

frequency

To determine whether tumours were more common in regions

enriched for neural stem cells, we assessed tumour frequency

within the two parcels of our 334 region parcellation which

most closely aligned with the subventricular zone and the den-

tate gyrus: the caudate and the hippocampus. The average tu-

mour frequency between these two parcels was compared to

average tumour frequency between 10 000 random pairs of

parcels.

To determine if tumours were more common in regions
enriched for OPCs, we compared tumour frequency to an ex-
pression map of OPC cell class. This expression map was esti-
mated by assessing transcriptional enrichment of OPC genetic
markers using a procedure analogous to that previously
reported (Seidlitz et al., 2020) and described in more detail in
the Supplementary material. In summary, transcriptional enrich-
ment of an OPC gene set was assessed at each cortical brain
parcel using the publicly available Allen Human Brain Atlas
(AHBA; Hawrylycz et al., 2012). The OPC gene set was derived
from a separate single cell RNA sequencing study that distin-
guished post-mortem human cortical cells by canonical cell types
(Lake et al., 2018). We confirmed the spatial specificity of this
gene set by comparing its co-expression pattern with 1000 iden-
tically sized sets of randomly chosen genes. Genes that did not
share a positive co-expression pattern with the overall group
were filtered out. Median regional enrichment of the resulting
gene set was then calculated for each cortical parcel, correlated
with tumour frequency, and tested for significance using the
spin test.

Aligning tumour frequency map
with the Allen Human Brain Atlas

We compared tumour frequency with post-mortem gene expres-
sion from the AHBA (http://human.brain-map.org/; Hawrylycz

Figure 2 Gliomas localize to connector hubs of the brain. (A) Raincloud plot comparing glioma frequency distributions across canonical

subnetworks. Colour-matched canonical subnetworks are plotted on brain renderings to indicate neuroanatomical positions of these networks.

(B) Histogram comparing glioma frequency distribution across primary versus association cortex. (C) Functional connectome calculated from

resting state functional scans of over 4000 UK BioBank participants. Nodes in the network are organized according to their affiliation with differ-

ent canonical subnetworks. (D) Correlations between glioma frequency and hub measures calculated from the functional connectome.

(E) Visualization of glioma frequency and functional hub measures on the cortical surface. Bc = betweenness centrality; Pc = participation

coefficient.
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et al., 2012). The AHBA catalogues post-mortem gene expres-

sion from six individuals (aged 24 to 57 years old; five males

and one female; deceased from non-neurologically related

causes) at a variety of brain locations. Preprocessing of the

AHBA data followed a similar pipeline to previous work from

our group (Romero-Garcia et al., 2018, 2019) and is described

in more detail in the Supplementary material. Transcription lev-

els for 20 647 genes across 2748 sample locations were related

to tumour frequency at each sample location using partial least

squares (PLS) regression. Tumour frequency values were aligned

with sample locations by warping the non-smoothed, non-mir-

rored tumour frequency map into the standard stereotactic

space of the Montreal Neurological Institute (MNI), a standard

brain template for which the locations of the AHBA microarray

samples are known. Once in MNI space, a 2 mm FWHM

smoothing kernel was applied to the map and the map was mir-

rored to the left hemisphere. Sample locations from the AHBA

that were located in the right hemisphere were also mirrored to

their homotopic voxel in the left hemisphere. This alignment

resulted in a 2748 (samples) � 20 647 (genes) expression ma-

trix and in a vector of 2748 elements representing tumour fre-

quency values matched to each sample’s MNI coordinates

(Fig. 4A and B). Tumour frequency values were square rooted

to reduce the skewness of the tumour frequency distribution

(Fig. 1B). Gene expression values were Z-scored for each gene.

To test the robustness of the findings, the analyses below were

repeated using tumour frequency maps derived from Groups 1

and 2.

Transcriptomic correlates of
tumour frequency

PLS regression was used to relate spatial transcription patterns
of 20 647 genes with the spatial distribution of glioma. PLS re-
gression involves projecting a predictor (x) and a response (y)
matrix into a space where linear combinations of x explain the
maximum amount of variance in y. We chose to focus on the
first two components from PLS (PLS1 and PLS2) as the subse-
quent components explained a proportion of variance indistin-
guishable from one another (Supplementary Fig. 4A). Because
PLS is a supervised learning technique, the significance of the
model cannot be accurately estimated from the relationships be-
tween PLS components and the dependent variable. Therefore,
following a previously described approach (Whitaker et al.,
2016), statistical significance of the PLS model was tested via
permutation testing, by comparing the per cent variance
explained in the original model to a distribution of 1000 models
where the sample labels mapping x to y were randomly shuffled.
Significance of each PLS coefficient was tested via bootstrapping
with 1000 iterations, resulting in two Z-statistics for each gene,
one for the first PLS component and another for the second PLS
component. Genes were ranked by their Z-statistics and entered
into gene ontology analyses in GOrilla (http://cbl-gorilla.cs.techn
ion.ac.il/), resulting in a hierarchy of biological terms associated
with each PLS component, visualized using Revigo (Supek et al.,
2011). To ensure a data-driven approach, genes with Z-statistic
values that did not meet the Bonferroni-corrected significance
threshold were not excluded from the gene lists.

Figure 3 Gliomas localize to brain regions enriched with stem-like cells. (A) Visualization of the parcel masks representing the hippo-

campus and caudate superimposed on the mirrored tumour frequency map. (B) Average tumour frequency across the hippocampus and caudate

(represented as the dotted black line) compared to a distribution of average tumour frequency across 10 000 sets of two randomly chosen par-

cels. (C) Co-expression among genes within the OPC gene list compared to co-expression among 10 000 identically-sized sets of genes. (D)

Correlation between OPC distribution across cortex and glioma frequency (q = 0.45; Pspin = 0.0001). (E) Visualization of glioma frequency and

OPC distribution on the cortical surface.
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Relating partial least squares
components to glioma
proto-oncogenes

We sought to determine whether either of our PLS components

were enriched for genes that are dysregulated in glioma. We col-

lected a list of 17 proto-oncogenes from a recent review

(Molinaro et al., 2019; Supplementary material) that are known

to be either mutated, amplified, or lost in specific subtypes of

glioma.

Similar to the OPC gene list preprocessing, we first confirmed

that these genes co-expressed significantly (compared to 10 000

identically sized sets of genes). Next, we filtered out genes with

differing co-expression patterns from the group (denoted by

negative correlations, on average, with other genes in the set),

leading to the exclusion of three genes (IDH2, MYCN, and

CIC). The median rank of the final list of 14 genes was deter-

mined among the first and second PLS components and assessed

for significance by comparison to median ranks expected by

chance.

Visualization of partial least squares

components

We were interested in the locations of the samples that drove

each PLS component. First, PLS1 and PLS2 loadings were plot-

ted and coloured based on the affiliation of the sample with cor-

tex or subcortex. To determine how PLS1 and PLS2 loadings

mapped onto cortex, we assigned samples to parcels via a near-

est neighbour mapping. Then, the PLS loading of a parcel was

Figure 4 Transcriptomic correlates of glioma frequency. (A) Alignment of AHBA sample locations to the tumour frequency map. (B)

Illustrative flow chart of the statistical analysis relating normative spatial gene expression patterns to glioma frequency. (C) Gene ontology terms

associated with two PLS components (PLS1 and PLS2) that related gene expression with glioma frequency. (D) Rank of 14 glioma proto-onco-

genes compared with null distribution of median ranks. (E) AHBA samples plotted by PLS1 loadings, PLS2 loadings, and cortex versus subcortex.

(F) Visualization of glioma frequency, PLS1 loadings, and PLS2 loadings on the cortical surface. PLS loadings from samples were assigned to parcels

via a nearest neighbour mapping.
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represented as the median PLS loading across samples assigned

to that parcel. Two parcels were assigned zero samples from

nearest neighbour mapping, and these parcels were assigned the

mean loading of the group. More samples were mapped to each

subcortical parcel [n = 8; mean = 78.9; standard deviation (SD)

= 52.1] compared to cortical parcels (n = 159; mean = 13.3; SD

= 12.5).

Multivariate model combining

connectomic, cellular and genetic

contributions to tumour frequency

To determine how different measures of biological contributions

to glioma risk interrelated, we developed a multiple linear re-

gression model combining each of the factors we found to be

associated with tumour frequency. The model included nodal

strength, OPC distribution, PLS1 loadings, and PLS2 loadings.

Each of these measures was represented as a 167-dimensional

vector, with a value ascribed to each parcel within our parcella-

tion scheme. The dependent variable for the model was the

square root of average tumour frequency within each parcel,

addressing the skewness of the original tumour frequency values

(Fig. 1B). The dependent variable and each of the predictors

were Z-scored, and zeros were assigned to parcels for which no

value could be appropriately calculated (e.g. subcortical parcels

for OPC distribution, and parcels mapped to zero samples for

PLS1 and PLS2 loadings).

First, we constructed a model to determine whether there

were any two-way interaction effects between the different scales

of biological factors. Nodal strength represented ‘connectomic

factors’, OPC distribution represented ‘cellular factors’, and

PLS1 and PLS2 loadings represented ‘genetic factors’. This

model had the following form:

tumour frequencyi ¼ b0þ b1 � strengthþ b2 � OPC
þ b3 � PLS1þ b4 � PLS2þ b5
� strengthOPCþ b6
� strengthPLS1þ b7
� strengthPLS2þ b8 � OPCPLS1
þ b9 � OPCjPLS2þ e

(1)

where tumour frequencyi is the square root of the tumour fre-

quency at parcel i. This model revealed no significant interaction

effects between different biological factors. Therefore, we con-

structed a second model with no interaction terms, of the form:

tumour frequencyi ¼ b0þ b1 � strengthþ b2 � OPC
þ b3 � PLS1þ b4 � PLS2þ e

(2)

After determining the percentage of explained variance in tu-

mour frequency from these predictors, we explored the individ-

ual contribution of each variable by calculating the square of

the partial correlation between that variable and tumour fre-

quency. Significance of the explained variance was assessed by

comparison to the distribution of explained variances between

the variable and 10 000 permuted, spatially contiguous, null

models of tumour frequency.

Statistical analyses

Statistical analyses and preprocessing of all neuroimaging and

genetic data were performed in MATLAB 2017b. All brain map

comparisons were conducted using inter-parcel Spearman rank-

correlations, while significance was determined using a non-

parametric permutation test. Permutation tests were also used to

test glioma localization to NSC niches, spatial specificity of gene

list expression, significance of PLS model, and enrichment of

PLS-ranked gene lists for glioma proto-oncogenes. Normality

assumptions for the PLS and multiple linear regression models

were assessed via visual inspection of the distributions for each

variable, which were transformed when necessary. Spatial auto-

correlation of each brain map was investigated using Moran’s I

(Supplementary material). Data were visualized using Brains

ForPublication (https://github.com/WhitakerLab/BrainsForPubli

cation), RainCloudPlots (https://github.com/RainCloudPlots/

RainCloudPlots; Allen et al., 2019), and the Gramm toolbox

(https://github.com/piermorel/gramm; Morel, 2018).

Data availability

The anonymized neuroimaging and genetic data described in

this study are publicly accessible.

Results

Anatomical mapping of glioma

distribution

We constructed a map of glioma distribution from aligned

masks of tumour volume across 335 high and low grade gli-

oma patients. This tumour frequency map displayed a hemi-

spherically symmetric, but heterogeneous spatial distribution

(Fig. 1A and Supplementary Fig. 1). Consistent with prior

reports, gliomas were rare in the occipital lobe, but relatively

common in the insular cortex (Fig. 1B and Supplementary

Table 1). Visual and quantitative inspection of the glioma

distribution revealed significant spatial autocorrelation

(Fig. 1A, Supplementary Table 2 and Supplementary Fig. 2),

prompting the need for spin test methodology to infer brain

map correspondence in later analyses. Tumour frequency

distributions were replicable across independent, randomly

assigned subsets of half of the images (Groups 1 and 2)

with an interregional correlation of r = 0.83 (95% CI:

r = 0.70–0.93). Replicability of subsequent analyses was

tested with Groups 1 and 2 tumour frequency maps

(Supplementary material).

Tumour frequency was compared across canonical, large-

scale functional networks and primary versus association

cortex. Association regions responsible for consolidating in-

formation across multiple sensory modalities showed higher

tumour prevalence (average voxel: 4.57%) than visual and

somatosensory primary cortices, which had the lowest tu-

mour frequency (2.45%), particularly in the visual cortex

(1.56%; Fig. 2A and B).
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Gliomas localize to hubs of high
connectivity and centrality

Graph theory measures were calculated from the mean func-

tional connectome derived from resting state functional MRI

scans of over 4000 UK BioBank participants, and then com-

pared with glioma frequency. The connectome was first

organized into seven communities of interconnected nodes

based on their overlap with previously defined large-scale

functional networks (Yeo et al., 2011) resulting in a neat

modular organization, with strong connections within mod-

ules and sparse connections between modules (Fig. 2C).

Graph theory measures of hubness were then calculated,

measuring properties such as connectivity with neighbouring

nodes, involvement in shortest paths across the network,

connectivity to nodes in different modules, and within-mod-

ule connectivity (see ‘Materials and methods’ section for

how these measures were defined and selected). The interre-

gional correlation between measures of hubness and glioma

frequency was tested for significance by comparison with

spatially contiguous null models (Fig. 2D).

Glioma frequency strongly correlated with the simplest

measure of hubness, nodal strength (q = 0.34; Pspin =

0.00055), which aggregates the weights of a node’s immedi-

ate connections. Glioma frequency was also significantly cor-

related with betweenness centrality (q = 0.51; Pspin =

0.0002) and with a measure of connectivity to diverse com-

munities, the participation coefficient (q = 0.30; Pspin =

0.011). Connectivity within a community, measured by

Z-score modularity, did not relate with glioma frequency (q
= 0.062; Pspin = 0.21; Fig. 2D). This profile of connectivity

measures was most consistent with that of connector hubs

that link together multiple subnetworks.

Glioma frequency is elevated in
areas with populations of stem-like
brain cells

We tested the hypothesis that brain regions enriched with

neural stem cells were more likely to coincide with loci of

high frequency of gliomas. Mean tumour frequency was cal-

culated from the hippocampus and the caudate (Fig. 3A),

regions that best approximate the locations of the only

known sources of neural stem cells in the adult human

brain. Tumour frequency across bilateral hippocampus and

caudate were averaged, and compared against a null distri-

bution of 10 000 different pairs of randomly selected parcels

within our 334-region parcellation scheme. Glioma fre-

quency was observed to be significantly higher in these two

regions compared to the null distribution (P = 0.0315;

Fig. 3B).

Next, we tested the spatial correspondence of glioma dis-

tribution with the patterning of OPCs, which are also

hypothesized to be cells of origin for glioma. OPC distribu-

tion was estimated from the expression of genetic markers

of OPC identity using post-mortem the microarray data of

the AHBA (www.brain-map.org). The list of genetic markers

for OPCs co-expressed significantly (Fig. 3C), confirming

that median expression across this gene list represents a spa-

tially specific phenotype. This estimate of OPC patterning

correlated significantly with glioma frequency (Fig. 3D; q =

0.45; Pspin = 0.0001).

Transcriptomic correlates of glioma
frequency

We used PLS regression to relate the spatial transcription

patterns of 20 647 genes with tumour frequency at 2748

cortical and subcortical locations where gene expression was

assessed in post-mortem adult human brain tissue (Fig. 4A

and B). The first two components of the PLS (PLS1 and

PLS2) explained 19% and 18% of the tumour frequency

variance, respectively (Supplementary Fig. 4A). The total

variance explained by the model was significantly greater

than equivalent PLS models trained on random permuta-

tions of the data (permutation test; P50.001;

Supplementary Fig. 4B).

Bootstrapping was performed on PLS weights resulting in

Z-statistics for each gene corresponding to the PLS1 and

PLS2 ranking (Supplementary Fig. 4C). The ranked gene

lists were entered into a gene ontology (GOrilla; http://cbl-

gorilla.cs.technion.ac.il/). Genes corresponding to PLS1 were

related to biological processes such as chromatin organiza-

tion, endosomal transport, and G0 to G1 transition. Genes

corresponding to PLS2 were related to a broad set of meta-

bolic processes along with many components of synaptic

transmission (Fig. 4C). PLS1 was also found to be signifi-

cantly enriched for genetic drivers of gliomagenesis

(P = 0.0041; Fig. 4D). PLS2 was not significantly enriched

for this set of genes (P = 0.64).

PLS1 was more highly loaded onto the subcortex relative

to the cortex (Fig. 4E). PLS loadings for each AHBA sample

were mapped to their nearest brain region for visualization

on the cortical surface (Fig. 4F).

Connectomic, cellular and genetic
contributions to glioma frequency
are independent

Finally, we sought to reveal the interrelations between the

connectomic, cellular, and genetic contributions to glioma

distribution uncovered in the study. A multiple linear regres-

sion model was constructed, with factors of nodal strength,

OPC distribution, PLS1 loadings, and PLS2 loadings

(Fig. 5A). NSC distribution was not included in the model

because this measure could not be quantified at each brain

parcel. First, we tested a model to determine if there were

interaction effects between connectomic (nodal strength), cel-

lular (OPC distribution), and genetic (PLS1 and PLS2 load-

ings) factors. None of the interaction effects were significant.

The model without interaction effects explained �58% of

the variance in glioma frequency [F(4,162) = 59.3;
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P = 9.37 � 10–31; adjusted R2 = 0.584; Fig. 5B and C). All

individual factors significantly predicted tumour frequency

variance (Table 1 and Fig. 5D). Because of the unequal map-

ping of AHBA samples to cortical versus subcortical regions,

the PLS2 component, which is more highly represented

across cortex, explained more of the variance in tumour fre-

quency than PLS1 once projected onto the anatomy. It is

also worth noting that the amount of variance explained by

the PLS factors was inflated by construction, due to the large

number of input variables and the design of the technique

which results in maximizing covariance (Mufford et al.,

2017).

Discussion
In this study, we examined the network, cellular, and tran-

scriptomic correlates of brain regions commonly frequented

by glioma to test specific hypotheses regarding gliomagene-

sis. We found that gliomas were most common in associ-

ation cortex and connector hub regions. Elevated glioma

frequency was observed in brain regions expected to be

populated by neural stem cells and OPCs. Finally, we deter-

mined that glioma distribution correlated with the spatial

transcription patterns of genes related to metabolic activity,

synaptic signalling, and gliomagenesis. These findings

support the predictions of network neuroscience and cancer

theory, and establish links between concepts from these two

frameworks to characterize the spatial distribution of adult

gliomas.

Localization of neurological disease
to brain hubs

An extensive body of work has demonstrated the utility of

network models in predicting the spread of disease (Zhou

et al., 2012; Brown et al., 2019; Henderson et al., 2019) as

well as the vulnerability of particular brain regions to disease

(Seeley et al., 2009; Crossley et al., 2014; Warren et al.,

2014). In this work, we used network models to demon-

strate for the first time that functional hub regions of the

brain are vulnerable to the concentration of gliomas. In par-

ticular, gliomas appear to localize to brain regions expected

to play the role of connector hubs, nodes that link diverse

cognitive subsystems with one another, as opposed to pro-

vincial hubs, which integrate communication within their

own subsystems (van den Heuvel and Sporns, 2013).

Consistent with this idea, gliomas were more common in as-

sociation cortical regions important for consolidating infor-

mation across sensory modalities (Mesulam, 2015). This

suggests that the brain regions that facilitate long distance

connections across the cortex are especially vulnerable to

Figure 5 Multiple linear regression model relating connectomic, cellular and transcriptomic factors with glioma distribution.

(A) Schematic of the multiple linear regression model. Intercept and error terms are not displayed. (B) Fitted values and residuals of glioma dis-

tribution model. (C) Scatter plot of predicted versus observed tumour frequency values. (D) Per cent of variance explained by each individual

predictor of tumour frequency. These values were calculated using the partial correlation coefficient between each measure and tumour

frequency.
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oncogenesis, consistent with our hypothesis that the high

metabolic cost of such connections influences glioma risk

(Bullmore and Sporns, 2012).

Alternatively, the results can be interpreted as reflecting a

higher likelihood for tumour infiltration of hub regions.

Gliomas are known to migrate throughout the brain via

blood vessels and white matter tracts, which contributes to

the poor prognosis of glioblastoma multiforme. Here we

consider only the location of the tumour during the pre-

operative scan, which could represent either the tumour ori-

gin, or to where it spread during the progression of the

disease. Although networks were constructed from function-

al MRI and not white matter tracts along which tumours

are known to infiltrate (Pedersen et al., 1995), recent work

on activity-dependent glioma migration suggests that

tumours could preferentially invade functional hubs

(Venkatesh et al., 2019). Because of their high centrality,

hubs are, by definition, likely to be encountered during ran-

dom walks within a network.

Cellular origins of glioma

Early work on gliomagenesis hypothesized that mature glial

cells were the cells of origin for adult glioma. However, it

was soon recognized that the cell of origin most likely main-

tains pluripotency after development, since such cells require

fewer mutations to become cancerous (Sanai et al., 2005).

Following recent evidence of neural stem cells in the subven-

tricular zone and dentate gyrus of the hippocampus of

adults, there is an emerging consensus that stem-like cells

could be the cells of origin for glioma (Sanai et al., 2005;

Jiang and Uhrbom, 2012). Recent work has provided evi-

dence that some isocitrate dehydrogenase (IDH) wild-type

glioblastomas originate from stem cells in the subventricular

zone (Lee et al., 2018). Lee and colleagues demonstrated

that for a majority of their glioblastoma patients, the un-

affected subventricular zone carried low-level driver muta-

tions, which were present to a greater extent in the tumour.

Our findings complement this research by establishing that

gliomas in general are more highly concentrated in regions

enriched with neural stem cells.

OPCs have also been hypothesized to represent cells of

origin for glioma. Evidence for this idea comes from studies

demonstrating that some gliomas express OPC genetic

markers (Shoshan et al., 1999; Verhaak et al., 2010), and

that OPCs can be experimentally manipulated into becoming

cancer stem cells (Kondo and Raff, 2000; Liu et al., 2011).

OPCs comprise the majority of dividing cells in the adult

brain and are distributed broadly throughout the subventric-

ular zone, white matter, and grey matter (Jiang and

Uhrbom, 2012; Hughes et al., 2013). We estimated this dis-

tribution by quantifying normative expression levels of OPC

genetic markers across the human brain, and found that it

significantly correlated with glioma frequency. While this re-

sult aligns nicely with prior work, estimates of OPC distribu-

tion relied on combining data from two independent

transcriptomic studies of post-mortem human brains

(Hawrylycz et al., 2012; Lake et al., 2018). While this ap-

proach has been validated for determining the brain-wide

distribution of other canonical cell types (Seidlitz et al.,

2020), our result should be confirmed once more reliable

estimates of OPC patterning become available.

Genetic determinants of glioma

vulnerability

Normal cells can become malignant through a series of som-

atic mutations which disable tumour suppressors and acti-

vate drivers of cell proliferation (Mukherjee, 2010). To

determine the genetic alterations involved in oncogenesis,

much research has focused on identifying molecular genetic

differences between tumour cells and matched healthy tissue

(McLendon et al., 2008; Tang et al., 2018). Here, we took

an alternative approach and investigated transcriptomic dif-

ferences between healthy regions where tumours tend to

occur versus healthy regions where tumours are uncommon.

This approach recapitulated prior research into glioma gen-

etics, in that genes which drive gliomagenesis appeared to be

upregulated among the healthy transcriptomic correlates of

glioma distribution. Gene ontology revealed that the genes

driving PLS1 (the component responsible for most of the co-

variance between transcription and glioma distribution)

were most strongly associated with chromatin organization,

a process perturbed by IDH mutations and critically

involved in the pathogenesis of glioma (Suzuki et al., 2015;

Reifenberger et al., 2017). In addition, our approach also

revealed novel findings, such as the carcinogenic vulnerabil-

ity of healthy brain regions enriched with genes coordinating

synaptic signalling and metabolic activity. These findings

complement our connectomic results, providing more evi-

dence for the idea that metabolically demanding brain

Table 1 Results of multiple linear regression model predicting tumor frequency

Predictor b-value Standard error T-statistic % Explained variance Spin test, corrected P-value

Intercept 3.2 � 10–16 0.0499 6.37 � 10–15 NA NA

Nodal strength 0.202 0.0543 3.72 7.86 0.0010

OPC distribution 0.206 0.0566 3.64 7.58 0.0040

PLS1 loadings 0.210 0.0594 3.54 7.17 0.0052

PLS2 loadings 0.480 0.0577 8.32 29.9 0
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regions crucial for brain-wide communication are susceptible

to oncogenesis.

The goal of this study was to examine brain regions gener-

ally implicated in adult glioma. However, glioma is a hetero-

geneous phenomenon, comprising tumours of differing

genetic aetiologies and morphologies. It is known that differ-

ent types of glioma tend to localize to different brain regions

(Zlatescu et al., 2001; Mueller et al., 2002; Duffau and

Capelle, 2004; Tejada Neyra et al., 2018). Therefore, the

exact composition of patients (e.g. proportion of high grade

to low grade glioma patients) within our sample could influ-

ence the results. To address this concern, we replicated our

results with subgroups of varying proportions of high grade

to low grade glioma patients and demonstrated that our

results are robust to changes to the composition of the sam-

ple. However, we did not have access to the molecular gen-

etic characterization of the tumours in our sample, limiting

our ability to determine the effect of tumour genotype on

the results. Examining glioma subtypes separately could illu-

minate the network, cellular, and transcriptomic correlates

which distinguish localization patterns of different types of

glioma. Such work could be useful for developing scientific-

ally informed priors for tumour diagnosis before biopsy, so

this question is of both scientific and clinical interest.

Conclusion
Gaining a better understanding of the mechanisms driving

glioma localization patterns could provide a more detailed

account of the aetiology of the disease and consequently in-

form treatment targets. We demonstrated that glioma distri-

bution can in part be explained by functional hubness,

distribution of stem-like cells, and transcription patterns of

genetic determinants of glioma. These results add to previ-

ous literature reporting the vulnerability of hub regions to

neurological disease (Bullmore and Sporns, 2012; Crossley

et al., 2014) and provide support for cancer stem cell theo-

ries of glioma (Sanai et al., 2005; Ma et al., 2009; Visvader,

2011). Our findings highlight the importance of bridging di-

verse scales of biological organization in the study of neuro-

logical dysfunction.
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