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Abstract 

 Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the 

control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and 

endocrine secretion, fertilization, amplification of olfactory sensory function, and control 

of smooth muscle cell contractility. CaCCs are the translated products of two members 

(ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of 

genes comprising ten paralogs.  This review focuses on recent progress in 

understanding the molecular mechanisms involved in the regulation of ANO1 by 

cytoplasmic Ca2+, post-translational modifications, and how the channel protein 

interacts with membrane lipids and protein partners.  After first reviewing the basic 

properties of native CaCCs, we then present a brief historical perspective highlighting 

controversies about their molecular identity in native cells.  This is followed by a 

summary of the fundamental biophysical and structural properties of ANO1. We 

specifically address whether the channel is directly activated by internal Ca2+ or 

indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the 

structural domains responsible for Ca2+- and voltage-dependent gating. We then review 

the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-

(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as 

the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and 

cholesterol, and the cytoskeleton. The article ends with a survey of physical and 

functional interactions of ANO1 with other membrane proteins such as CLCA1/2, 

inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several 

members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
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Introduction 

 A chloride conductance activated by a physiological rise in intracellular Ca2+ 

concentration was first described in the early 1980’s in Xenopus oocytes1, 2 and the 

retinas of salamanders.3 Ιn oocytes, the underlying Ca2+-activated Cl- channels  (CaCC) 

triggered a membrane depolarization that inhibited polyspermy after fertilization through 

an undefined mechanism.4-6 Ca2+-activated chloride currents (ICl(Ca)) were subsequently 

recorded in many cell types including central and peripheral neurons,7-13 cardiac,14-16 

skeletal17 and smooth muscle18-24 cells, epithelial cells,25, 26 vascular endothelial cells,27, 

28 exocrine and endocrine gland cells,29-32 various types of leukocytes,33 mast cells,34 

hepatocytes,35 and many others. CaCCs are anion-selective channels (anion 

permeability sequence of SCN- > I- > Br- > Cl- > gluconate) activated by an elevation in 

internal Ca2+ concentration ([Ca2+]i) above ~ 150 nM.36-42  At physiological [Ca2+]i (~ 250 

nM to 1 µΜ), macroscopic ICl(Ca) display slow (hundreds of milliseconds to seconds) 

activation and deactivation kinetics and outward rectification as highlighted by the 

experiment in Figure 1A showing a typical family of whole-cell Ca2+-activated Cl- 

currents recorded from a rabbit pulmonary artery smooth muscle cell dialyzed with 500 

nM free Ca2+. Slow kinetics, outward rectification and a reversal potential near the 

equilibrium potential for Cl- (ECl) are hallmark properties of the native CaCCs of interest 

in this review. 
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 Inside-out patch experiments in glomerular mesangial cells,43 endothelial cells,44 

salivary acinar gland cells,45 cardiac cells,46 Xenopus oocytes,47 vascular smooth 

muscle cells,48-52 ventricular myocytes,46 and hepatocytes35 indicated that CaCCs could 

be rapidly activated by an increase in Ca2+ concentration in the perfusate above ~ 150 

nM.  Single-channel experiments in these cell types revealed that CaCCs are small 

conductance channels (~ 3 pS) and, like macroscopic ICl(Ca),
11, 53-59, they display outward 

rectification due to membrane depolarization promoting channel opening.  This 

rectification is progressively alleviated by increasing the Ca2+ concentration on the inner 

side of the membrane ([Ca2+]i), so that the I-V relationship becomes almost linear at 

concentrations above 1 μM. The Kd for Ca2+-mediated channel opening decreases with 

membrane depolarization,32, 44, 53, 59-61 an observation consistent with the notion that the 

binding site(s) probably lies within the transmembrane electric field. Two or three 

calcium ions were proposed to cooperatively regulate channel gating.32, 59, 60  

 These currents are blocked by various structurally different anion transport inhibitors 

including CaCC inhibitors such as niflumic acid (NFA), anthracene-9-carboxylic acid 

(A9C), 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), and 4,4'-diisothiocyano-

2,2'-stilbenedisulfonic acid (DIDS). The biophysical (Ca2+-, voltage- and time-

dependence, low unitary conductance) and pharmacological properties of these 

currents define the so-called “classical” CaCCs, which are the ones of interest in this 

article. This is important because other genes, as will be discussed below, have also 

been proposed to encode classical CaCCs (e.g., Bestrophins, CLCA1, Tweety), but 

their profiles differ in several aspects from those mentioned above. 

 CaCCs play a crucial role in regulating the excitability of many types of smooth 

muscle cells and certain types of neurons, the control of fluid secretion by epithelial 
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cells, olfactory transduction, and photoreceptor light responses. Most cell types maintain 

a Nernst potential for Cl- that is more positive than the resting potential.62  

Consequently, activation of CaCCs in these cell types leads to Cl- efflux and membrane 

depolarization. In vascular smooth muscle cells as an example, the membrane 

depolarization triggered by CaCCs causes activation of voltage-gated Ca2+ channels, 

Ca2+ influx and contraction.36, 38-40, 42 An exception is mature neurons in which activation 

of CaCCs may produce stabilization or hyperpolarization of the resting membrane 

potential63 (similar to GABAA ligand-gated receptors) because ECl is near or negative to 

Vm.  

 In 2008, two members of the Anoctamin gene family, Anoctamin-1 (ANO1) and 2 

(ANO2), were identified as the molecular correlates of native CaCCs. The identification 

of ANO1 and ANO2 enabled investigations into their biophysical and pharmacological 

properties at the molecular level.  This review focuses on recent advances in 

understanding mechanisms of activation and regulation of ANO1 channels and how 

these findings correlate with understanding the structures of Anoctamins. Importantly, 

we compare features from over-expression studies and observations made for CaCCs 

recorded in their native environment. Excellent reviews documenting the properties of 

native CaCCs36-42, 64-69 and Anoctamins are available.39, 42, 70-81 This review specifically 

surveys recent findings in regard to the structure of ANO1, the molecular mechanisms 

involved in Ca2+-dependent activation of its gating, how alternative splicing influence its 

expression and function, and how different mediators regulate channel activity. 

 

Search for the Molecular Identity of Native CaCCs 
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 During the search for CaCC genes, members of no less than five structurally 

unrelated families of genes were proposed as molecular candidates for the “classical” 

Ca2+-activated Cl- currents recorded in Xenopus oocytes,47, 60 smooth23, 38, 54-59, 82-86 and 

skeletal muscle cells,17 parotid acinar32 and lacrimal gland cells,30 and interstitial cells of 

Cajal in the gut.87 These families of structurally unrelated proteins include: the CLCA 

family (ChLoride channels Calcium Activated; now known as “Chloride Channel 

Accessory”),88-92 the long human isoform variant of CLC-3 (a voltage-gated Cl- channel 

superfamily member that requires CaMKII for activation37, 93, 94), the products of human 

genes related to the Drosophila flightless locus called Tweety,95, 96 Bestrophins (BEST1 

and BEST2),97, 98 and more recently the TMEM16 or Anoctamin channel protein 

family.72, 99-101  

 Many investigators questioned the evidence supporting that CLCAs are bona fide 

transmembrane proteins capable of directly supporting ion transport. Analysis of 

hydropathy plots of the various CLCA protein members showed profiles that were 

unconventional for ion channel proteins: they lacked hydrophobic α-helices capable of 

forming transmembrane domains (for a review, see Loewen and Forsyth102). Moreover, 

CLCA proteins were found to exhibit similarity with surface adhesion proteins89, 103 and 

some members were secreted as truncated soluble proteins.104-106 The idea of CLCAs 

forming transmembrane ion channels was later put to rest by experiments 

demonstrating that in Caco-2 lung epithelial cells that lacked an endogenous Ca2+-

activated Cl- conductance during differentiation, expression of pCLCA1 failed to restore 

CaCC conductance.107 More recent reports discussed in a section below now support 

the concept that CLCA may instead serve as accessory proteins because at least two 

members of this protein family were shown to upregulate ANO1-encoded CaCCs. 
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 At the turn of the new millennium, a new hypothesis surfaced suggesting that the 

third member of the CLC family of Cl- channels, CLC-3, is phosphorylated by CaMKII 

and is required for channel activity.93, 94 The possibility of CaMKII-activated CLC-3 as a 

molecular candidate for native classical CaCCs was also discarded because: 1) their 

biophysical properties (voltage- and time-independent) do not match those of native 

CaCCs (slow activation kinetics and deactivation kinetics, voltage-dependent; Fig. 1A); 

2) CLC-3 is now considered to be an 2Cl-/H+ exchanger primarily located in 

endolysosomal membranes instead of a plasma membrane ion channel;108 3) unlike 

CLC-3, native CaCCs are down-regulated by CaMKII-induced phosphorylation (see 

section below); and 4) native CaCCs are robustly activated by patch excision into a 

solution containing Ca2+, but no ATP nor CaMKII. Furthermore, a large body of 

evidence has suggested that native CaCCs are activated by a direct interaction of Ca2+ 

with binding sites on the cytoplasmic face of CaCCs.   

 The idea that the Tweety family of Cl- channels encoded classical CaCCs was also 

rapidly dismissed because their high single channel conductance was more than 100 

pS,95, 96 compared to 3 pS for native CaCCs. Although the Bestrophins are a family of 

Ca2+-activated Cl- channels (reviewed by Hartzell et al.98), their characteristics are 

different than classical CaCCs. They are similar to classical CaCCs with low single 

channel conductance (0.26-2.0 pS), a lyotropic permeability sequence of SCN- > I- > Br- 

> Cl- > F-, and a similar pharmacological profile. But, the Kd for Ca2+ is ~ 200 nM and the 

currents of the four mammalian Bestrophin paralogs are time- and voltage-independent.  

Such properties contrast with ICl(Ca) recorded in Xenopus oocytes, smooth muscle cells, 

sensory neurons, and secretory epithelial cells, which display outward rectification at 

[Ca2+]i < ~ 1 μM, and are time- and voltage-sensitive. Another argument against 
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Bestrophins encoding classical CaCCs was the observation that in rat mesenteric 

arterial smooth muscle cells, the Ca2+- and cGMP-sensitive but voltage-insensitive 

Bestrophin 3 current coexists with the classical time- and voltage-dependent CaCC 

current.109-113 

 

TMEM16/Anoctamins as the Long Sought Molecular Candidates for CaCCs 

 The cloning of TMEM16 proteins, so-called Anoctamins, by three independent 

groups in 200899-101 paved the way for numerous subsequent studies to determine the 

structural elements responsible for anion transport across the membrane and channel 

gating by intracellular Ca2+ and transmembrane voltage. ANO1 and ANO2 were 

established as the channels underlying Ca2+-activated Cl- currents since they 

recapitulate the biophysical and pharmacological properties of native Ca2+-activated Cl- 

currents (ICl(Ca)) when expressed in mammalian cell lines.99-101, 114, 115 An example of 

such currents produced by the expression of recombinant mouse ANO1 in HEK-293 

cells is illustrated in Figure 1B. Similar to native CaCC currents recorded in vascular 

smooth muscle cells (Fig. 1A), ANO1 currents recorded under identical conditions 

activate and deactivate slowly during step depolarizations and repolarizations, display 

outward rectification, and reverse near ECl.  

 The first topology proposed for ANO1, based on hydropathy analysis, had eight 

transmembrane domains (TMD) with the C- and N-termini located intracellularly  (Fig. 

2A).42, 70-73 Investigators speculated that ANO1 contained a large intracellular loop 

between TMD1 and 2 and a reentrant loop, similar to the pore-loop of cation-permeable 

channels, between TMD5 and 6 that was suggested to form the anion-selective pore of 

the channel. The 8 transmembrane domain structure was later determined to be 
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incorrect as structural studies later demonstrated the presence of 10 transmembrane 

domains as discussed in detail in a section below.  

 

Regulation of ANO1 Function by Alternative Splicing 

 Caputo et al.99 described four alternative spliced variants labeled a, b, c, and d, 

depicted in Figure 2C.  All four variants regulate the biophysical properties of ANO1, 

and its pharmacology.116  Splice segment a, which starts the protein at the N-terminal 

end, is under the control of an alternative promoter.  With few exceptions, this exon is 

constitutively expressed in nearly all tissues expressing ANO1.  The role of this variant 

has not been fully elucidated but is likely involved in expression at the plasma 

membrane.  

 Splice segment b is located distally from splice segment a in the N terminus. It is 

encoded by exon 6b in human and mouse,117 and the translated product comprises 22 

amino acids. Expression of this splice variant reduced the Ca2+ sensitivity of ANO1,114 

but the mechanism responsible for this effect still remains unclear.  

 Splice variant segment c, encoded by exon 13 in human and mouse,117 comprises 

only four amino acids (EAVK). The short peptide segment is located in the first 

intracellular loop (Fig. 2C). With the exception of brain and skeletal muscle, this splice 

variant is expressed in nearly all tissues.114 Although it was initially speculated to play 

an exclusive role in altering the voltage- and time-dependence of ANO1,114 another 

study by Xiao et al.118 showed that its inclusion also influenced its Ca2+ sensitivity as 

reviewed in detail in the next section.  

 A short distance distal from splice variant c in the first intracellular loop lies splice 

variant d, which is a stretch of 26 amino acids encoded by exon 15 in human and 
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mouse.117 While earlier studies suggested that this peptide segment produced little to 

no effect on ANO1 function,99, 114 a subsequent study showed that its inclusion 

decelerated both activation and deactivation kinetics.119   

 Ferrera et al.120 expressed a “minimal” isoform of ANO1 (called TMEM16(0)) that 

lacked all four splice variants.  Expression of this isoform produced robust Ca2+-

activated Cl- currents. However, these currents were voltage- and time-independent, 

and displayed altered permeation and selectivity to both anions and cations. The 

strategy used by Ferrera et al.120 to exclude splice segment a was to introduce a stop 

codon in lieu of the first ATG codon initiating translation. The same group later reported 

that this approach was erroneous because expression of an isoform truly lacking 

segment a produced no detectable channel activity.121  They discovered that the 

discrepancy was caused by the existence of a non-canonical start codon (non-ATG) 5’ 

to the second ATG codon. This non-canonical start codon was presumed to be the start 

of the translated “minimal” ANO1 protein. Successive stepwise truncations of the N-

terminal domain produced currents that were progressively smaller, highlighting the 

important role played by this domain, and segment a in particular, in protein trafficking 

and surface expression of ANO1. The non-traditional codon, possibly CTG, was shown 

to be physiologically relevant as a naturally occurring truncated protein consistent with 

this new start site was identified in human testis.121 

 Next-generation RNA sequencing of human stomach revealed the existence of a 

novel exon that is upstream of exon 1 encoding for splice variant a and was therefore 

labeled exon 0.122 The inclusion of exon 0, which has 40 additional amino acids in 

human ANO1 (56 or 57 in mouse depending on NCBI sequences), enhanced ANO1 

current. A novel promoter upstream of exon 0 was also identified and shown to be 
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regulated by the cytokine interleukin-4 acting via the STAT6 transcription factor. This 

pathway is known to be involved in enhanced ANO1 expression in several forms of 

cancer.123   

 Another level of complexity was revealed by Mazzone et al.,119 who found a novel 

variant in human stomach where ANO1 is predominantly expressed in interstitial cells of 

Cajal to regulate pacemaker activity and smooth muscle motility. This variant lacked 

exons 1 and 2 and part of exon 3.  Its expression was increased in tissues from patients 

diagnosed with diabetic or idiopathic gastroparesis. When expressed in HEK-293 cells, 

this variant led to reduced and slower ANO1 currents, a phenotype proposed to 

compromise pacemaker activity in gastroparesis.  

 An example of further fine tuning of ANO1 function through alternative splicing was 

the observation of a differential pattern of expression within the same fully assembled 

dimeric protein. Ohshiro et al.124 suggested that ANO1 in murine portal vein smooth 

muscle cells can form both homo- and heterodimers composed of two monomeric 

proteins being the translated products of identical or distinct alternatively spliced 

transcripts (abc or acd splice segments).  

 These studies indicated that alternative splicing plays a critical role in the regulation 

of ANO1 and provided insight on how this process shapes functional responses in 

different cell types.  However, they also suggested that we probably only scratched the 

surface of this regulation modality.  Additional splicing exons have indeed been 

identified in mouse, which are conserved in human, whose functions will require 

investigation.117 

 

ANO1 Structure 
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 Anoctamins can be subdivided into two major subgroups, which bears relevance to 

our understanding of their structure: 1) true CaCCs, that include ANO1 and ANO2,99-101 

and 2) Ca2+-activated lipid scramblases, which include ANO3, ANO4, ANO6, ANO7, 

and ANO9.125, 126 Some other Anoctamins (especially yeast IST2 and mammalian 

ANO8) have been shown to participate in membrane-membrane junctions and may be 

involved in lipid transport between membrane systems. Lipid scramblases facilitate the 

bidirectional transport of lipids between the inner and outer leaflets of the plasma 

membrane. The best characterized mammalian Anoctamin displaying scramblase 

activity, ANO6, was shown to exhibit a dual function as both a Ca2+-activated anion127-

132 or non-selective cation channel,131, 133 and a Ca2+-activated lipid scramblase.125, 131, 

134-137 A representation of the 3D architecture of Anoctamins first came from the seminal 

X-ray crystallography study of Brunner et al.138 who described the structure of an 

ortholog of mammalian Anoctamins from the fungus Nectria haematococca 

(nhTMEM16) identified to be a Ca2+-activated lipid scramblase that also mediates non-

specific ion transport.139  This dual lipid scramblase/ion channel activity was also found 

in another ancestral Anoctamin protein purified from the fungus Aspergillus fumigatus 

(afTMEM16).140  Brunner et al.138 showed that each monomer of nhTMEM16 is 

comprised of 10 instead of 8 membrane-spanning α-helices, a transmembrane 

hydrophilic cavity facing the lipid bilayer involved in catalyzing phospholipid 

translocation, and a Ca2+-binding site lying within this cavity. Mutations of residues 

involved in Ca2+ activation in this region impaired scramblase activity in nhTMEM16 and 

anion channel activity in ANO1. The observation that expression of chimeric ANO1 

protein comprising a domain between TMD4 and TMD5 of ANO6 conferred scramblase 

activity to ANO1, which does not normally exhibit this activity, strengthened the idea that 
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the hydrophilic cavity of Anoctamins can support scramblase activity and ion 

conduction.135  

 A few years later, two groups141-143 used Cryo-EM to decipher the structure of mouse 

ANO1 (For an in-depth review of Anoctamin structure-function, see Falzone et al.126 or 

Kalienkova et al.144).  One group used a C-terminal truncation of the mouse ANO1 

splice segment a,141 while the other group used the mouse ANO1 splice segment ac.142, 

143  Both groups showed that Anoctamins are comprised of homodimers (Fig. 3A and 

3B), confirming earlier biochemical studies on ANO1145, 146 and the structural study on 

nhTMEM16.138  Like nhTMEM16, each monomer contains 10 (Fig. 2C and 3A) instead 

of the previously predicted 8 TMDs (Fig. 2A and 2B).  Each monomeric subunit bears 

an enclosed hydrophilic cavity surrounded by transmembrane helices TMD3-TMD8 that 

is presumed to be the anion permeation pathway (Fig. 3C). Adjacent to the pores near 

the cytoplasmic side of the membrane are Ca2+-binding pockets that accommodate two 

Ca2+ ions and regulate the opening of the pore (Fig. 3A and 3D). Each monomer is 

gated independently.147, 148 The permeation pathway is an hourglass shape where an 

outer vestibule narrows down to a smaller neck near the Ca2+ binding domain, then 

opens up again into a wider region on the intracellular side (Fig. 3C). For all of the 

current cryo-EM structures including the structures with two Ca2+ ions bound that would 

be expected to show the channel in an activated state.141-143, the size of the narrowest 

part of the pore is too small to permit the flow of anions. These non-conducting 

structures would be expected because ANO1 undergoes time-dependent rundown 

during Ca2+ activation, which pushes the channel into an inactive state. Lam et al.149 

attempted to find conditions to maintain the active state of the channel during the cryo-

EM process by purifying the protein in the presence of PIP2, shown to prevent or 
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reverse Ca2+-induced channel insensitivity,150, 151 combined with the addition of Ca2+ 

briefly before sample vitrification. They also examined the structure of the constitutively 

active mutant I551A in the presence of Ca2+.149 Neither of these strategies produced a 

structure with a fully open pore, perhaps due to the detergent environment.152 Molecular 

dynamics (MD) simulations of ANO1 showed a dilation of the pore upon binding of PIP2 

that is consistent with an activated channel, supporting the idea that the proper lipid 

environment is essential to resolve a cryo-EM channel with a dilated pore. 153 However, 

these simulations were performed on a structure of ANO1 missing large portions of the 

N- and C-terminus. The N-terminus is known to be important in channel function. 

 

Hunt for the Ca2+-Binding Site(s) 

 Kinetic analysis of whole-cell Ca2+-activated Cl- currents in native cells had 

previously revealed that the Ca2+ sensitivity of CaCCs is voltage-sensitive, with 

membrane depolarization reducing the apparent Kd for Ca2+ in Xenopus oocytes,60 

pancreatic acinar,32 and vascular smooth muscle59 cells.  Results obtained with 

expressed ANO1 were in agreement with such a property.154, 155 The voltage-

dependence of the Ca2+ sensitivity arises from membrane potential influencing Ca2+ 

binding, although the possibility of a voltage-dependent transition step following Ca2+ 

binding could not be ruled out.144, 149 Biophysical analysis of the Ca2+-dependence of 

CaCCs suggested that two32 or three59, 60 Ca2+ ions trigger channel activation. 

Expression studies using ANO1 recombinants also yielded Hill coefficients > 1, pointing 

to channel opening requiring more than one Ca2+ ion.  

 The discovery of Anoctamins rapidly set in motion an intense search of the Ca2+-

binding site(s) responsible for their activation and how this process is influenced by 
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membrane potential and permeating ions.  Since the initial structure did not reveal 

obvious calcium-binding structures such as EF hands, investigators searched for 

negatively charged amino acid clusters that could serve as Ca2+-binding domains, 

similar to the “Ca2+ bowl” structure of BK channels. One such region in the 1st 

intracellular loop is a stretch of four consecutive glutamate residues (Fig. 2C), with a 5th 

consecutive glutamate belonging to the very short alternatively spliced variant c (EAVK). 

Ferrera et al.114 first showed that inclusion of segment b, a domain comprising 22 amino 

acids located in the cytoplasmic N-terminal domain of ANO1, reduced the Ca2+-

sensitivity of ANO1 by ~ 4-fold. The same study also showed that deletion of segment c, 

which is expressed in most tissues,114 potently attenuated the characteristic time-

dependent relaxation of ANO1 currents.  These authors concluded that the c segment is 

involved in the voltage-dependence of ANO1. Xiao et al.118 showed that removing the 

four consecutive glutamate residues abolished the voltage-dependence of ANO1 while 

having no effect on Ca2+ sensitivity.  In contrast, omitting segment c considerably 

reduced the apparent affinity for Ca2+, but the currents were still voltage-dependent, at 

odds with those of Ferrera et al.114  Xiao et al.118 suggested possible species differences 

or an underestimation of the role of Ca2+ in the conditions by Ferrera et al.114 as ANO1 

currents appeared to be comprised of both Ca2+-dependent and Ca2+-independent 

components. Despite evidence supporting a clear role by the segment EEEE(EAVK) in 

transducing Ca2+- and voltage-dependent sensing of ANO1, Xiao et al.118 were skeptical 

about these residues being “the” Ca2+-binding site(s) responsible for gating because 

neutralizing the charge of the four glutamates did not affect the apparent Ca2+ 

sensitivity.  
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 Yu et al.154 proposed that E702 and E705 of mouse ANO1 expressing the a and c 

segments are two critical residues in determining Ca2+ sensitivity (Fig. 2B and 2C).  

Mutating these two residues to glutamines profoundly reduced the apparent Ca2+ affinity 

while producing only modest effects on the voltage-dependence. The identification of 

these two glutamate residues serving as a potential Ca2+-binding site(s) required a 

significant modification of the membrane topology of ANO1. HA epitope tag mapping 

and cysteine scanning experiments confirmed that these two glutamates, previously 

thought to be located extracellularly, were instead facing the cytoplasmic side of the 

membrane (Fig. 2B), which brought about uncertainty about the existence of the 

previously proposed reentrant loop.   

 Tien et al.155 confirmed that E698 and E701 of mouse ANO1-a, corresponding to 

E702 and E705 in the mouse ANO1-ac clone (NCBI sequence: NP_848757.5) used by 

Yu et al.154 (as labeled in Fig. 2B and 2C), play a key role in mediating Ca2+ activation of 

ANO1.  Moreover, they refined the revised model of Yu et al.154  by proposing that 

E654, E734 and D738 (positions relative to mouse ANO1-ac; in Tien et al.,155 these 

three residues correspond to E650, E730 and D734), which are located in the vicinity of 

E702 and E705 (sequence includes variant ac or EAVK), form a spatially clustered 

metal ion binding pocket responsible for the coordinated binding of Ca2+. 

  

Evidence for Direct Ca2+ Binding vs. Activation by Ca2+-Calmodulin 

 Direct binding of Ca2+ to promote channel opening was challenged by several 

groups that proposed instead that activation by Ca2+ is indirect via calmodulin. This 

proposal was reminiscent of studies on small conductance Ca2+-activated K+ channels 

(SK) whose activation is triggered by Ca2+ binding to CaM tethered to the channel.156-158  
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As suggested by some investigators for native CaCCs prior to the discovery of 

Anoctamins,159, 160 several groups proposed a similar paradigm for ANO1 even though 

this channel lacked the classical “IQ” signature binding sequence for CaM. Overall, 

studies suggesting that calmodulin is required for ANO1 activation are inconsistent and 

contradictory as detailed below.  

 Using bioinformatics, Tian et al.161 postulated the existence of two novel CaM-

binding domains (CaM-BD1 and CaM-BD2) on the N-terminal end of ANO1 (Fig. 2C).  

They showed that while CaM-BD2 did not bind CaM and produced no effect on channel 

gating, CaM-BD1 was indispensable for transducing Ca2+ activation in the presence of 

internal Ca2+.  One caveat with this assertion is that the CaM-BD1 sequence overlaps 

significantly with splice segment b (Fig. 2C) and expression of ANO1 lacking this 

alternatively spliced sequence produces robust ICl(Ca) that are Ca2+- and voltage-

dependent. Moreover, inclusion of segment b, which would be predicted to enhance 

CaM binding, reduces Ca2+ sensitivity.114  Vocke et al.162 documented the existence of a 

distinct CaM-binding domain on the N-terminal end of both ANO1 and ANO2, referred to 

as the “Regulatory Calmodulin-Binding Motif” or RCBM (Fig. 2C).  This domain was 

shown to be essential for activation of ANO1 and ANO2 by submicromolar Ca2+ 

concentrations, as well as for a slower inactivation of ICl(Ca) when the internal face of the 

membrane is exposed to cytoplasmic Ca2+ concentrations in the tens of micromolar or 

higher. A third report presented evidence for the existence of two additional CaM-

binding domains called “Calmodulin-Binding Motifs” 1 and 2 (CBM1 and CBM2; Fig. 

2C).163 A large portion of CBM1 overlaps with CaM-BD2 on the N-terminus of ANO1 

which Tian et al.75 showed had no impact on channel activity. CBM2 was shown to be 

located in the short intracellular loop preceding TMD9. In contrast to the other two 
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studies, Jung et al.163 proposed that CaM is not involved in ANO1 activation by Ca2+ but 

instead alters the ion conduction pathway by increasing the permeability of the channel 

to HCO3
- relative to Cl-, a property ascribed to be important in regulating fluid secretion 

in submandibular acinar gland cells. In sharp contrast, another group examined this 

question in experiments carried out under well-controlled conditions and found no 

evidence of a shift in anion permeability in response to Ca2+ elevations.164  

 The arguments against a role for Ca2+-CaM in channel activation are strong.155, 165, 

166  Ba2+, which does not bind CaM, can substitute for Ca2+ to activate ANO1.166 Co-

immunoprecipitation experiments only revealed a weak association between CaM and 

ANO1.166 Terashima et al.165 convincingly demonstrated that purified ANO1 

reconstituted in liposomes recapitulated the Ca2+-dependence of human ANO1-abc 

expressed in mammalian cell lines or endogenously in native cells. Moreover, the same 

two mutations (E724Q/E727Q) that led to a profound reduction in Ca2+ sensitivity (E702 

and E705 in mouse ANO1-ac; Fig. 2C)154, 155 also abrogated Ca2+ activation of purified 

ANO1. Together, these data support the idea that ANO1 activation occurs exclusively 

by direct Ca2+ binding to the Ca2+-binding site(s) identified in structural studies.  

 

Is ANO1 Modulated by Bound CaM? 

 Yang and Colecraft167 concluded that the direct activation of ANO1 by Ca2+ is 

supported by an overwhelming body of evidence, which is further corroborated by 

structural studies (discussed below). Similar to SK channels, they found CaM to be 

tethered on the N-terminus of ANO1, even in the absence of intracellular Ca2+ 

(apoCaM). They proposed, based on their original study,168 that CaM is not the Ca2+ 

sensor but instead acts as a regulator of ANO1 channels, enhancing Ca2+ sensitivity at 
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[Ca2+]i < 1 μM (termed “Ca2+-dependent sensitization of activation” or CDSA) and 

decreasing channel activity at [Ca2+]i > 10 μM through CaM-dependent inactivation or 

CDI.  Deletion of splice segment a resulted in loss of binding of apoCaM and 

disappearance of both CDSA and CDI, while the exclusion of segment b selectively 

suppressed CDI. In conclusion, tethered or freely diffusing CaM is not required to 

activate the channels, but it is possible that CaM may act as a modulator of ANO1.  

 

Mechanisms Involved in Ca2+-Dependent Activation of ANO1 

 Patch-clamp studies suggested that the voltage-dependence of the apparent Kd for 

Ca2+ and Hill coefficient (> 2) of CaCCs in Xenopus oocytes,60 parotid acinar32 and 

vascular smooth muscle59 cells, as well as recombinant ANO1 expressed in HEK-293 

cells,101 may arise, at least in part, from Ca2+ accessing a binding site within the 

transmembrane electric field. The cryo-EM structures confirmed that calcium ions must 

partially penetrate the transmembrane electric fields, approximately one-third of the 

thickness of the membrane on the intracellular side, to reach the Ca2+-binding site (Fig. 

3A). They also supported the idea of activation of ANO1 by direct binding of Ca2+ to the 

previously discovered Ca2+-binding pocket located within TMD6-TMD8 (N650, E654, 

E702, E705, E734, and D738 relative to the mouse ANO1-ac sequence; Fig. 2C).154, 155, 

169 Importantly, structures were solved for ANO1 with different levels of Ca2+ binding, 

including without Ca2+ bound or with either one or two Ca2+ ions bound. TMD3, TMD4, 

and TMD6 surrounding the neck region for Ca2+ free vs. Ca2+ bound structures 

displayed minor differences. However, the most pronounced differences in the 

alignment between the different levels of Ca2+ binding were in the intracellular half of 

TMD6.141, 142 Since TMD6 contributes to both the pore and Ca2+- binding sites, it is 



 21

poised to be a fundamental structure in the activation of Anoctamins. Indeed, it appears 

to undergo conformational changes upon the binding of Ca2+ playing a pivotal role in 

gating and ion permeation (Fig. 3A and 3E). Peters et al.169 identified G640 as a hinge 

by which TMD6 undergoes conformational changes during channel gating. Without Ca2+ 

bound, an aqueous pathway is accessible to the Ca2+ binding sites as TMD6 interacts 

with TMD7. Upon binding of Ca2+, TMD6 moves towards TMD4. The movement of 

TMD6 alters the size of the pore neck, likely contributing to the gating of the channel.142 

The rearrangement of TMD6 involves the formation of a π-helix from the α-helix 

conformation.142 Two mutations, I637A and Q645A, enhance Ca2+ sensitivity, likely 

mimicking conformational changes associated with the binding of Ca2+.169  In addition to 

the conformational change observed upon Ca2+ binding, the positive charge density of 

Ca2+ ions binding adjacent to the ion permeation path neutralizes negative charges, 

which enhances anion permeation.170 

 Recent structures for the scramblases ANO6 (TMEM16F) and ANO10 (TMEM16K) 

revealed that these proteins contain a third Ca2+ binding site in TM2 and TMD10.171, 172 

Le and Yang173 used electrophysiological, mutagenesis, and metal bridging experiments 

to demonstrate that the third Ca2+ binding site in ANO1 enhances Ca2+-dependent 

activation through a long-range allosteric mechanism. Based on the previously resolved 

ANO1 structures, analysis of electron density maps confirmed that the third binding site 

could be present in ANO1 as well.   

 

Regulation of Native CaCCs by CaMKII and Serine-Threonine Phosphatases 

 Many reports published prior to the discovery of ANO1 suggested that kinases and 

phosphatases regulate native CaCCs. These ideas stemmed from several reports 
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showing that the activity of CaCCs was unstable following patch excision. Experiments 

in airway epithelial174 and vascular smooth muscle50, 51 cells revealed a very rapid 

rundown when transitioning from the cell-attached to the inside-out path clamp 

configuration with single channel activity usually disappearing within seconds to a few 

minutes. This property made it difficult for investigators to study the biophysical 

properties of the channels such as their Ca2+- and voltage-dependence. This was also 

observed for ANO1 expressed in mammalian cell lines.175   

 The first convincing evidence for regulation of native CaCCs by post-translational 

modification came from a study in equine tracheal smooth muscle cells by Wang and 

Kotlikoff.84 These investigators showed that Ca2+-activated Cl- currents evoked by either 

a rapid exposure to caffeine, the purinergic agonist ATP, or the Ca2+ ionophore 

ionomycin, displayed a shorter time course than that of the Ca2+ transient measured 

simultaneously with the fluorescent Ca2+ indicator Fura-2. When exposed to the CaM 

inhibitor W7 or a specific inhibitor of CaMKII (KN-93 or peptide inhibitor), ICl(Ca) and Ca2+ 

transients followed a similar time course. Similar effects were observed when replacing 

intracellular ATP with the non-hydrolyzable form of ATP, AMP-PNP, which indicated 

that phosphorylation was probably playing a role in this process. Consistent with this 

hypothesis, inhibition of the Ca2+-independent phosphatases PP1 and PP2A by okadaic 

acid accentuated and accelerated ICl(Ca) inhibition while having only a minor effect on the 

Ca2+ transient. The authors postulated that elevation of intracellular Ca2+ levels might 

cause CaMKII-mediated phosphorylation resulting in channel closure or “inactivation”.  

They also proposed that such regulation would constitute an efficient negative feedback 

system to terminate post-synaptic transmission by opposing the sustained 

depolarization caused by CaCC activation. 
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 Greenwood et al.54 examined this question in rabbit arterial and venous smooth 

muscle cells using the whole-cell patch clamp configuration by clamping free 

intracellular Ca2+ concentration ([Ca2+]i). They showed that blocking CaMKII with KN-93 

or Autocamtide-2-related inhibitory peptide (ARIP) increased the magnitude of ICl(Ca) in 

coronary and pulmonary artery myocytes dialyzed with [Ca2+]i in the 500-1000 nM Ca2+ 

range.  This effect was consistent with a modulation of the gating properties of the 

channels as evidenced by the noted acceleration of the slow current relaxation during 

depolarizing steps, slower deactivation during repolarizing steps, and a leftward shift in 

the steady-state activation curve. Cell dialysis with a constitutively active Ca2+-

independent CaMKII isoform (AutoCaMKII) produced opposite effects.  

Interestingly, in portal vein myocytes, such a mode of regulation by CaMKII was not 

detected, and CaMKII appeared to instead enhance ICl(Ca) in a small fraction of cells. 

Thus, the authors could only speculate that the differential effects of CaMKII-mediated 

phosphorylation of CaCCs in arterial and venous myocytes might be attributed to a 

differential pattern of CaMKII isoforms expression (and likely phosphatases) and/or 

CaMKII phosphorylating unidentified regulators of CaCCs in the two cell types. 

 In a subsequent study, Ledoux et al.55  reported that the Ca2+- and CaM-dependent 

serine-threonine phosphatase Calcineurin (CaN; PP-2B) exerted an opposite effect to 

that of CaMKII on ICl(Ca) in rabbit coronary artery myocytes by promoting channel 

opening. They found that blocking CaN with Cyclosporin A (CsA) or a specific CaN 

peptide inhibitor, which would result in a higher state of phosphorylation by CaMKII, 

reduced ICl(Ca) (Fig. 4C). Inhibition of dephosphorylation by CsA reduced the Ca2+ 

sensitivity and activation kinetics of ICl(Ca), and increased deactivation kinetics. A 

subsequent study showed that cell dialysis with exogenous CaN-Aα (Fig. 4C), but not 
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CaN-Aβ, increased ICl(Ca) and altered its kinetics in rabbit pulmonary myocytes (PA).56 A 

report by Ayon et al.57 further demonstrated that the modulation of ICl(Ca) by CaN in PA 

myocytes appeared to be upstream of another dephosphorylation step involving at least 

one Ca2+-independent phosphatase because the inhibition of PP1/PP2A led to similar 

effects to those produced by specific inhibitors of CaN (Fig. 4C). The hypothesis of PP1 

operating downstream of CaN was supported by the observation that the effect of an 

intracellular application of CaN-Aα was obliterated by the highly specific PP1 inhibitor 

NIPP-1 (0.1 nM).  

 To better understand the impact of phosphorylation on the biophysical properties of 

CaCCs in rabbit PA myocytes, Angermann et al.59 examined the effects of dialyzing the 

cells with a pipette solution containing 3 mM ATP to support phosphorylation, or 0 mM 

ATP or 3 mM AMP-PNP, a non-hydrolyzable analog of ATP, to induce a global state of 

dephosphorylation. In the presence of ATP, ICl(Ca) ran down by ~80% over 20 min.  In 

contrast, the current only ran down by ~45% during the first 2 min of cell dialysis in cells 

dialyzed with 3 mM AMP-PNP, but then slowly recovered to reach a level after 20 min 

that was similar to the initial current recorded after seal rupture. Omitting ATP from the 

pipette solution produced identical effects to AMP-PNP, suggesting that ATP binding 

per se did not appear to be involved in the inhibition of CaCCs in the presence of ATP. 

In addition, phosphorylation produced a marked decrease in voltage sensitivity while 

having little to no effect on the Ca2+-dependence.  Marked effects on ICl(Ca) kinetics were 

also noted with dephosphorylation accelerating activation during strong depolarizing 

steps and slowing deactivation during repolarization, indicating a shift toward the open 

state.  These studies demonstrated that native CaCCs are down-regulated by CaMKII-

mediated phosphorylation, a process opposed by both Ca2+-dependent and Ca2+-
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independent phosphatases. Thus, in vascular smooth muscle cells, CaCC down-

regulation would be expected to attenuate and/or abbreviate the Ca2+ transient triggered 

by vasoconstrictors coupled to Gq-protein coupled receptors by promoting calcium 

channel closure near the resting membrane potential, most likely through a reduction in 

voltage sensitivity. 

 

Regulation of ANO1 by CaMKII-Mediated Phosphorylation 

 The first evidence for a possible regulation by phosphorylation of expressed ANO1 

came from a study by Tian et al.161 In addition to proposing that intracellular CaM, ATP, 

and the actin cytoskeleton exerted a permissive role on ANO1 function, this group also 

showed that KN-62, a CaMKII blocker, augmented ANO1 currents evoked by 

ionomycin. Surprisingly no explanation was offered about the more potent CaMKII 

inhibitor KN-93 being ineffective. Despite the identification of numerous putative 

phosphorylation sites for several kinases such as Protein Kinases A and C, Casein 

Kinase 2 and MAPK/ERK, and the serine/threonine phosphatases PP1/PP2A, ANO1 

was found to be insensitive to broad spectrum and specific inhibitors of these enzymes. 

A subsequent study by Tian et al.75 revealed that expressed ANO1 currents in HEK-293 

cells ran down after seal rupture in the presence of internal ATP, and KN-62 

antagonized this effect. In contrast, cell dialysis with exogenous constitutively active 

CaMKII inhibited ANO1 currents. Together, these preliminary studies suggested that, 

like vascular myocytes,54-57, 59, 84 ANO1 expressed in a heterologous expression cell 

system also appeared to be down-regulated or “inactivated” by a phosphorylation step 

involving CaMKII. 
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 The next question concerned whether one or more CaMKII-mediated 

phosphorylation events directly target the pore-forming subunit of ANO1. Lin et al.176 

performed siRNA experiments in cultured mouse basilar artery smooth muscle cells 

(BASMC) and identified CaMKIIγ as the isoform responsible for down-regulating ICl(Ca) 

and ANO1 activity. They also proposed that S727 is the site phosphorylated by 

CaMKIIγ.  The specific mouse splice variant isoform was not indicated, but the short 

sequence shown in their article was consistent with S673 in Figure 4C, which is relative 

to ANO1-ac.  This site was interesting and relevant based on its proximity to the Ca2+ 

binding sites previously identified by other groups.154, 155 There were a few puzzling 

findings in this report. Expression of a mutant of ANO1 neutralizing a potential CaMKII 

phosphorylation of a serine at position 525 (S525A; corresponding to S471 in mouse 

ANO1-ac; Fig. 4C), located in the first intracellular loop, led to large currents that were 

similar to that produced by the S727A mutant.  Second, expression of a 

phosphomimetic mutant at S525D led to smaller currents than those produced by the 

S525A mutation. These data would suggest that CaMKII may also phosphorylate S525.  

 Ayon et al.177 explored the regulation of mouse ANO1-a expressed in HEK-293 cells 

by endogenous CaMKII and the Ca2+-independent serine-threonine phosphatases 

PP1/PP2A. Currents produced by the expression of ANO1 ran down ~ 65% from their 

initial level in cells dialyzed with 500 nM Ca2+ and 5 mM ATP (Fig. 4A). In contrast, 

removing ATP obliterated the initial current rundown. After 20 min of cell dialysis, ANO1 

currents were ~ 3-fold larger in cells dialyzed with no ATP vs. cells loaded with ATP 

(data not shown).  These results were consistent with an ATP-dependent down-

regulation of channel activity and argued against the proposed permissive role of ATP 

to support channel activity.161  The rundown of ANO1 was partially attenuated by 
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inhibiting CaMKII with KN-93 or the peptide inhibitor ARIP. Blocking PP1/PP2A with 

okadaic acid or cantharidin led to rundown of ANO1 in the absence of ATP. These data 

suggested that CaMKII-mediated phosphorylation inactivated ANO1, and a role for 

PP1/PP2A could only be revealed when phosphorylation was limited by omitting internal 

ATP. These observations were remarkably similar to those made for native CaCCs in 

smooth muscle cells (Fig. 4B).54-56, 59, 84  Additionally, Ayon et al.177 carried out site-

directed mutagenesis to identify one or several potential sites for CaMKII 

phosphorylation. Of four sites bearing the consensus CaMKII sequence RxxS/T, only 

the S528A (identical to S525 in Lin et al.176 and corresponding to S471 in mouse ANO1-

ac; see Fig. 4C; the serine at position 528 in Ayon et al.177 was relative to the full mouse 

ANO1 sequence including exon 0: NCBI sequence: XP_036008438.1) mutant displayed 

attenuated rundown that was similar to that produced by either one of the two CaMKII 

inhibitors on wild-type ANO1, suggesting that S528 is one possible site responsible for 

CaMKII-induced inactivation of ANO1 (Fig. 4C).  

  Finally, a more recent report by Ko et al.178 investigated the crosstalk between the 

regulation of the ac variant of mouse ANO1 expressed in HEK-293 cells by CaMKII 

phosphorylation and the membrane phospholipid PIP2 (discussed in the next section). 

Similar to Ayon et al.,177 they found that omitting ATP, or replacing ATP with AMP-PNP, 

led to currents that were ~ 2.5-4.5 times larger than those measured in cells dialyzed 

with 3 mM ATP.  While wild-type ANO1 was insensitive to inhibition of PKC, Erk, or 

PKA, the CaMKII inhibitor KN-62 enhanced the current. The same group also proposed 

S673 (Fig. 4C; same site identified by Lin et al.176) as the serine residue phosphorylated 

by CaMKII because of the three sites investigated, only the S673A mutant displayed 

augmented currents in the presence of ATP, and only the phosphomimetic mutant 
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S673D exhibited reduced currents in the absence of ATP. Finally, noise analysis of wild-

type ANO1 currents inactivated in the presence of ATP revealed that single-channel 

currents were significantly reduced by phosphorylation while the maximum open 

probability and channel number were unaffected.  

 These studies support the notion that direct phosphorylation by CaMKII of at least 

one of the potential serine residues largely results in the ATP-dependent inactivation of 

Ca2+-, voltage-, and time-dependent ICl(Ca) in native cells. The data also suggest that the 

down regulation may be linked to a partial closure of the permeation pathway.  This 

regulatory modality was shown to influence the pharmacology of native CaCCs. For 

instance, Niflumic acid, a classical CaCC inhibitor known to exert weak open state 

channel block,179 was less potent at inhibiting ICl(Ca) in rabbit PASMCs under conditions 

promoting global phosphorylation and channel closure.58 Since permeation and gating 

are tightly linked, it will be of interest to determine the impact of phosphorylation on 

single channel conductance when other more permeant anion species such as I- or 

SCN- serve as charge carriers. It is important to emphasize that the regulation of ANO1 

by CaMKII-induced phosphorylation is not the only mechanism involved in current 

rundown.  Patch excision in the inside-out configuration leads to the rapid rundown of 

ANO1 channels in the absence of CaMKII and ATP in the bathing solution.175  This 

rundown may be due to a combination of factors including the loss of essential factors 

such as phosphatidylinositol-(4,5)-bisphosphate (see next section), loosely bound 

ancillary subunits, and perturbations of the microenvironment surrounding ANO1 

(caveolae, actin cytoskeleton, etc.). 
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Regulation of ANO1 by Phosphatidylinositol-(4,5)-Bisphosphate and Other 

Membrane Lipids 

 Phosphatidylinositol-(4,5)-bisphosphate (PIP2), a phospholipid located in the 

cytoplasmic leaflet of the plasma membrane, composes ~ 1% of the total acidic lipids in 

the membrane. 180, 181 Although this phospholipid constitutes a small fraction of the total 

membrane lipid composition, it is the most abundant phosphoinositide (> 99%).180  PIP2 

regulates a plethora of ion channels, transporters, and numerous signal transduction 

pathways.181, 182  In view of the importance of this signaling molecule in modulating 

channel function, it is not surprising that investigators quickly began exploring the 

possibility that PIP2 may also modulate Anoctamins as summarized below. 

 Through a combination of excised and whole-cell patch clamp electrophysiology, 

and biochemical and pharmacological approaches, Pritchard et al.183 investigated if 

CaCCs in rat PASMCs, previously confirmed to be encoded by ANO1,184, 185 are 

regulated by PIP2 (Fig. 5A).  Intracellular application of diC8-PIP2, a water-soluble PIP2 

analog, dose-dependently blocked ICl(Ca) between 0.1 and 10 μM.  Consistent with this 

observation, ICl(Ca) increased following PIP2 breakdown by α1-adrenoceptor and PLC 

activation with methoxamine, PIP2 binding by α-cyclodextrin (a cell permeable 

phospholipid acceptor), PIP2 scavenging by poly-L-lysine, or inhibition of PIP2 synthesis 

with Wortmannin (a PI4K inhibitor at high concentrations).  In contrast, PLC inhibition by 

U73122 to increase PIP2 synthesis reduced ICl(Ca). Together, these results indicated that 

PIP2 inhibits native CaCCs in vascular smooth muscle cells.  Agonist-induced 

engagement of GPCRs coupled to PLC would be expected to exert a dual stimulatory 

effect by releasing Ca2+ from intracellular stores and relief of PIP2 inhibition due to its 
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breakdown by PLC. But these results have not been replicated with expressed ANO1 as 

discussed below. 

 As opposed to the results described above in native vascular smooth muscle cells, 

Ta et al.186 showed that ANO1 expressed in HEK-293 cells are potently stimulated (~ 5-

fold) by an intracellular application of diC8-PIP2, an effect that was accentuated at low 

[Ca2+]i (Fig. 5B). In contrast, diC8-PIP2 modestly inhibited ANO2 (or TMEM16B), and 

this effect was Ca2+-independent. Co-expression of ANO1 and Danio rerio voltage-

sensitive phosphatase (Dr-VSP), which depletes endogenous PIP2 when the membrane 

is depolarized,187 produced time-dependent inhibition and stimulation of ANO1 and 

ANO2, respectively, during steps to +100 mV.  Co-expression of a PIP kinase 

antagonized these effects, which were undetectable when ANO1 and ANO2 were co-

expressed with an inactive mutant of Dr-VSP.   

 A subsequent study by De Jesús Pérez et al.188  showed that co-expression of 

ANO1 with Dr-VSP also caused time-dependent decline of ANO1 during strong 

depolarizing steps, again suggesting that PIP2 depletion inactivates the channels. 

Repolarization to negative potentials, which suspends Dr-VSP phosphatase activity, led 

to a partial recovery of ANO1 in the presence of intracellular Mg2+ and ATP, an 

observation consistent with resynthesis of PIP2 promoting channel activity. Moreover, 

an intracellular application of diC8-PIP2 in inside-out membrane patches from ANO1-

expressing HEK-293 cells attenuated the rundown of single ANO1 channels exposed to 

high intracellular [Ca2+]i (100 μM).  

 These investigators also examined whether fatty acids (FA), phosphatidylserine 

(PS), and cholesterol (discussed in the next section) regulate ANO1. They found that 

stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids, and 
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methyl stearate and PS all inhibit ANO1 in a concentration- and voltage-dependent 

manner.  These effects were attributed to a direct membrane-delimited lipid-channel 

protein interaction and were not associated with PIP2 depletion or a change in the 

membrane distribution of ANO1 due to altered trafficking.  

 In another study, Tembo et al.151 investigated the regulation by PIP2 of endogenous 

CaCCs in Xenopus oocytes (Fig. 5B), which are known to be the product of ANO1.100  

Similar to the two studies described earlier on expressed ANO1, these investigators 

concluded that ANO1 gating requires both Ca2+ and PIP2.  ANO1 channels quickly ran 

down in the presence of 2 mM Ca2+ applied on the internal side of the membrane, and 

this process was partially reversed by exposure to diC8-PIP2 on the cytoplasmic side of 

the membrane. Additionally, an internal application with a specific PIP2 antibody or the 

PIP2 scavenger neomycin accelerated current decay, whereas supplying ATP or 

blocking phosphatase activity with the wide-spectrum inhibitor β-glycerophosphate 

pentahydrate delayed current rundown (Fig. 5B).  

 Centeio et al.189 documented that an internal application of diC8-PIP2 robustly 

stimulated over-expressed ANO1 currents in HEK-293 cells but produced little to no 

effect on endogenous ANO1 currents in HT29 colonic epithelial cells. They proposed that 

expressed ANO1 channels may have better accessibility to intracellular Ca2+ than those 

in a native environment.  Studies on cloned ANO1 channels unequivocally 

demonstrated a stimulatory effect of PIP2 on expressed ANO1, whereas the regulation 

of native ANO1 channels in some mammalian cells remains unclear and appears to be 

cell- and condition-dependent. 

 Studies on the molecular basis for the PIP2 effects have used mutagenesis and 

molecular dynamics simulations to identify several regions that could bind PIP2 and 
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modify channel behavior. Le et al.150 proposed grouping the pore and gating region into 

a PIP2 binding regulatory module (TMD3-TMD5) that is linked to channel inactivation 

and a Ca2+-binding gating module (TMD6-TMD8) that is involved in channel activation 

(Fig. 3G). They identified 6 basic residues near the cytosolic interface of TMDs 3-5 that 

form a putative PIP2 binding site, R451, K4561, R482, K567, R575, and K579 (mouse 

ANO1-a variant). Molecular dynamics simulations suggested that PIP2 binding to this 

site in the Ca2+ bound channel causes TMD4 to move away from TMD6 to contribute to 

a fully open pore.153 Yu et al.190 identified three potential PIP2 binding sites with the first 

located on the cytosolic side of TMD1-2 near the inter-dimer space, the second at the 

base of TMD6, and the third on the intracellular loop between TMD2-3 (Fig. 3F). This 

group suggested that PIP2 binding to these sites may influence channel activity through 

modulation of Ca2+ binding, channel gating, or modification of the ion conduction 

pathway. As mentioned previously, Ko et al.178 proposed that PIP2 differentially 

regulates ANO1 segments “a” and “ac”. They suggested that CaMKII phosphorylates 

S673 (Fig. 4C) on the third intracellular loop, which causes an allosteric modulation of 

the first intracellular loop, imparting differential sensitivities to PIP2 for the splice variants 

in the presence of intracellular ATP. These studies demonstrated that there is a 

multiplicity of functional PIP2 binding sites, but a comprehensive understanding of the 

modulation of the channel by PIP2 binding and how this interaction is influenced by of 

CaMKII-mediated phosphorylation is still lacking. 

 

Is ANO1 Located in Membrane Lipid Rafts and Caveolae? 

 Compartmentalization of signaling pathways is an important mechanism for driving 

cell responses to accomplish specific tasks dictated by unique stimuli.  Confinement of 
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ion channels, receptors, and enzymes to lipid rafts and caveolae is a good example of 

subcellular functional fine tuning.191, 192 Sones et al. 193 first investigated whether the 

biophysical properties of CaCCs in murine portal vein smooth muscle were affected by 

methyl-β-cyclodextrin (MβCD), a cholesterol depleting agent commonly used as a tool 

to disrupt membrane cholesterol- and sphingolipid-enriched structures called lipid rafts, 

and caveolae, a subset of lipid rafts.191  The study showed that a 5-min exposure to 

MβCD (3 mg/mL) enhanced the maximal conductance of CaCCs and slightly increased 

their voltage sensitivity. These effects were inhibited by co-administration of cholesterol 

in the presence of MβCD.  Biochemical fractionation studies indicated that ANO1 was 

located in low-density fractions enriched in lipid raft markers such as flotillin-2 and 

caveolin and shifted to less buoyant fractions after exposure to MβCD. Although the 

mechanism responsible for enhancing CaCC activity following cholesterol depletion 

remains to be clarified, these experiments suggested that at least a fraction of ANO1 

channels traffics to caveolae in vascular myocytes, where they could hypothetically 

participate in compartmentalized membrane signaling. This question was revisited by 

De Jesús-Pérez et al. 188 on ANO1 expressed in HEK-293 cells. They too found that 

acute exposure to MβCD enhanced ANO1, but the effect was transient. Longer 

incubations with MβCD (30 min) delayed the ANO1 rundown following membrane 

rupture but did not alter the steady-state level reached after 5 min. An exogenous 

addition of cholesterol antagonized the effects of MβCD. The authors speculated that 

the activity of MβCD on ANO1 did not appear to be related to changes in PIP2 levels. 

They proposed that similar to free fatty acids and phosphatidylserine, cholesterol may 

regulate ANO1 through direct lipid-protein interactions.  Consistent with this idea was 

the report of Malvezzi et al.140 showing that the dual scramblase/ion channel activity of 
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the purified ancestral Anoctamin afTMEM16 reconstituted in lipid liposomes was very 

sensitive to the lipid composition. When reconstituted in liposomes containing a mixture 

of 1-palmitoyl-2-oleoyl phosphatidylglycerol and 1-palmitoyl-2-oleoyl 

phosphatidylglycerol afTMEM16 activity was inhibited, whereas a mixture of E. coli polar 

lipids and egg phosphatidyl choline supported afTMEM16 function. 

 

Is ANO1 Regulated by the Cytoskeleton? 

 Participation of the actin cytoskeleton and microtubules in the gating of native Cl- 

channels recorded in bronchial epithelial cells had been suggested prior to the 

discovery of Anoctamins.194 A recent study on expressed ANO1 showed that actin 

depolymerization with cytochalasin D or actin stabilization with phalloidin suppressed 

the current.161  This was a surprising finding considering that stabilizing and 

destabilizing the actin cytoskeleton produced the same effect.  It is possible that these 

pharmacological agents have direct effects on ANO1. A more recent report showed that 

cytochalasin D had no effect on the amplitude of ANO1-encoded endogenous CaCCs in 

mouse portal vein smooth muscle cells, but slowed the deactivation kinetics. However, 

the application of jasplakinolide, an agent promoting actin polymerization, inhibited 

these effects.195  The same study revealed that cytochalasin D produced no effect on 

currents resulting from the expression of various combinations of splice variants of 

mouse ANO1 in HEK-293 cells. They reasoned that the lack of effect of this agent could 

be attributed to the better developed actin cytoskeleton in muscle vs. non-muscle cells, 

and that such experiments argued in favor of a true interaction of the actin cytoskeleton 

in myocytes as opposed to a non-specific and direct effect of cytochalasin D on ANO1. 

Support for the hypothesis of a physiological interaction of the cytoskeleton with ANO1 
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also came from results of a proteomic strategy, which showed that ANO1 physically 

interacts with a network of scaffolding proteins (ezrin, radixin, moesin, and RhoA) that 

links the plasma membrane to the actin cytoskeleton.196   ANO1 expressed in HEK-293 

cells co-localized with moesin, ezrin, radixin, and actin in the apical membrane and 

intercalated excretory ducts of salivary glands. Knockdown of moesin by shRNA 

reduced ANO1 currents. This effect was not due to a reduction of the amount of ANO1 

at the plasma membrane.  As a whole, these studies provided a fragmentary picture on 

how the cytoskeleton may regulate ANO1 and further analysis is warranted.  

 

Regulation Through Coupling of ANO1 with Other Membrane Proteins 

 Many pore-forming α subunits of ion channels have ancillary or accessory subunits 

(usually labeled β, γ, δ, etc.) that physically interact with the α subunit to regulate their 

translocation to the membrane, compartmentalization to a membrane subdomain that 

conveys specific localized functions, and biophysical and pharmacological properties.  A 

report by Perez-Cornejo et al.196 identified a large network of proteins directly or 

peripherally associated with ANO1 that have the potential to fine tune its properties and 

function. As an example, one of the identified proteins was PI4Kα, a kinase catalyzing a 

key step in the biosynthesis of PIP2. Although it is not a true β subunit, its presence in 

the microdomain of ANO1 certainly could play an important role in modulating its gating 

by maintaining PIP2 levels in the local lipid bilayer environment supporting the channel. 

The subsections below describe recent literature highlighting unique interactions of 

specific proteins with ANO1 by altering its expression, behavior, or physiological role in 

different cell types. 

CLCA1 and 2 
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 As discussed in a previous section, the CLCA family of proteins was the first class of 

proteins proposed as molecular candidates for native CaCCs,89, 102, 103, 197 but the idea 

that they are pore-forming subunits supporting CaCC activity was later dismissed. 102, 107 

The possible role of CLCA proteins, particularly hCLCA1 and 2, as regulators of CaCC 

expression and function, was revisited after the discovery of Anoctamins. hCLCA1 and 

its mouse ortholog mCLCA3, like many other members of this protein family, are soluble 

proteins secreted by airway and gut epithelial cells.105  Expression of hCLCA1 in two 

mammalian cell lines led to stimulation of endogenous CaCCs.198-201 Yurtsever et al.199 

first showed that this process involved the proteolytic self-cleavage of hCLCA1 due to 

the presence of a novel zincin metalloprotease domain at its N-terminal end. The 

stimulation of CaCCs was not linked to the proteolytic activity of hCLCA1 per se 

because exposure to an N-terminal mutant fragment lacking enzymatic activity still led 

to enhanced CaCC activity. An ensuing study from Sala-Rabanal et al. 200 demonstrated 

that hCLCA1 secreted from cells increased endogenous ANO1-induced ICl(Ca) in HEK-

293T cells through a paracrine mechanism. This effect, which occurred within minutes, 

was not due to increased expression of ANO1 but rather an increase in the number of 

channels on the cell surface. This occurred by stabilization of ANO1 at the plasma 

membrane, most likely by decreasing internalization.  Subsequent reports demonstrated 

that the von Willebrand factor type A (vWF) domain located in the N-terminus of 

hCLCA1 is responsible for the interaction with ANO1.201, 202 The engagement of ANO1 

was speculated to involve Mg2+-dependent binding of the extracellular loop between 

TMD9 and 10 of ANO1 to a conserved metal ion-dependent adhesion site (MIDAS) 

motif on the vWF domain of hCLCA1.  Finally, the effects described above are not 

unique to hCLCA1 as the expression of hCLCA2 in a HEK-293T cell line stably 
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expressing hANO1 nearly doubled the magnitude of ICl(Ca) evoked by the Ca2+ ionophore 

ionomycin.203 

Local Functional Coupling of ANO1 with Other Ion Channels 

 Recent evidence has shown that in small nociceptive neurons of dorsal root ganglia, 

ANO1 channels may be confined to lipid raft domains, where they structurally 

colocalized and functionally interacted with GPCRs and IP3 receptors (IP3R).204 In the 

majority of these neurons, Ca2+ entry through VGCCs was unable to activate ANO1. In 

contrast, stimulation of type 2 bradykinin or type 2 protease-activated receptors 

triggered a robust stimulation of ANO1 currents produced by Ca2+ mobilization through 

IP3R located in regions of the endoplasmic reticulum that made close contacts with the 

plasma membrane.  The tight physical coupling of ANO1 with IP3R involves tethering of 

the C-terminal end and the first intracellular loop of ANO1 with one or more undefined 

regions of IP3R. Cholesterol depletion and the consequent destruction of lipid rafts 

uncoupled GPCRs, ANO1, and IP3R. Cholesterol depletion also unmasked the 

stimulation of ANO1 by Ca2+ influx through VGCCs. This is consistent with the evidence 

discussed earlier showing that ANO1 may be located in caveolae.193 There is 

speculation that the close association of ANO1 with IP3R allows for shaping specific 

localized Ca2+ signals in response to inflammatory signals rather than requiring global 

changes in [Ca2+]i. This  arrangement would help minimize the potentially negative 

impact of self-sustaining positive feedback loops between ANO1 and VGCCs that could 

lead to neuronal hypersensitivity.205  

 A similar relationship was documented in airway smooth muscle cells where CaCCs 

were shown to interact with ryanodine receptors (RyR).86  In these cells, spontaneous 

and spatially localized Ca2+ release events called Ca2+ sparks can activate clusters of 
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BK channels and CaCCs, producing the so-called Spontaneous Transient Outward 

Currents (STOCs) and Spontaneous Transient Inward Currents (STICs), respectively. In 

some cells, both STOCs and STICs can overlap in time, creating “STOICs”.206 Bao et 

al.86 showed that STICs lagged Ca2+ sparks by only 3 ms and speculated that CaCCs 

were most likely all located in areas of the membrane juxtaposed with the sarcoplasmic 

reticulum making close contact with the former, where Ca2+ release through RyRs 

results in CaCC activation. They hypothesized that such a structural arrangement is 

necessary to gate ANO1 because its Ca2+ sensitivity at physiological membrane 

potentials would be too low if the channels were activated by global increases in [Ca2+]i. 

Subsequent studies showed that ANO1 is responsible for ICl(Ca) in airway myocytes and 

is involved in smooth muscle contraction to agonists and airway hypercontractility in 

asthma.207-212 More studies using biochemical (co-immunoprecipitation and Western 

blot, peptide displacement) and advanced microscopy (super resolution 

nanomicroscopy, proximity ligation assays, Förster Resonance Energy Transfer) 

techniques are needed to determine if the interaction of ANO1 and RyR requires direct 

physical tethering between the two proteins or involves intermediary scaffolding 

proteins.  

 ANO1 also physically couples to Transient Receptor Potential (TRP) channels, 

particularly with at least two members of the vallinoid subfamily, TRPV1 and TRPV4, 

and two members of the canonical TRP subfamily, TRPC1 and TRPC6. Takayama et 

al.213 showed that in the apical membrane of epithelial cells of choroid plexus (CPECs), 

ANO1 structurally and functionally interacts with heat-sensitive Ca2+-permeable TRPV4, 

a property not shared by ANO4, ANO6, or ANO10, which are also expressed in CPECs.  

This interaction could also be recapitulated by co-expression of the channels in HEK-
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293 cells.  ANO1-mediated ICl(Ca) could be activated in wild-type CPECs by combining 

warmth and hypo-osmotic medium, which are endogenous activators of TRPV4, or the 

specific TRPV4 agonist, GSK1016790A. ANO1 currents were not activated in TRPV4-

KO CPECs. 

 In this system, local Ca2+ entry through TRPV4 stimulates neighboring ANO1 

leading to Cl- efflux due to an outwardly directed electrochemical gradient Cl-.  Cl- efflux 

through ANO1 and the K+- Cl- cotransporter (KCC), and concomitant K+ efflux through 

this exchanger, drives the osmotic exit of water through aquaporin 1/4 channels and a 

reduction in cell volume. This tight TRPV4-ANO1 coupling is thought to play a key role 

in maintaining fluid balance in the brain by promoting ventricular drainage and cerebral 

fluid movement.   

 A similar type of coupling between ANO1 and TRPV4 was reported in exocrine 

acinar cells of the salivary and lacrimal glands.214 In these systems, stimulation of Ca2+ 

influx through TRPV4 by a muscarinic agonist or heat, reinforced by IP3R-mediated 

Ca2+ release, stimulates Cl- efflux through ANO1.  This stimulation leads to cell 

shrinkage (so-called “regulatory volume decrease” mechanism following the initial cell 

swelling) by passive water efflux through aquaporin 5 channels. This water efflux is the  

mechanism involved in saliva or tear production.215 This study also showed that ANO1 

could be activated by store-operated Ca2+ entry (SOCE) through TRPC1.  In TRPC1 KO 

cells ICl(Ca) triggered by SOCE were potently inhibited. In contrast, ANO1 did not couple 

to TRPC3. Whether ANO1 and TRPC1 are physically associated was not determined.  

These studies beg the following question: Are the ANO1 channels interacting with 

TRPV4 the same ones functionally coupling with TRPC1, or do they represent different 

subpopulations?  In cerebral artery smooth muscle cells, ANO1 was shown to interact 
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with TRPC6. This mechanism was suggested to amplify the vasoconstriction elicited by 

Hyp9, a selective activator of TRPC6.216 Co-immunoprecipitation and FRET revealed 

that ANO1 and TRPC6 reside within the same macromolecular complex. 

 Activation of TRPV1 by noxious stimuli such as capsaicin (CAP) in sensory neurons 

is critically involved in pain sensation. This pathway causes membrane depolarization 

and activation of voltage-gated Na+ channel and action potential generation. Takayama 

et al.217 showed that ANO1 gating primarily mediated depolarization in response to Ca2+ 

entry through TRPV1, which is physically bound to ANO1 in these cells. In addition, the 

TRPV1-ANO1 coupling led to enhanced action potential firing in response to CAP, a 

response that was also blocked by the ANO1 blocker T16Inh-A01.  Shah et al.218 

reported a similar interaction between TRPV1 and ANO1 in peripheral somatosensory 

neurons. They also showed that the CAP-induced ANO1 conductance involved ER Ca2+ 

release through an additional interaction with type 1 IP3R (IP3R1).  Proximity ligation 

assays and super-resolution nanomicroscopy confirmed that TRPV1, ANO1, and IP3R1 

reside in the same microdomain. These results are consistent with the idea that the 

functional interaction between the three ion channels primarily occurs within tight 

submembrane compartments formed between ER domains in close proximity with the 

plasma membrane (~ 20-30 nm). Such coupling supports localized Ca2+ signaling, 

which amplifies nociception. 

KCNE1 – A Novel Ancillary β Subunit Regulating ANO1? 

 A provocative report published in 2021 by Ávalos Prado et al.219 revealed a novel 

interaction between KCNE1 (also referred to as MinK), one of five K+ channel auxiliary 

subunits (KCNE1-5), and ANO1. KCNE1 associates with the delayed rectifier K+ 

channel KCNQ1 to produce the slow delayed rectifier K+ current in cardiac myocytes 
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called IKs.  Mutations in KCNE1 and KCNQ cause cardiac arrhythmias due to Long QT 

syndrome.220 Co-expression of KCNE1 and ANO1 in HEK-293T cells converted ANO1-

induced ICl(Ca) to voltage-dependent Cl- currents lacking Ca2+-sensitivity.  This interaction 

was noted in proximal convoluted tubular cells indicating that it also prevails in native 

cells. The investigators used a single molecule pulldown assay and photobleaching step 

strategy to confirm that KCNE1 is directly bound to ANO1 at its N-terminus with a 

stoichiometry of 2 KCNE1 subunits associated with 2 ANO1 monomers. Furthermore, 

expression of KCNE1 with the double ANO1 mutant I637A and Q645A (located in 

TMD6), clinically relevant inherited mutations, led to activation of ANO1 in the absence 

of internal Ca2+, which abolished the modulation of ANO1 by KCNE1.169  This finding led 

to the speculation that KCNE1 mimics the effects of the double mutant in TMD6, 

conferring voltage-dependent gating in the absence of Ca2+. Finally, of the four other 

KCNE subunits tested, only KCNE5 exerted similar effects on ANO1. These results 

indicate that KCNE1 (and perhaps KCNE5) are regulatory β subunits of ANO1 because: 

1) when expressed alone, KCNE1 does not produce an ion conductance; 2) KCNE1 

physically interacts with ANO1 in a fixed stoichiometry, which profoundly modulates the 

biophysical properties of ANO1; and 3) the physical and functional interaction of KCNE1 

and ANO1 was also found in native cells. This publication paved a new and exciting era 

for discovery, with significant translational potential since mutations of KCNE proteins 

have been associated with many pathologies.   

 

Summary and Concluding Remarks 

 The goal of this review was to provide a snapshot of our current understanding how 

CaCCs encoded by ANO1 are regulated by various signaling modalities (summarized in 
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Table 1). The discovery of a valid molecular candidate for small conductance voltage- 

and time-dependent CaCCs took a painstakingly slow, meandrous, and often confusing 

path. We hope that tackling this topic from an historical perspective that included earlier 

work on native CaCCs will enable the reader to eventually connect the dots as to how 

native CaCCs and ANO1 are correlated and regulated in vivo. After the discovery of 

TMEM16 genes, the development of new molecular tools, techniques, experimental 

strategies, and animal models convincingly showed that the original 8 TMD protein 

model (Fig. 2A) that led to the “Anoctamin” acronym necessitated a revision to a 10 

TMD topology (Fig. 2C), which is now the model universally accepted thanks to seminal 

structural studies on several members of this family.  We now know that ANO1 

channels assemble as homomeric dimers, in which each monomer forms a narrow 

hourglass-shaped anion permeation pathway, and each monomer functions 

independently from each other.  Evidence suggests that ANO1 activation does not 

require binding of mobile or tethered Ca2+-CaM, ATP binding, or a phosphorylation step 

mediated by CaMKII.  Instead, multiple studies support the concept of activation by 

direct binding of at least two calcium ions per monomer in a region between TMD6 and 

TMD8 located within the transmembrane electric field. The mechanism of ANO1 gating 

is further complicated by compelling evidence showing that an acidic region within the 

1st intracellular loop between TMD1 and 2, and alternative splicing within the N-terminal 

end (splice variants a and b) and 1st intracellular loop (splice variants c and d; Fig. 2C), 

modulate the pharmacology, and Ca2+-, time- and voltage-dependence of the channel in 

profound ways. The cryo-EM models that are presently available show that portions of 

the N-and C-terminus are unstructured. In the cell, these domains are likely to interact 

with intracellular loops and play a role in channel gating. 
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 In whole-cell and excised patch clamp experiments, ANO1 expressed in mammalian 

cell lines runs down in the presence or absence of internal ATP.  Multiple mechanisms 

may be involved in this process including a possible intrinsic pore restriction141, 175 or 

Ca2+ desensitization by CaM-dependent inactivation at supraphysiological Ca2+ 

concentrations,167, 168 CaMKII-mediated phosphorylation at low to intermediate [Ca2+]i (≤ 

1 μM), loss or biodegradation of PIP2 or other membrane lipids, and likely others (e.g., 

disruption of the cytoskeleton during patch excision).  We still have a poor 

understanding of their relative contribution under various conditions and how they 

intertwine.  Evidence suggests that a portion of this rundown is mediated by at least one 

phosphorylation step mediated by CaMKII, either in the 1st intracellular loop or near the 

putative Ca2+ binding sites. This process is opposed by the serine/threonine 

phosphatases Calcineurin and PP1/PP2A under certain conditions (Fig. 4C).  

Observations on cloned ANO1 remarkably replicated findings previously made for 

CaCCs recorded in vascular smooth muscle cells (Fig. 4A and B). As for many other 

classes of ion channels, the membrane phospholipid PIP2 also regulates ANO1 (Fig. 5), 

but a few limited studies suggest that regulation of ANO1 by PIP2 in native mammalian 

cells may be different than in overexpression systems. This could reflect differences in 

binding partners or membrane lipid composition. ANO1 activity is constrained by long 

chain saturated and unsaturated fatty acids, whereas cholesterol depletion, which 

destroys lipid rafts and caveolae, enhances its gating. ANO1 is directly associated or is 

in close proximity with proteins linked to the actin cytoskeleton. There is mounting 

evidence that in most if not all cell types where it is endogenously expressed, ANO1 is 

located in restricted spaces optimized for compartmentalized signaling, where it 

structurally and functionally interacts with other ion channels in the plasma membrane 
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(TRPCs, TRPVs) and ER (IP3R, RyR) to produce very specific responses (secretion, 

cell volume regulation, excitation, others), and perhaps within the same cell. We have 

also learned that ANO1 can associate with hCLCA1 and hCLCA2 to regulate its 

trafficking and stability in the membrane. Finally, KCNE proteins may be the first 

canonical class of proteins obeying the clear definition of auxiliary β subunit protein 

partners of ANO1, modulating its biophysical properties to achieve specific cellular 

functions. 

 Despite the amazing breakthroughs made in a relative short time span since their 

discovery, we have only scratched the surface regarding our understanding of the 

biophysical properties of Anoctamins in their native environment.  So many questions 

remain unanswered. Being in a macromolecular complex interacting with the actin 

cytoskeleton as well as extracellular matrix proteins, is ANO1 directly or indirectly 

mechanosensitive? Is it modulated by integrin and/or dystrophin complexes? Can it 

associate with other members of the CLCA family of proteins to regulate its 

translocation and function?   

 It is hypothesized that the down regulation of ANO1 by CaMKII-mediated 

phosphorylation serves as a functional break to the sustained depolarization maintained 

by the positive feedback loop between CaV1.2 (or any Ca2+ permeable voltage-

dependent ion channel coupled to ANO1; e.g., TRPV1 and TRPV4) and ANO1.  What is 

the evidence that such a mechanism regulates function (contraction, secretion, etc.) in 

intact excitable tissues such as smooth muscle, and in vivo? ICl(Ca) in rabbit arterial 

smooth muscle cells exhibit massive rundown (70-80% within 5 min; Fig. 4B),57-59 

whereas those in recorded in rat221 or mouse (Leblanc, unpublished observation) 

pulmonary artery smooth muscle cells run down much less (~ 20% or not at all); 
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surprisingly, mouse ANO1 expressed in HEK-293 cells (Fig. 4A) exhibits a phenotype 

that is very similar to ICl(Ca) in rabbit myocytes (Fig. 4B).177  The reasons for such 

differences are unclear. However, they are likely due to the combination of many 

factors, including the exact composition and level of expression of CaMKII, Calcineurin 

and PP1/PP2A, the molecular architecture of the microdomain comprising ANO1, the 

splice variants of ANO1 that are expressed, whether KCNE1 or 5 is co-expressed with 

ANO1, and many other possibilities.  

 Another critical unanswered question concerns the regulation of ANO1 by PIP2 and 

many of its precursors and metabolites when endogenously expressed or artificially 

over-expressed. Some findings are diametrically opposed, but why?  The arguments 

presented above about possible differences in the factors and conditions affecting the 

regulation of ANO1 by CaMKII also apply. The expression of the enzymes involved in 

the biosynthesis (PI4K, PI5K, etc.) and degradation (PLC, PTEN, etc.) of PIP2 in native 

cells and mammalian cell lines used to express ANO1 are likely very different. 

Importantly, the amount of ANO1 expressed in cell lines is much higher than in native 

cells, which increases the ANO1:PIP2 ratio.  Also, if PIP2 stimulates ANO1 gating, why 

is the conductance of both native and ANO1 channels enhanced in the presence of 

physiological [Ca2+]i  (≤ ~ 1 μΜ) when intracellular ATP, which is the main phosphate 

donor in the biosynthesis of PIP2, is removed (Fig. 4A)?57-59, 177, 178  Could these 

seemingly discrepant results reveal dual unidentified modes of regulation by PIP2, 

inhibiting or supporting ANO1 activity depending on certain conditions, or could the 

regulation of KCNE proteins by PIP2 be responsible for these differences?  Does 

alternative splicing alter the regulation of ANO1 by PIP2, and what is the reciprocal 

influence of CaMKII-induced phosphorylation and regulation by PIP2 of ANO1 in vivo?  
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 CaCCs encoded by ANO1 have been implicated in many diseases such as 

systemic222-225 and  pulmonary hypertension,42, 221, 226-230 asthma,207, 209, 231 defective 

epithelial ion transport in the lungs and gut,207, 232-239 and many forms of cancer240, 241 

123, 242-246 to name a few.  More are likely to emerge in the next decade, including the 

discovery of ANO1 mutations directly linked to the etiology of some diseases. In most 

instances, ANO1 expression and function are enhanced and shown to contribute to 

disease initiation and/or progression.  However, what are the underlying mechanisms? 

Are changes in membrane potential solely responsible for their activity, or do alterations 

in the transmembrane gradients of Cl- in different compartments of the cell and 

organelles also playing a key role? Finally, is the regulation of ANO1 by the various 

signal transduction pathways discussed in this article altered and contributing to disease 

states?  The next decade will undoubtedly be exciting as it will raise the fog on many of 

these questions and bring new challenging puzzles to resolve regarding the biological 

roles of ANO1 and its paralogs in health and disease. 
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Figure Legends 
 
Figure 1. Typical experiments highlighting the similar biophysical properties of 

macroscopic Ca2+-activated Cl- currents in native vascular smooth muscle cells and 

mouse ANO1 expressed in a mammalian cell line. (A) Current-voltage (I-V) relationship 

for late whole-cell Ca2+-activated Cl- currents recorded from a freshly dissociated rabbit 

pulmonary artery smooth muscle cell (PASMC). Inset: the family of traces at the top 

were evoked by the voltage clamp protocol shown below from a holding potential of -50 

mV. The red arrow indicates where the currents were measured to construct the I-V 

relationship. (B)  I-V relationship for late Ca2+-activated Cl- currents recorded in an HEK-

293 cell transiently expressing mouse ANO1 (same clone as that used by Ayon et 

al.177). The nomenclature of this panel is identical to that in panel A. For both panels, the 

pipette solution was set to 500 nM free Ca2+ and contained 5 mM ATP. The exact 

composition of the bath and pipette solutions used in these experiments can be found in 

Wiwchar et al.58 ECl: predicted equilibrium potential for Cl-. 

 

Figure 2. Proposed secondary structures of ANO1 and important domains determining 

its biophysical properties and interactions with Ca2+ and Calmodulin (CaM). (A) This is 

the originally proposed topology of ANO1, which was thought to comprise eight 

transmembrane domains, with the N- and C-terminal ends located intracellularly, and a 

pore region located between TMD5 and TMD6 and characterized by a reentrant loop.51-

52 (B) Revised model of ANO1 based on mapping experiments by Yu et al.124 showing 

that certain amino acids originally thought to lie on the extracellular side of the 

membrane near TMD6 turned out to be located on the cytoplasmic side of the 

membrane. The model still comprised eight TMDs, but included a large cytoplasmic 
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loop following TMD6 that reinserted part ways in the membrane to then reach TMD7.  

Two glutamate residues (E702 and E705) in close proximity from each other within the 

larger reinsertion loop were found to be critical for Ca2+ binding, a result that was later 

confirmed by another group.125 (C) Most recent consensus secondary structure of 

ANO1 that now comprises ten instead of eight TMDs. The diagram indicates the 

approximate position of the four alternatively spliced variants a, b, c and d, and the six 

amino acids (N650, E654, E702, E705, E734 and D738) postulated to coordinate the 

binding of two Ca2+ ions within each ANO1 monomer (see text for explanations).  

Please note that the positions of the labeled amino acids are relative to those of mouse 

ANO1-ac, which comprises 960 amino acids (NCBI sequence: NP_848747.5). The 

illustration also highlights the widespread localization of the pore between TMD3 and 

TMD8, the role of TMD6 in ANO1 activation following Ca2+ binding, the stretch of four 

consecutive glutamate residues immediately preceding splice variant c (EAVK) and 

hypothesized to modulate the Ca2+- and voltage-(ΔV)-dependence of ANO1, and splice 

variant b regulating the Ca2+-dependence of ANO1 (see text for explanations). Finally, 

the diagram shows the location of several color-coded calmodulin (CaM) binding sites in 

the N-terminal domain and short intracellular loop between TMD8 and TMD9. Some of 

these sites were proposed based on bioinformatics analysis while others were 

confirmed in biochemical assays. CaM-BD1 (proposed role: channel opening) and BD2 

(proposed role: none?): Calmodulin Binding Domains 1 and 2;129 RCMB: Regulatory 

Calmodulin-Binding Motif (proposed role: channel opening);130 CMB1 and 2 (proposed 

role for both: increased permeability of ANO1 to HCO3
- relative to Cl-): Calmodulin 

Binding Motifs 1 and 2.131 
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Figure 3. Key structural components of ANO1. (A-E) Panels modified from Paulino et 

al. (Reprinted by permission from Springer Nature Customer Service Centre GmbH: 

Springer Nature, under license number 5110410425528).138 (A) Ribbon representation 

of mTMEM16A(ac) viewed from within the membrane showing the Ca2+-bound (green) 

and Ca2+-free (violet) structures (PDB: 5OYB and 5OYG, respectively). The subunits 

are denoted with light and dark shades of the respective colors. The location of the Ca2+ 

in the Ca2+-bound structure are denoted by blue spheres. (B) Structure of the dimer 

interface composed of the extracellular part of α10. The side-chains of the interacting 

residues are shown as sticks. (C) A depiction of the ion conduction pore from one dimer 

of mTMEM16A, shown as a grey mesh. The extracellular vestibule narrows down to the 

neck region then opens back up into the intracellular vestibule. The location of Ca2+ 

binding is shown by the blue spheres. (D) Structure of the Ca2+-binding site (rotated 90° 

compared to A and C). The key amino acids involved in Ca2+ binding are denoted 

(amino acid numbers are shifted by 4 compared to the text due to the inclusion of the c 

splice variant). The mesh around the blue Ca2+ ions shows the cryo-EM density. (E) A 

depiction of the conformational changes of the inner half of α6 during channel activation 

due to Ca2+ binding. α6 is relaxed in the closed state. After binding of Ca2+, the helix 

rotates around the hinge to associate with α7 and α8 (as depicted in D) and is stabilized 

by interactions with the upper Ca2+ molecule. (F) Modified from Yu et al.174 Major sites 

shown to interact with PIP2. The amino acids composing each putative binding site are 

shown in green, with PIP2 shown in tan. The location on the ribbon structure is shown 

by a circle of the color around each site. Sites 1 and 2 are shown on subunit 1, while 

site 4 is shown on subunit 2. (G) Modified from Le et al. (Creative Commons license 

http://creativecommons.org/licenses/by/4.0/)141 Top view of an ANO1 subunit with PIP2 
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depicted in yellow and bound Ca2+ shown as red spheres. α10 from the second 

monomer is shown as 10’. The schematic depicts the two-module design proposed by 

Le et al.141 whereby α3-5 form the PIP2-binding regulatory module (green), α6-8 form 

the Ca2+-binding module (blue), and α1, 2, 9, and 10 forming a supporting domain 

(gray). The permeation pathway is depicted by the white circle between the two 

modules. This putative PIP2 site is close to Site 4 identified in Yu et al.174 

 

Figure 4.  Regulation of ANO1 channels by ATP and calmodulin dependent protein 

kinase II (CaMKII)-mediated phosphorylation.  (A) and (B) These two plots are 

reproduced from Ayon et al.177 (panels A and B of their Figure 3 with a minor change to 

the title in panel A from “TMEM16A” to “Mouse ANO1” to reflect the main abbreviation 

used in this review for internal consistency) with permission from the American 

Physiological Society©. The two panels show the time course of changes in mean ± 

s.e.m. late Ca2+-activated Cl- current amplitude recorded at +90 mV every 10 s from a 

holding potential of -50 mV.  All currents were normalized to the initial current measured 

at time = 0, which corresponds to seal rupture (indicated by arrow in panel A) in the 

whole-cell configuration with a pipette solution set to 500 nM free Ca2+ to activate the 

channels, and 5 mM ATP (filled circles in panel A, n=26; and continuous line in panel B) 

or 0 mM ATP (open circles in panel A, n=14; and dashed line in panel B) to alter the 

state of global phosphorylation. Mouse ANO1: expression of mouse ANO1 (a variant) in 

HEK-393 cells; PASMCs: rabbit pulmonary artery smooth muscle cells. The plot in 

panel B was originally reproduced from Ayon et al.57 with permission from the American 

Society for Biochemistry and Molecular Biology©. Panels A and B highlight the 

remarkable similarity in the response of ANO1 and native ICl(Ca) to intracellular ATP.  ‡ 
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Significant difference between the two groups (unpaired t test) with P < 0.001.  (C) This 

diagram is reproduced from Figure 2C with minor modifications and again indicates the 

position of the four alternatively spliced variants a, b, c and d, and the six amino acids 

(N650, E654, E702, E705, E734 and D738, all related to mouse ANO1-ac; NCBI 

sequence: NP_848747.5) postulated to coordinate the binding of two Ca2+ ions within 

each ANO1 monomer (see text for explanations). It depicts the location of the two 

speculated sites (Serine 471 and Serine 673) for phosphorylation (denoted by the letter 

“P”) by the gamma isoform form of CaMKII (CaMKIIγ), which has been suggested to be 

responsible, at least in part, for ANO1 inactivation and rundown following seal rupture in 

the whole-cell patch clamp configuration in cells dialyzed with adenosine triphosphate 

(ATP).  The figure also highlights the proximity of these two sites with splice variants c 

and d, and the postulated Ca2+ binding site, respectively.  Finally, the diagram illustrates 

the possibility that type 1 and 2A protein phosphatases (PP1/PP2A) and/or the α 

isoform of calcineurin (CaNA-α; also referred to as protein phosphatase 2B) might be 

involved in dephosphorylating the two serine residues phosphorylated by CaMKIIγ.  

 

Figure 5. Contrasting effects of the membrane phospholipid phosphatidyl-(4,5)-

bisphosphate (PIP2) on native ANO1-encoded CaCCs and ANO1 expressed in HEK-

293 cells. (A and B) These two illustrations show the experimental strategies used to 

determine the effects of PIP2 on membrane currents associated by ANO1. 

Pharmacological agents, pathways and signaling molecules ultimately leading to 

inhibition or stimulation of ANO1 are respectively labeled in red or green. (A) At higher 

concentrations (tens of μM), Wortmannin inhibits phosphatidylinositol-4-kinase (PI4K) 

and blocks the biosynthesis of PIP2, leading to stimulation of ANO1. Stimulation of Gq-



 67

Protein Coupled Receptor (GqPCR) by the α1-adrenergic receptor agonist methoxamine 

leads to activation of phospholipase C (PLC), which breaks down PIP2 into 

diacylglycerol (DAG), an endogenous activator of protein kinase C (PKC), and inositol 

trisphosphate (IP3), which stimulates ANO1 by elevating intracellular Ca2+ levels by 

triggering Ca2+ release from the sarcoplasmic reticulum (SR).  In vascular smooth 

muscle cells, activation of the latter pathway would open ANO1 through both direct 

stimulation by Ca2+ and relief of PIP2 inhibition on ANO1. The panel also shows that 

ANO1 could be stimulated by α-cyclodextrin (α-CD) or Poly-L-Lysine (Poly-L-Lys), 

which respectively tightly binds or scavenges PIP2. On the other hand, blocking PLC 

with U73122 or an internal application of a soluble form of PIP2, diC8-PIP2, led to 

inhibition of CaCCs.167 Gq: trimeric GTP-binding protein Gq; PI: phosphatidylinositol; 

PI(4): phosphatidylinositol-(4)-monophosphate; PI5K: phosphatidylinositol-5-kinase. (B)  

Inhibition of PIP2 biosynthesis with Wortmannin, enhanced degradation mediated by co-

expression of Danio rerio voltage-sensitive (+ΔVm) phosphatase (DR-VSP), 

neutralization through tight binding of PIP2 by an internal application of a PIP2-specific 

antibody (Anti-PIP2) or by the positively charged Neomycin led to inhibition and 

accelerated rundown of ANO1. In contrast, an internal application of diC8-PIP2, co-

expression of ANO1, Dr-VSP and phosphatidyl-inositol-kinase (PIPK), or the inhibition 

of protein phosphatases by the broad-spectrum blocker β-glycerophosphate 

pentahydrate (β-Gly-P), led to enhancement of ANO1.142, 170-173 
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Table 1. Summary of the major effects of several modulators and experimental strategies employed 
to determine their role in regulating native and expressed ANO1. 
 

Modulator Effects on ANO1 Current 
Native
ANO1 

Exp.
ANO1 

Cell Type 
Experimental 
Approaches 

Refs 

ATP 

Promotes channel closure or 
inactivation 

√  
Rabbit and rat 
PASMCs, equine 
tracheal SMCs 

Cell dialysis; rundown 55, 57, 58, 
59, 84, 221 

 √ HEK-293 cells Cell dialysis; rundown 75, 177, 
178 

Promotes channel opening  √ HEK-293 cells 

Internal application of 
ATP to inside-out 
patches; apyrase (ATP 
cleaving enzyme) 

161 

0 ATP or 
AMP-PNP 

Promotes channel opening 
√  Rabbit PASMCs 

Cell dialysis; attenuated 
rundown and runup 

57, 58, 59, 
84 

 √ HEK-293 cells 
Cell dialysis; attenuated 
rundown and runup 

177, 178 

CaM 

No role  √ HEK-293 cells 

W7 (CaM inhibitor); 
internal application of 
wild-type and mutant 
CaM; site-directed 
mutagenesis of 
speculated CaM binding 
site; vesicular Cl- 
transport assays with 
purified ANO1 and CaM; 
over-expression of Ca2+-
insensitive CaM mutants; 
Ba2+, which activates 
ANO1, does not 
influence CaM 

155, 165, 
166 

Enhances Ca2+ sensitivity at 1 
μM [Ca2+]i; decreases channel 
activity at [Ca2+]i > 10 μM 

 √ HEK-293 cells 

Demonstration of pre-
association of CaM using 
ChIMP assay; site-
directed mutagenesis of 
CaM; Ca2+-dependence 
of ANO1 

167, 168 

Is required for ANO1 channel 
opening in the presence of 
internal ATP 

 √ HEK-293 cells 

TFP and J-8 (CaM 
inhibitors); internal 
application of CaM to 
inside-out patches 

161 

Promotes channel opening at 
submicromolar [Ca2+]i; 
rundown of ANO1 current at 
supraphysiologic [Ca2+]i 

 √ HEK-293 cells 

Truncation of the CaM 
binding domain (RCMB); 
internal application of 
peptides corresponding 
to RCMB domain  

162 

CaMKII 
Promotes channel closure or 
inactivation 

√  
Equine tracheal 
SMCs 

W7; KN-93 and ARIP 
(CaMKII inhibitors); 
intracellular AMP-PNP 

84 

√  
Rabbit coronary 
and pulmonary 
SMCs 

KN-93 and 
ARIP; AutoCaMKII 

54, 55 

√  
Cultured mouse 
basilar artery 

CaMKII siRNA; S727A 
mutation and S727D 

176 
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SMCs  phosphomimetic 
mutation of ANO1 

 √ HEK-293 cells 

KN-62; KN-93; ARIP; 
S528A and S673A 
mutations of mANO1; 
S673D phosphomimetic 
mutation of ANO1 

75, 177, 
178 

CaN/PP2B Promotes channel opening √  
Rabbit coronary 
and pulmonary 
SMCs 

Cyclosporin A (CsA); 
CaN peptide 
inhibitor; exogenous 
CaNA-α 

55, 56, 57 

PP1/PP2A 
Promotes channel opening in 
the absence of intracellular 
ATP 

√  
Rabbit PASMCs 
and equine 
tracheal SMCs 

Okadaic acid (PP1/PP2 
blocker); cantharidin 
(PP1/PP2 blocker); CsA 

57, 58, 84 

 √ HEK-293 cells 
Okadaic acid; 
cantharidin  

177 

PP1 
Promotes channel opening in 
the absence of intracellular 
ATP 

√  Rabbit PASMCs 

NIPP-1 (PP1 peptide 
inhibitor); fostriecin 
(specific PP2A inhibitor): 
no effect 

57 

PIP2 

Decreases ANO1 current √  Rat PASMCs 

Intracellular application 
of DiC8-PIP2; 
methoxamine (PLC 
activation); α-
cyclodextrin (binds PIP2); 
poly-L-lysine (PIP2 
scavenger); wortmannin 
(PI4K inhibitor); U73122 
(PLC blocker) 

183 

Increases ANO1 current 

 √ HEK-293 cells 

Intracellular application 
of DiC8-PIP2; co-
expression of Dr-VSP; 
wortmannin  

186, 188, 
189 

√  Xenopus oocytes 

Anti-PIP2 antibody; 
neomycin (PIP2 
scavenger); β-
glycerophosphate 
pentahydrate (protein 
phosphatase inhibitor); 
expression of PIPK 

151, 189 

No effect √  
HT29 colonic 
epithelial cells 

Intracellular application 
of DiC8-PIP2 

189 

Cholesterol Decreases ANO1 current 

√  
Mouse portal vein 
SMCs 

MβCD (membrane 
cholesterol depleting 
agent); exogenous 
cholesterol  

193 

 √ HEK-293 cells 

MβCD (membrane 
cholesterol depleting 
agent); exogenous 
cholesterol 

188 

Free Fatty Acids 
and PS 

Decrease ANO1 current  √ HEK-293 cells Exogenous applications 188 

Actin 
Cytoskeleton 

Increases or supports ANO1 
current 

 √ HEK-293 cells 
Cytochalasin D (actin 
depolymerization); 
phalloidin (actin 

161 
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stabilizer)  

No effect on amplitude; slower 
deactivation kinetics 

√  
Mouse portal vein 
SMCs 

Cytochalasin D; 
phalloidin;  
jasplakinolide (promotes 
actin polymerization) 
opposed effects on 
kinetics 

195 

No effect  √ HEK-293 cells Cytochalasin D 195 

Moesin Increases ANO1 current  √ HEK-293 cells shRNA 196 

CLCA1/2 
Increases ANO1 through 
stabilization at the plasma 
membrane 

√ √ HEK-293 cells 

Co-expression and 
colocalization studies; 
exogenous application of 
CLCA wild-type and 
truncated protein 
fragments; nocodazole 
(inhibitor of microtubule-
dependent 
internalization); siRNA; 
truncation studies by 
site-directed 
mutagenesis   

199, 200, 
201, 203 

KCNE1/5 
Confers voltage-dependent 
gating in the absence of Ca2+ 

 √ HEK-293 cells 

Co-expression and 
colocalization studies; 
single molecule pulldown 
assays; truncation 
studies by site-directed 
mutagenesis; KCNE1 
knockdown; siRNA 

219 

√  
Proximal 
convoluted tubular 
cells 

KCNE1 knockdown; 
siRNA; Angiotensin II 
exposure (simulates 
KCNE1-mediated effects 
on ANO1) 

 
Nomenclature: Red and green fonts are used to highlight inhibition and stimulation of ANO1 (Anoctamin-1), respectively. 
Exp. ANO1: expressed ANO1; Refs: references; ATP: adenosine triphosphate; 0 ATP: no internal ATP; AMP-PNP 
(adenosine 5′-(β,γ-imido)triphosphate): non-hydrolyzable analogue of ATP; SMCs; smooth muscle cells; PASMCs: 
pulmonary artery smooth muscle cells; CaM: calmodulin; [Ca2+]i: intracellular Ca2+ concentration; ChIMP assay: channel 
inactivation induced by membrane-tethering of an associated protein; TFP: trifluoperazine; RCMB: Regulatory 
Calmodulin-Binding Motif; ARIP: autocamtide-2-related inhibitory peptide; CaMKII: calmodulin-dependent protein kinase 
II; AutoCaMKII; constitutively active form of CaMKII; siRNA: silencing ribonucleic acid; CaN/PP2B: calcineurin/protein 
phosphatase 2B; CaN-A: calcineurin type A-α; PP1/PP2A; protein phosphatase 1/protein phosphatase 2A; PIP2: 
phosphatidylinositol-(4,5)-bisphosphate diC8-PIP2: phosphatidylinositol-(4,5)-bisphosphate diC8 (PI(4,5)P2 diC8); PLC: 
phospholipase C; PI4K: phosphatidylinositol 4-kinase; InsP4: inositol-(1,3,4,5)-tetrakisphosphate; Dr-VSP: Danio rerio 
voltage-sensitive phosphatase; MβCD: methyl-β-cyclodextrin; PS: phosphatidyl serine; shRNA: short hairpin ribonucleic 
acid. 
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