Supplementary Appendix

Long-term exposure to low-level air pollution and natural mortality a pooled analysis of eight European cohorts within the ELAPSE project

Maciej Strak, Ph.D., Gudrun Weinmayr, Ph.D., Sophia Rodopolou, Ph.D., Jie Chen, M.S., Kees de Hoogh, Ph.D., Zorana J. Andersen, Ph.D., Richard Atkinson, Ph.D., Mariska Bauwelinck, M.S., Teresa Bekkevold, M.S., Tom Bellander, Ph.D., Marie-Christine Boutron-Ruault, M.D., Jørgen Brandt, Ph.D., Giulia Cesaroni, M.S., Hans Concin, M.D., Daniela Fecht, Ph.D., Francesco Forastiere, M.D., John Gulliver, Ph.D., Ole Hertel, Ph.D., Barbara Hoffmann, M.D., Ulla Arthur Hvidtfeldt, Ph.D., Nicole A.H. Janssen, Ph.D., Karl-Heinz Jöckel, Ph.D., Jeanette T. Jørgensen, M.S., Matthias Ketzel, Ph.D., Jochem O. Klompmaker, Ph.D., Anton Lager, Ph.D., Karin Leander, Ph.D., Shuo Liu, M.S., Petter Ljungman, M.D., Patrik K.E. Magnusson, Ph.D., Amar J. Mehta, Ph.D., Gabriele Nagel, Ph.D., Bente Oftedal, Ph.D., Göran Pershagen, M.D., Annette Peters, Ph.D., Ole Raaschou-Nielsen, Ph.D., Matteo Renzi, M.S., Debora Rizzuto, Ph.D., Yvonne T. van der Schouw, Ph.D., Sara Schramm, M.D., Gianluca Severi, Ph.D., Torben Sigsgaard, M.D., Mette Sørensen, Ph.D., Massimo Stafoggia, Ph.D., Anne Tjønneland, M.D., W.M. Monique Verschuren, Ph.D., Danielle Vienneau, Ph.D., Kathrin Wolf, Ph.D., Klea Katsouyanni, Ph.D., Bert Brunekreef, Ph.D., Gerard Hoek, Ph.D., ${ }^{*}$ Evangelia Samoli, Ph.D.*
*these authors contributed equally
Table of contents
Section 1 Characteristics of the included cohorts 4
Table S1 Study populations 4
Table S2 Association of air pollution exposure and covariates. 5
Cohort profile: CEANS 6
Cohort profile: DCH 7
Cohort profile: DNC 8
Cohort profile: EPIC-NL 9
Cohort profile: HNR 10
Cohort profile: E3N. 11
Cohort profile: KORA 12
Cohort profile: VHM\&PP 13
Section 2 Missing covariate value assessment 14
Section 3 Statistical software 15
Section 4 Exposure distribution 16
Table S3 Distribution of air pollution exposure at participant addresses in pooled cohort 16
Table S4 Spearman correlations between air pollutants at participant addresses 19
Table S5 Hazard ratios of associations between mortality and air pollution exposure represented by quartiles of the pooled cohort distribution 21
Section 5 Concentration-response functions 22
Figure S1 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and natural mortality 22
Figure S2 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and cardiovascular disease mortality 23
Figure S3 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and cerebrovascular disease mortality 24
Figure S4 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and ischemic heart disease mortality 25
Figure S5 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and respiratory mortality 26
Figure S6 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and chronic obstructive pulmonary disease mortality 27
Figure S7 Shape-Constrained Health Impact Function for associations between air pollution exposure and natural mortality 28
Figure S8 Shape-Constrained Health Impact Function for associations between air pollution exposure and cardiovascular disease mortality 29
Figure S9 Shape-Constrained Health Impact Function for associations between air pollution exposure and cerebrovascular disease mortality 30
Figure S10 Shape-Constrained Health Impact Function for associations between air pollution exposure and ischemic heart disease mortality 31
Figure S11 Shape-Constrained Health Impact Function for associations between air pollution exposure and respiratory mortality 32
Figure S12 Shape-Constrained Health Impact Function for associations between air pollution exposure and chronic obstructive pulmonary disease mortality 33
Table S6 Hazard ratios for associations between air pollution and natural mortality in two-pollutant models 34
Table S7 Hazard ratios for associations between air pollution and cardiovascular mortality in two- pollutant models 35
Table S8 Hazard ratios for associations between air pollution and respiratory mortality in two-pollutant models 36
Section 7 Sensitivity analyses 37
Figure S13 Temporal trends in $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3} concentrations based upon the Danish DEHM model for different regions in Europe 37
Figure S14 Distribution of $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3} exposure at participant addresses using 2010 and back- extrapolated exposure at baseline year 38
Table S9 Hazard ratios for associations between air pollution and natural mortality using baseline year exposure 42
Table S10 Hazard ratios for associations between air pollution and natural mortality in time-varying analyses: time-varying exposure including residential mobility and strata for 1- or 5-year time periods to adjust for time trends in mortality and pollution 43
Figure S15 Natural cubic splines (3 degrees of freedom) for associations between time-varying exposure and natural mortality 44
Table S11 Hazard ratios for associations between air pollution and natural mortality: alternative confounder adjustment 45
Figure S16 Hazard ratios for associations between air pollution and natural mortality: impact of dropping one cohort at a time 50
Table S12 Hazard ratios for associations between air pollution and natural and cause-specific mortality: additional adjustment for road-traffic noise 51
Table S13 Hazard ratios for associations between air pollution and natural mortality in two-pollutant models, without VHM\&PP cohort 53
Table S14 Hazard ratios for associations between air pollution and natural mortality in two-pollutant models, without VHM\&PP cohort and adjusting for road-traffic noise 54
Table S15 Hazard ratios for associations between air pollution and natural mortality: multiple imputation 55
Figure S17 Effect modification for associations between air pollution and natural mortality 56
Table S16 Comparison of findings for natural mortality with recent North American administrative cohorts, ESCAPE and recent meta-analyses estimates 57

Section 1 Characteristics of the included cohorts

Table S1 Study populations

Cohort	Study area	Recruitment	Follow-up until
CEANS-SDPP	Stockholm county, Sweden	1992-1998	2011
CEANS-SIXTY		1997-1999	2014
CEANS-SALT		1998-2002	2011
CEANS-SNACK		2001-2004	2011
DCH	Cities of Copenhagen and Aarhus, Denmark	1993-1997	2015
DNC-1993	Denmark-wide	1993	2013
DNC-1999		1999	2013
E3N	France-wide	1989-1991	2011
EPIC-NL-MORGEN	Four cities, The Netherlands	1993-1997	2013
EPIC-NL-PROSPECT		1993-1997	2013
HNR	Ruhr area, Germany	2000-2003	2015
KORA-S3	Augsburg area, Germany	1994-1995	2011
KORA-S4		1999-2001	2014
VHM\&PP	Vorarlberg region, Austria	1985-2005	2014

Table S2 Association of air pollution exposure and covariates

Variable	Level	Total number of observations	PM2.5	NO_{2}	BC	O_{3}
Sex	Female	214,900	15.1 (2.1)	25.4 (6.7)	1.5 (0.3)	84.9 (4.7)
	Male	110,467	14.8 (2.0)	24.3 (5.7)	1.5 (0.3)	86.1 (4.1)
BMI	Underweight	7,499	15.5 (2.4)	24.2 (6.6)	1.6 (0.3)	88.3 (4.7)
	Normal	177,053	15.1 (2.1)	24.8 (6.6)	1.5 (0.3)	85.9 (4.7)
	Overweight	105,287	14.8 (1.9)	25.2 (6.1)	1.5 (0.3)	84.5 (4.3)
	Obese	35,528	15.0 (1.9)	25.6 (6.0)	1.5 (0.3)	84.3 (4.2)
Smoking	Never smoker	187,295	15.3 (2.2)	24.0 (6.2)	1.6 (0.3)	87.6 (4.4)
	Former smoker	59,488	14.4 (1.6)	26.6 (6.7)	1.4 (0.3)	80.9 (4.6)
	Current smoker	78,584	14.8 (1.9)	26.1 (6.4)	1.5 (0.3)	83.2 (4.6)
Marital status	Single	46,164	15.6 (2.3)	25.9 (6.5)	1.6 (0.3)	85.9 (4.9)
	Married/living with partner	233,418	15.0 (2.0)	24.5 (6.3)	1.5 (0.3)	85.6 (4.4)
	Divorced/separated	27,002	14.6 (1.7)	27.3 (5.9)	1.5 (0.3)	81.7 (4.5)
	Widowed	18,783	14.8 (2.0)	25.2 (5.8)	1.5 (0.3)	85.3 (3.8)
Employment	No	97,602	15.3 (2.0)	25.5 (6.1)	1.6 (0.3)	85.2 (4.4)
	Yes	227,765	14.9 (2.1)	24.8 (6.4)	1.5 (0.3)	85.4 (4.5)

Mean (standard deviation) values are reported.

Cohort profile: CEANS

Cardiovascular Effects of Air Pollution and Noise in Stockholm

All participants resided in Stockholm County, Sweden. The cohort is comprised of four sub-cohorts: The Stockholm Diabetes Preventive Program (SDPP) is a population-based prospective study of 7,949 subjects aged $35-54$ years. ${ }^{1}$ The SIXTY subcohort consists of a random population sample of one-third of all men and women living in Stockholm County turning 60 years between August 1997 and March 1999. ${ }^{2}$ The Screening Across the Lifespan Twin Study (SALT) sampled 7,043 individuals from the Swedish Twin Register born 1958 and earlier, who lived in Stockholm County. ${ }^{3}$ Lastly, The Swedish National Study of Aging and Care in Kungsholmen (SNAC-K) randomly sampled individuals 60+ years of age from a central area in Stockholm. ${ }^{4}$

Variable	Total	CEANS, subcohorts			
		SDPP	SIXTY	SALT	SNAC-K
Baseline year, range	1992-2004	1992-1998	1997-1999	1998-2003	2001-2004
Enrolled, N	21,987	7,835	4,180	6,724	3,248
Included in mortality analyses, N	20,702	7,727	3,969	6,176	2,830
Included in stroke incidence analyses, \mathbf{N}	19,805	7,484	3,824	5,944	2,553
Included in lung cancer incidence analyses, N	18,963	7,315	3,663	5,626	2,359
Age at baseline, mean \pm SD ${ }^{\text {a }}$	56.3 ± 11.4	47.1 ± 4.9	60 ± 0	57.8 ± 10.6	72.9 ± 10.4
Women, N (\%)	11,979 (58)	4,727 (61)	2,068 (52)	3,417 (55)	1,767 (62)
Unemployed, N (\%)	6,367 (31)	711 (9)	1,283 (32)	2,199 (36)	2,174 (77)
Marital status					
Single	2,776 (13)	1,272 (16)	182 (5)	863 (14)	459 (16)
Married	14,869 (72)	6,455 (84)	2,933 (74)	4,181 (68)	1,300 (46)
Divorced	1,731 (8)	-	650 (16)	693 (11)	388 (14)
Widowed	1,326 (6)	-	204 (5)	439 (7)	683 (24)
Smoking status, N (\%)					
Current	4,592 (22)	2,038 (26)	839 (21)	1,311 (21)	404 (14)
Previous	7,474 (36)	2,813 (36)	1,523 (38)	2,059 (33)	1,079 (38)
Never	8,636 (42)	2,876 (37)	1,607 (40)	2,806 (45)	1,347 (48)
Smoking intensity, g/d mean \pm SD	13.1 ± 7.7	13.5 ± 7.4	13.4 ± 7.6	12.7 ± 8.0	11.7 ± 8.2
Smoking duration, yrs mean \pm SD	33.6 ± 11.0	27.9 ± 8.6	36.3 ± 9.9	37.9 ± 9.3	43.3 ± 13.6
BMI, $\mathrm{kg} / \mathrm{m}^{2}$					
< 18.5	252 (1)	54 (1)	26 (1)	94 (2)	78 (3)
18.5-24.9	9,964 (48)	3,691 (48)	1,398 (35)	3,624 (59)	1,251 (44)
25.0-29.9	7,971 (39)	3,013 (39)	1,770 (45)	2,054 (33)	1,134 (40)
30.0+	2,515 (12)	969 (13)	775 (20)	404 (7)	367 (13)
Neighborhood income ${ }^{\text {b }}$, mean \pm SD	25.3 ± 5.6	24.3 ± 4.2	24.7 ± 6.9	25.3 ± 6.6	28.7 ± 2.2

${ }^{\text {a }}$ All characteristics shown for mortality analyses, similar for other endpoints
${ }^{\text {b }}$ EUR per 1,000, year 2001

Main references:

- Eriksson AK, Ekbom A, Granath F, et al. Psychological distress and risk of pre-diabetes and Type 2 diabetes in a prospective study of Swedish middle-aged men and women. DiabetMed 2008;25:834-42.
- Wändell PE, Wajngot A, de Faire U, et al. Increased prevalence of diabetes among immigrants from non-European countries in 60-year-old men and women in Sweden. Diabetes Metab 2007;33:30-6.
- Lichtenstein P, Sullivan PF, Cnattingius S, et al. The Swedish Twin Registry in the third millennium: an update. Twin Res Hum Genet 2006;9:875-82.
- Lagergren M, Fratiglioni L, Hallberg IR, et al. A longitudinal study integrating population, care and social services data. The Swedish National study on Aging and Care (SNAC). Aging Clin Exp Res 2004;16:158-68.

Cohort profile: DCH

Diet, Cancer and Health

Participants were recruited among persons aged 50-64 years from the areas of greater Copenhagen and Aarhus, Denmark, who were born in Denmark and free of cancer.

Variable	Total
Baseline year, range	1993-1997
Enrolled, N	56,308
Included in mortality analyses, \mathbf{N}	53,647
Included in stroke incidence analyses, \mathbf{N}	52,088
Included in lung cancer incidence analyses, N	53,647
Age at baseline, mean \pm SD ${ }^{\text {a }}$	56.7 ± 4.4
Women, N (\%)	28,134 (52)
Unemployed, N (\%)	11,650 (22)
Marital status	
Single	3,241 (6)
Married	38,382 (72)
Divorced	9,056 (17)
Widowed	2,968 (6)
Smoking status, N (\%)	
Current	19,459 (36)
Previous	14,959 (28)
Never	19,229 (36)
Smoking intensity, g/d mean \pm SD	16.4 ± 9.0
Smoking duration, yrs mean \pm SD	36.3 ± 7.7
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	
< 18.5	421 (1)
18.5-24.9	23,155 (43)
25.0-29.9	22,311 (42)
30.0+	7,760 (14)
Municipality level income ${ }^{\text {b }}$, mean \pm SD	20.2 ± 3.4

${ }^{\text {a }}$ All characteristics shown for mortality analyses, similar for other endpoints
${ }^{\text {b }}$ EUR per 1,000, year 2001

Main reference:

Tjonneland A, Olsen A, Boll K et al. Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053 men and women in Denmark. Scand J Public Health 2007; 35: 432-41

Cohort profile: DNC

Danish Nurse Cohort

The cohort was sampled among members of The Danish Nurse Organization (DNO) including both working and retired nurses. Questionnaires were mailed in 1993 to members aged 45+ years and again in 1999 with the inclusion of new members (45+ years).

Variable	Total	DNC, subcohorts	
		DNC-1993	DNC-1999
Baseline year	1993,1997	1993	1999
Enrolled, N	28,433	19,664	8,769
Included in mortality analyses, \mathbf{N}	25,171	17,043	8,128
Included in stroke incidence analyses, \mathbf{N}	24,865	16,810	8,055
Included in lung cancer incidence analyses, \mathbf{N}	23,018	15,581	7,437
Age at baseline, mean \pm SD ${ }^{\text {a }}$	53.5 ± 8.3	56.2 ± 8.4	47.9 ± 4.2
Women, N (\%)	25,171 (100)	17043 (100)	8128 (100)
Unemployed, N (\%)	5544 (22)	5,116 (30)	428 (5)
Marital status			
Single	2558 (10)	1799 (11)	759 (9)
Married	17688 (70)	11527 (68)	6161 (76)
Divorced	3159 (13)	2115 (12)	1044 (13)
Widowed	1766 (7)	1602 (9)	164 (2)
Smoking status, N (\%)			
Current	8708 (35)	6383 (37)	2325 (29)
Previous	7522 (30)	4872 (29)	2650 (33)
Never	8941 (36)	5788 (34)	3153 (39)
Smoking intensity, g/d mean \pm SD	13.7 ± 8.0	13.9 ± 8.2	13.3 ± 7.3
Smoking duration, yrs mean \pm SD	30.4 ± 9.5	31.6 ± 9.9	27.1 ± 7.1
BMI, kg/m ${ }^{2}$			
< 18.5	642 (3)	500 (3)	142 (2)
18.5-24.9	17,307 (69)	11,760 (69)	5,547 (68)
25.0-29.9	5,798 (23)	3,899 (23)	1,899 (23)
30.0+	1,424 (6)	884 (5)	540 (7)
Municipality level income ${ }^{\text {b }}$, mean \pm SD	19.1 ± 2.5	19.2 ± 2.6	19.0 ± 2.4

${ }^{\text {a A All characteristics shown for mortality analyses, similar for other endpoints }}$
${ }^{\text {b }}$ EUR per 1,000, year 2001

Main reference:
Hundrup YA, Simonsen M, Jørgensen T, Obel EB. Cohort profile: The Danish Nurse Cohort. International Journal of Epidemiology, 2012;41:1241-47.

Cohort profile: EPIC-NL

European Prospective Investigation into Cancer and Nutrition, The Netherlands

The EPIC-NL combines two Dutch EPIC-cohorts: The Monitoring Project on Risk Factors and chronic diseases in the Netherlands (MORGEN) cohort which consists of a general population sample aged 20-59 years from three Dutch towns (Amsterdam, Doetinchem and Maastricht). Prospect is a prospective cohort study among women aged 49-70, residing in the city of Utrecht or its vicinity, who participated in the nation wide Dutch breast cancer screening programme between 1993 and 1997.

Variable	Total	EPIC-NL, subcohorts	
		MORGEN	PROSPECT
Baseline year	1993-1997	1993-1997	1993-1997
Enrolled, N	36,905	20,711	16,194
Included in mortality analyses, N	32,872	18,302	14,570
Included in stroke incidence analyses, N	31,847	17,643	14,204
Included in lung cancer incidence analyses, N	31,442	17,802	13,640
Age at baseline, mean $\pm \mathrm{SD}^{\text {a }}$	49.5 ± 11.9	42.9 ± 11.2	57.7 ± 6.1
Women, N (\%)	24,630 (75)	10,060 (55)	14,570 (100)
Unemployed, N (\%)	12,891 (39)	5,723 (31)	7,168 (49)
Marital status			
Single	5,468 (17)	4,632 (25)	836 (6)
Married	23,102 (70)	11,923 (65)	11,179 (77)
Divorced	2,552 (8)	1,380 (8)	1,172 (8)
Widowed	1,750 (5)	367 (2)	1,383 (9)
Smoking status, N (\%)			
Current	9,694 (29)	6,359 (35)	3,335 (23)
Previous	9,950 (30)	5,155 (28)	4,795 (33)
Never	13,228 (40)	6,788 (37)	6,440 (44)
Smoking intensity, g/d mean \pm SD	15.0 ± 8.7	15.7 ± 8.6	13.7 ± 8.7
Smoking duration, yrs mean \pm SD	28.9 ± 11.2	24.8 ± 10.6	36.8 ± 7.6
BMI, kg/m ${ }^{2}$			
< 18.5	275 (1)	188 (1)	87 (1)
18.5-24.9	15,633 (48)	9,128 (50)	6,505 (45)
25.0-29.9	12,662 (39)	6,872 (38)	5,790 (40)
30.0+	4,302 (13)	2,114 (12)	2,188 (15)
Neighborhood income ${ }^{\text {b }}$, mean \pm SD	12.6 ± 1.6	12.2 ± 1.6	13.1 ± 1.4

${ }^{\text {a }}$ All characteristics shown for mortality analyses, similar for other endpoints
${ }^{\text {b }}$ EUR per 1,000, year 2001

Main reference:

Beulens JWJ, Monninkhof EM, Verschuren WMM et al. Cohort Profile: The EPIC-NL study. International Journal of Epidemiology 2010; 39: 1170-78.

Cohort profile: HNR

Heinz Nixdorf Recall study

The cohort consists of randomly sampled persons aged 45 to 75 years from the Ruhr area, Germany primarily in the three adjacent large cities Bochum, Essen, and Mülheim.

Variable	Total
Baseline year, range	2000-2003
Enrolled, N	4,809
Included in mortality analyses, \mathbf{N}	4,733
Included in stroke incidence analyses, N	4,375
Included in lung cancer incidence analyses, N	3,611
Age at baseline, mean $\pm \mathrm{SD}^{\text {a }}$	59.7 ± 7.8
Women, N (\%)	2,382 (50)
Unemployed, N (\%)	2,838 (60)
Marital status	
Single	274 (6)
Married	3,538(75)
Divorced	472 (10)
Widowed	449 (9)
Smoking status, N (\%)	
Current	1,113 (24)
Previous	1,619 (34)
Never	2,001 (42)
Smoking intensity, g/d mean \pm SD	18.6 ± 12.0
Smoking duration, yrs mean \pm SD	34.5 ± 9.4
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	
< 18.5	16 (0)
18.5-24.9	1,237 (26)
25.0-29.9	2,171 (46)
30.0+	1,309 (28)
Neighborhood income ${ }^{\text {b }}$, mean \pm SD	25.2 ± 8.2

${ }^{\text {a AAll characteristics shown for mortality analyses, similar for other endpoints }}$
${ }^{\text {b }}$ EUR per 1,000, year 2001

Main reference:

Schmermund A, Möhlenkamp S, Stang A et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: Rationale and design of the Heinz Nixdorf RECALL Study. American Heart Journal, 2002; 144: 212-2018.

Cohort profile: E3N

Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale

The cohort was selected among French women aged 40 to 65 years who were insured through a national health system that primarily covered teachers. The cohort is nation-wide.

Variable	Total
Baseline year, range	1989-1991
Enrolled, N	53,521
Included in mortality analyses, N	39,006
Included in stroke incidence analyses, N	-
Included in lung cancer incidence analyses, N	36,597
Age at baseline, mean \pm SD ${ }^{\text {a }}$	53.0 ± 6.8
Women, N (\%)	39,006 (100)
Unemployed, N (\%)	12,598 (32)
Marital status	
Single	6,530 (17)
Married	32,476 (83)
Divorced	-
Widowed	-
Smoking status, N (\%)	
Current	5,060 (13)
Previous	7,500 (19)
Never	26,446 (68)
Smoking intensity, g/d mean \pm SD	11.4 ± 9.2
Smoking duration, yrs mean \pm SD	28.6 ± 7.6
BMI, kg/m ${ }^{2}$	
< 18.5	1,415 (4)
18.5-24.9	29,533 (76)
25.0-29.9	6,671 (17)
30.0+	1,387 (4)
Neighborhood income ${ }^{\text {b }}$, mean \pm SD	11.2 ± 3.0

${ }^{\text {a }}$ All characteristics shown for mortality analyses, similar for other endpoints
${ }^{\text {b }}$ EUR per 1,000, year 2001

Main reference:

Francoise Clavel-Chapelon for the E3N Study Group. Cohort Profile: The French E3N Cohort Study. International Journal of Epidemiology 2015; 44: 801-809.

Cohort profile: KORA

Cooperative Health Research in the Region of Augsburg

Two cross-sectional population-representative surveys were conducted in 1994-1995 (S3 survey) and 1999-2001 (survey S4) in the city of Augsburg and two adjacent rural counties including inhabitants of German nationality aged 25 to 74 .

Variable	Total	KORA, subcohorts	
		S3	S4
Baseline year, range	1994-2001	1994-1995	1999-2001
Enrolled, N	8,823	4,566	4,257
Included in mortality analyses, \mathbf{N}	7,657	3,910	3,747
Included in stroke incidence analyses, \mathbf{N}	4,195	2,182	2,013
Included in lung cancer incidence analyses, N	-	-	-
Age at baseline, mean $\pm \mathrm{SD}^{\text {a }}$	49.4 ± 13.9	49.4 ± 13.9	49.3 ± 13.8
Women, N (\%)	2,481 (51)	1,308 (51)	1,173 (51)
Unemployed, N (\%)	2,074 (43)	1,149 (45)	925 (41)
Marital status			
Single	411 (8)	227 (9)	184 (8)
Married	3,867 (80)	2,060 (80)	1,807 (79)
Divorced	259 (5)	108 (4)	151 (7)
Widowed	316 (7)	177 (7)	139 (6)
Smoking status, N (\%)			
Current	1,042 (21)	519 (20)	523 (23)
Previous	1,460 (30)	740 (29)	720 (32)
Never	2,351 (48)	1,313 (51)	1,038 (46)
Smoking intensity, g/d mean \pm SD	16.1 ± 9.5	16.5 ± 9.5	15.7 ± 9.5
Smoking duration, yrs mean \pm SD	24.7 ± 11.8	25.2 ± 12.1	24.3 ± 11.6
BMI, kg/m ${ }^{2}$			
< 18.5	21 (0)	13 (1)	8 (0)
18.5-24.9	1,547 (32)	837 (33)	710 (31)
25.0-29.9	2,112 (44)	1,116 (43)	996 (44)
30.0+	1,173 (24)	606 (24)	567 (25)
Neighborhood income ${ }^{\text {b }}$, mean \pm SD	37.4 ± 6.0	36.7 ± 4.4	38.0 ± 7.3

${ }^{\text {a }}$ All characteristics shown for mortality analyses, similar for other endpoints
${ }^{b}$ EUR per 1,000, year 2001

Main reference:

Holle R, Happich M, Lowel H, Wichmann HE. KORA--a research platform for population based health research. Gesundheitswesen 2005; 67 Suppl 1: S19-S25.

Cohort profile: VHM\&PP

Vorarlberg Health Monitoring and Prevention Programme

The VHM\&PP is a population-based cohort recruited among all adults of the province of Vorarlberg, Austria. Vorarlberg is the western-most province of Austria consisting of towns and villages (30,000 inhabitatants and smaller) and significant altitude differences.

Variable	Total
Baseline year, range	1985-2005
Enrolled, N	170,250
Included in mortality analyses, \mathbf{N}	144,383
Included in stroke incidence analyses, \mathbf{N}	-
Included in lung cancer incidence analyses, N	140,272
Age at baseline, mean $\pm \mathrm{SD}^{\text {a }}$	42.1 ± 15.0
Women, N (\%)	81117 (56)
Unemployed, N (\%)	43,640 (30)
Marital status	
Single	24,906 (17)
Married	99,496 (69)
Divorced	9,773 (7)
Widowed	10,208 (7)
Smoking status, N (\%)	
Current	28916 (20)
Previous	9004 (6)
Never	106463 (74)
Smoking intensity, g/d mean \pm SD	15.6 ± 8.9
Smoking duration, yrs mean \pm SD	13.4 ± 8.3
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	
< 18.5	4457 (3)
18.5-24.9	78677 (54)
25.0-29.9	45591 (32)
30.0+	15658 (11)
Municipality level income ${ }^{\text {b }}$, mean \pm SD	22.9 ± 1.7

${ }^{\text {a }}$ All characteristics shown for mortality analyses, similar for other endpoints ${ }^{b}$ EUR per 1,000, year 2001

Main reference:

Ulmer H, Kelleher CC, Fitz-Simon N et al. Secular trends in cardiovascular risk factors: an age-period cohort analysis of 698,954 health examinations in 181,350 Austrian men and women. Journal of Internal Medicine, 2007; 261: 566-576.

Section 2 Missing covariate value assessment

Multiple imputation (MI) is an attractive and effective approach for statistical analysis of incomplete data. The main idea is to create multiple data sets that reflect the potential values of the missing data. More precisely, random draws are made from the posterior distribution of the missing values given the observed data, usually under the missing at random (MAR) assumption. Estimates are combined across imputed data sets using Rubin's rules (Rubin, 1987). Although MI techniques have been proposed for imputing a covariate that may be complete missing from one study from the rest of the studies that are pooled under a multi-cohort approach, we decided against this considering the differences in the underlying populations between participating cohorts and instead prompted for the extensive sensitivity analysis on the choice of covariates in Model 3. We nevertheless tested robustness of the effect estimates for the association with total mortality to the missing data in the covariates that were available across cohorts and included in the main Model 3. When missing values occur in multiple variables, and in particular when these are a mixture of continuous and discrete variables, the method of multiple imputation by chained equations (MICE) is particularly attractive (van Buuren et al., 1999). This involves specifying a separate imputation model for each incomplete variable given all the other variables and repeatedly imputing the variables in an iterated sequence. As with MI in general, it is crucial that the imputation model is consistent (or congenial) with the model of interest, which will subsequently be fitted to the imputed data sets. Hence, MICE was applied for each cohort with availability of covariate data but with missing values to produce 5 complete datasets per cohort. In this way the imputation of the missing values was based on the cohort-specific data and did not use information from the rest contributing cohorts in the pooled data set. Consequently, the cohort-specific corresponding complete datasets were pooled and Model 3 was applied for each of the 5 complete pooled datasets. The effect estimates from these models were pooled using the Rubin's rules. We applied MICE by filling in missing data for all covariates in main Model 3 . We used the R library mice.

References:

Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley \& Sons, Inc.; 1987.
van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in medicine 1999;18:681-694.

Section 3 Statistical software

ELAPSE pooled datasets were stored in Yoda secure data management service of Utrecht University. For statistical analyses, we used an R-Studio Server Pro environment running on a dedicated physical server of Utrecht University (16-core CPU, 192 GB RAM). All the analyses and output generation were done in this environment. Using a secure remote access environment prevented database distribution and assured that the latest database version was used for analyses. Analyses were performed in R , version 3.4.0 (R Core Team). The following packages were used in the analyses:

coxme (2.2-10)	Matrix (1.2-14)
data.table (1.12.8)	mice (2.46.0)
dplyr (0.8.4)	Multcomp (1.4-8)
foreach (1.4.4)	Rms (5.1-2)
ggplot2 (3.3.3)	Splines (3.4.0)
gImnet (2.0-16)	survey (3.33-2)
Hmisc (4.1-1)	survival (2.42-3)
MASS (7.3-50)	VIM (4.7.0)

References:

R Core Team. R: A language and environment for statistical computing. 2020.https://www.rproject.org.

Yoda. Yoda - a research data management service. 2020. https://www.uu.nl/en/research/yoda.

Section 4 Exposure distribution

Table S3 Distribution of air pollution exposure at participant addresses in pooled cohort

Pollutant	Mean	SD	IQR	Min	P5	P25	P50	P75	P95	Max
POOLED COHORT										
PM2.5	15.02	3.22	4.48	3.24	8.63	12.84	15.50	17.32	19.43	27.49
NO_{2}	25.00	8.05	10.15	2.68	12.91	19.52	24.14	29.68	39.53	81.02
BC	1.52	0.42	0.50	0.11	0.74	1.29	1.56	1.79	2.13	4.62
O_{3}	85.32	8.93	14.12	36.32	70.51	78.54	86.32	92.67	97.34	115.51
CEANS-SDPP										
PM2.5	7.63	0.92	0.75	3.79	5.91	7.36	7.77	8.11	8.67	10.96
NO_{2}	15.45	4.29	5.38	2.96	7.81	12.78	15.56	18.16	22.46	37.09
BC	0.56	0.19	0.30	0.14	0.30	0.41	0.52	0.71	0.92	1.39
O_{3}	77.56	1.92	2.59	68.37	74.41	76.37	77.49	78.95	80.62	85.01
CEANS-SIXTY										
PM2.5	8.31	0.91	0.88	3.24	6.83	7.95	8.42	8.83	9.45	11.01
NO_{2}	20.68	6.13	7.00	2.68	10.70	17.03	20.54	24.03	31.28	47.88
BC	0.80	0.25	0.32	0.11	0.39	0.64	0.81	0.96	1.17	2.10
O_{3}	76.70	2.51	2.88	63.15	72.58	75.38	76.83	78.26	80.72	83.79
CEANS-SALT										
PM2.5	8.38	0.84	0.88	3.47	7.13	7.99	8.48	8.87	9.52	11.37
NO_{2}	21.29	6.18	7.33	2.98	11.21	17.55	21.02	24.88	31.87	50.32
BC	0.83	0.25	0.31	0.16	0.41	0.67	0.83	0.99	1.19	2.43
O_{3}	76.57	2.72	2.88	57.17	72.11	75.26	76.78	78.14	80.77	84.87
CEANS-SNACK										
PM2.5	8.56	0.84	0.59	5.16	7.17	8.36	8.61	8.96	9.58	11.37
NO_{2}	27.39	5.09	7.38	11.62	18.27	23.56	28.50	30.95	33.94	42.61
BC	1.08	0.15	0.15	0.43	0.92	0.98	1.05	1.13	1.34	1.74
O_{3}	75.10	2.67	2.91	58.63	70.18	73.97	75.46	76.88	78.18	82.50
DCH										
PM2.5	13.20	1.43	1.58	7.29	11.31	12.31	12.91	13.89	15.93	19.49
NO_{2}	28.04	6.84	10.00	6.40	16.54	23.26	28.32	33.26	38.22	72.23
BC	1.34	0.35	0.48	0.35	0.73	1.11	1.35	1.59	1.88	3.66
O_{3}	77.52	5.11	7.18	50.96	67.53	74.34	79.09	81.52	83.59	87.79

Table S3 continued.

DNC-1993										
PM2.5	12.74	1.54	1.87	6.48	10.37	11.72	12.65	13.58	15.60	19.14
NO_{2}	21.90	8.00	10.52	4.54	10.18	16.35	20.37	26.87	37.07	72.23
BC	1.09	0.37	0.52	0.13	0.59	0.80	1.03	1.32	1.79	3.66
O_{3}	80.41	4.01	3.97	50.96	72.53	78.89	81.20	82.85	85.23	91.87
DNC-1999										
PM2.5	13.80	1.51	2.34	6.89	11.35	12.75	13.60	15.09	16.31	19.49
NO_{2}	25.85	8.47	13.82	6.42	13.71	19.42	23.76	33.24	38.95	54.26
BC	1.30	0.38	0.55	0.36	0.72	1.02	1.26	1.58	1.90	2.74
O_{3}	80.61	3.85	3.89	57.02	73.31	79.09	81.35	82.97	85.27	91.83
EPIC-NL-MORGEN										
PM2.5	17.95	1.01	1.42	11.99	16.11	17.30	17.92	18.72	19.42	21.70
NO_{2}	34.55	6.05	8.97	11.00	26.18	29.97	33.60	38.94	44.80	68.66
BC	1.72	0.28	0.44	0.97	1.36	1.48	1.69	1.92	2.20	3.39
O_{3}	73.45	7.72	9.91	36.32	57.63	68.57	76.75	78.48	81.86	84.48
EPIC-NL-PROSPECT										
PM2.5	16.87	0.77	0.96	12.47	15.65	16.39	16.94	17.35	18.02	19.86
NO_{2}	35.96	5.41	7.27	19.58	27.40	32.52	35.46	39.79	44.63	62.15
BC	1.66	0.27	0.38	1.06	1.28	1.46	1.61	1.84	2.13	2.91
O_{3}	72.66	2.72	3.29	54.53	67.74	71.24	73.06	74.53	76.35	79.47
HNR										
PM2.5	19.58	0.86	1.05	14.83	18.06	19.08	19.77	20.13	20.76	22.96
NO_{2}	37.78	4.66	5.03	25.23	31.26	34.87	37.54	39.90	45.83	75.07
BC	1.99	0.25	0.29	1.28	1.60	1.83	1.97	2.12	2.40	3.85
O_{3}	78.96	2.79	2.99	53.14	73.79	77.80	79.35	80.78	82.42	84.24
E3N										
PM2.5	17.02	2.92	3.52	5.29	12.91	15.10	16.47	18.62	22.90	27.49
NO_{2}	26.36	9.75	12.54	3.46	13.40	19.32	24.57	31.86	45.59	81.02
BC	1.79	0.48	0.65	0.88	1.20	1.42	1.69	2.07	2.73	4.62
O_{3}	87.71	7.99	8.75	56.52	76.08	82.56	87.01	91.32	103.88	115.51
KORA-S3										
PM2.5	16.30	0.88	0.96	13.26	14.51	15.89	16.37	16.85	17.62	18.68
NO_{2}	21.13	3.30	4.32	10.42	16.30	18.88	20.97	23.21	26.41	41.72
BC	1.55	0.16	0.16	1.27	1.36	1.44	1.52	1.61	1.85	2.80
O_{3}	85.94	1.48	1.66	74.73	83.31	85.23	86.12	86.89	87.92	89.24

Table S3 continued.

KORA-S4										
PM2.5	16.20	0.90	1.01	11.78	14.40	15.75	16.35	16.76	17.54	18.55
NO_{2}	21.05	3.39	4.49	9.68	15.91	18.76	20.82	23.24	26.50	41.72
BC	1.55	0.17	0.17	1.26	1.34	1.44	1.51	1.61	1.87	2.77
O_{3}	86.04	1.52	1.79	74.79	83.44	85.32	86.24	87.10	88.06	89.37
VHM\&PP										
PM2.5	15.73	2.64	3.60	4.56	10.86	13.94	16.51	17.54	19.16	20.91
NO_{2}	21.96	5.34	6.99	3.85	12.29	18.63	22.46	25.62	29.70	48.28
BC	1.64	0.26	0.35	0.87	1.21	1.46	1.65	1.81	2.03	3.02
O_{3}	92.61	3.63	5.64	74.03	86.90	89.87	92.80	95.51	97.97	104.01

SD is standard deviation, IQR is interquartile range, P 5 to $\mathrm{P95}$ are percentiles. Units for pollutants:
$\mathrm{PM}_{2.5}-\mu \mathrm{g} / \mathrm{m}^{3}, \mathrm{NO}_{2}-\mu \mathrm{g} / \mathrm{m}^{3}, \mathrm{BC}-10-5 / \mathrm{m}, \mathrm{O}_{3}-\mu \mathrm{g} / \mathrm{m}^{3}$.

Table S4 Spearman correlations between air pollutants at participant addresses

Pollutant	PM2.5	BC	O_{3}
CEANS-SDPP			
NO_{2}	0.60	0.64	-0.68
PM2.5		0.58	-0.14
BC			-0.27
CEANS-SIXTY			
NO_{2}	0.63	0.81	-0.67
PM2.5		0.53	-0.42
BC			-0.66
CEANS-SALT			
NO_{2}	0.63	0.81	-0.69
PM2.5		0.52	-0.46
BC			-0.69
CEANS-SNACK			
NO_{2}	0.76	0.37	-0.72
PM2.5		0.26	-0.62
BC			-0.59
DCH			
NO_{2}	0.74	0.91	-0.59
PM2.5		0.70	-0.52
BC			-0.58
DNC-1993			
NO_{2}	0.58	0.90	-0.35
PM2.5		0.69	-0.27
BC			-0.38
DNC-1999			
NO_{2}	0.57	0.93	-0.16
PM2.5		0.63	-0.10
BC			-0.16
EPIC-NL-MORGEN			
NO_{2}	0.20	0.82	-0.77
PM2.5		0.43	0.18
BC			-0.50
EPIC-NL-PROSPECT			
NO_{2}	0.42	0.89	-0.85
PM2.5		0.40	-0.43
BC			-0.81

Table S4 continued.

HNR			
NO_{2}	0.64	0.83	-0.76
PM2.5		0.60	-0.73
BC			-0.73
E3N			
NO_{2}	0.77	0.90	-0.51
PM2.5		0.68	-0.44
BC			-0.37
KORA-S3			
NO_{2}	0.50	0.75	-0.69
PM2.5		0.50	-0.39
BC			-0.68
KORA-S4			
NO_{2}	0.58	0.67	-0.67
PM2.5		0.59	-0.38
BC			-0.61
VHM\&PP			
NO_{2}	0.62	0.90	-0.82
PM2.5		0.74	-0.71
BC			-0.87
POPULATION-WEIGHTED MEAN OF WITHIN-COHORT CORRELATIONS			
NO_{2}	0.62	0.88	-0.69
PM2.5		0.67	-0.52
BC			-0.67

Table S5 Hazard ratios of associations between mortality and air pollution exposure represented by quartiles of the pooled cohort distribution

Pollutant	Quartile ${ }^{1}$	Follow-up time	Natural-cause mortality		Cardiovascular mortality		Respiratory mortality	
			Deaths (No.)	HR (95\% CI)	Deaths (No.)	HR (95\% CI)	Deaths (No.)	HR (95\% CI)
NO_{2}	$1^{\text {st }}$	20.1	10267	NA	3627	NA	605	NA
	$2^{\text {nd }}$	20.5	11770	1.081 (1.052, 1.110)	4252	1.070 (1.023, 1.120)	681	1.096 (0.980, 1.227)
	$3^{\text {rd }}$	20.2	12965	$1.132(1.102,1.164)$	4644	1.128 (1.077, 1.181)	706	1.090 (0.971, 1.222)
	$4^{\text {th }}$	17.1	12129	1.186 (1.149, 1.224)	3019	$1.186(1.118,1.257)$	873	1.246 (1.100, 1.412)
PM2.5	$1^{\text {st }}$	18.1	12744	NA	3757	NA	873	NA
	$2^{\text {nd }}$	19.8	12771	$1.107(1.078,1.137)$	3913	1.126 (1.071, 1.183)	907	1.196 (1.082, 1.322)
	$3^{\text {rd }}$	20.2	10851	$1.131(1.097,1.167)$	3734	1.125 (1.066, 1.188)	607	1.105 (0.975, 1.253)
	$4^{\text {th }}$	19.9	10765	1.190 (1.151, 1.229)	4138	1.225 (1.159, 1.294)	478	1.029 (0.892, 1.186)
BC	$1^{\text {st }}$	17.5	11853	NA	3245	NA	841	NA
	$2^{\text {nd }}$	19.9	11742	1.126 (1.093, 1.160)	3905	1.167 (1.104, 1.234)	732	1.135 (1.014, 1.271)
	$3^{\text {rd }}$	20.8	11893	1.156 (1.121, 1.192)	4256	$1.202(1.136,1.273)$	698	1.186 (1.054, 1.333)
	$4^{\text {th }}$	19.7	11643	1.194 (1.157, 1.233)	4136	1.213 (1.143, 1.287)	594	1.142 (1.004, 1.299)
O_{3}	$1^{\text {st }}$	16.2	12712	NA	3092	NA	979	NA
	$2^{\text {nd }}$	17.4	11347	0.933 (0.905, 0.961)	2710	0.931 (0.874, 0.993)	764	0.866 (0.777, 0.965)
	$3^{\text {rd }}$	21.8	12049	0.904 (0.856, 0.953)	5032	0.899 (0.814, 0.994)	513	0.873 (0.686, 1.111)
	$4^{\text {th }}$	22.5	11023	0.810 (0.766, 0.856)	4708	$0.807(0.729,0.893)$	609	$1.002(0.781,1.284)$

[^0]
Section 5 Concentration-response functions

Figure S1 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and natural mortality

Red dotted lines are air quality limit and guideline values. X-axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Figure S2 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and cardiovascular disease mortality

Red dotted lines are air quality limit and guideline values. X-axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and $\mathrm{O}_{3} . \mathrm{HR}=1$ for minimum pollution exposure.

Figure S3 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and cerebrovascular disease mortality

Red dotted lines are air quality limit and guideline values. X-axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Figure S4 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and ischemic heart disease mortality

Red dotted lines are air quality limit and guideline values. X-axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Figure S5 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and respiratory mortality

Red dotted lines are air quality limit and guideline values. X-axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Figure S6 Natural cubic splines (3 degrees of freedom) for associations between air pollution exposure and chronic obstructive pulmonary disease mortality

Red dotted lines are air quality limit and guideline values. X-axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Figure S7 Shape-Constrained Health Impact Function for associations between air pollution exposure and natural mortality

X -axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Figure S8 Shape-Constrained Health Impact Function for associations between air pollution exposure and cardiovascular disease mortality

X -axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and $\mathrm{O}_{3} . \mathrm{HR}=1$ for minimum pollution exposure.

Figure S9 Shape-Constrained Health Impact Function for associations between air pollution exposure and cerebrovascular disease mortality

X -axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Figure S10 Shape-Constrained Health Impact Function for associations between air pollution exposure and ischemic heart disease mortality

X -axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Figure S11 Shape-Constrained Health Impact Function for associations between air pollution exposure and respiratory mortality

X -axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Figure S12 Shape-Constrained Health Impact Function for associations between air pollution exposure and chronic obstructive pulmonary disease mortality

X -axis truncated at $30,60,3$ and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Section 6 Two-pollutant analysis

Table S6 Hazard ratios for associations between air pollution and natural mortality in twopollutant models

Pollutant	Single pollutant HR	HR adjusted for PM2.5	HR adjusted for NO2	HR adjusted for $\mathbf{B C}$	HR adjusted for $\mathbf{O}_{\mathbf{3}}$
PM2.5	1.130 $(1.106,1.155)$	NA	1.083 $(1.054,1.113)$	1.092 $(1.062,1.123)$	1.089 $(1.061,1.117)$
$\mathbf{N O}_{\mathbf{2}}$	1.086 $(1.070,1.102)$	1.050 $(1.031,1.070)$	NA	1.074 $(1.038,1.112)$	1.053 $(1.032,1.074)$
BC	1.081 $(1.065,1.098)$	1.039 $(1.019,1.060)$	1.012 $(0.977,1.048)$	NA	1.044 $(1.024,1.065)$
$\mathbf{O}_{\mathbf{3}}$	0.896 $(0.878,0.914)$	0.935 $(0.913,0.957)$	0.940 $(0.914,0.966)$	0.930 $(0.906,0.955)$	NA

$\mathrm{NA}=$ not applicable; Two-pollutant models of BC and NO_{2} are difficult to interpret because of high correlation between BC and NO_{2}.
$\mathrm{N}=325,367$; HR (95% confidence interval) presented for the following increments: PM2.5-5 $\mu \mathrm{g} / \mathrm{m}^{3}$, $\mathrm{NO}_{2}-10 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{BC}-0.5^{*} 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI, marital status, employment status and 2001 neighborhood-level mean income.

Table S7 Hazard ratios for associations between air pollution and cardiovascular mortality in twopollutant models

Pollutant	Single pollutant $\mathbf{H R}$	HR adjusted for $\mathbf{P M}_{\mathbf{2} .5}$	HR adjusted for $\mathbf{N O}_{2}$	HR adjusted for $\mathbf{B C}$	HR adjusted for $\mathbf{O}_{\mathbf{3}}$
$\mathbf{P M}_{\mathbf{2 . 5}}$	1.135 $(1.095,1.176)$	NA	1.100 $(1.053,1.150)$	1.112 $(1.061,1.165)$	1.100 $(1.054,1.149)$
$\mathbf{N O}_{\mathbf{2}}$	1.089 $(1.060,1.120)$	1.043 $(1.007,1.079)$	NA	1.077 $(1.012,1.146)$	1.051 $(1.010,1.094)$
$\mathbf{B C}$	1.085 $(1.055,1.116)$	1.026 $(0.988,1.066)$	1.013 $(0.950,1.081)$	NA	1.039 $(0.997,1.082)$
$\mathbf{O}_{\mathbf{3}}$	0.887 $(0.854,0.922)$	0.941 $(0.898,0.987)$	0.933 $(0.882,0.987)$	0.921 $(0.871,0.973)$	NA

NA=not applicable; $\mathrm{N}=325,367$; HR (95% confidence interval) presented for the following increments: $\mathrm{PM}_{2.5}-5 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{NO}_{2}-10 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{BC}-0.5^{*} 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI, marital status, employment status and 2001 neighbourhood-level mean income.

Table S8 Hazard ratios for associations between air pollution and respiratory mortality in twopollutant models

Pollutant	Single pollutant $\mathbf{H R}$	HR adjusted for $\mathbf{P M}_{\mathbf{2} .5}$	HR adjusted for $\mathbf{N O}_{2}$	HR adjusted for $\mathbf{B C}$	HR adjusted for $\mathbf{O}_{\mathbf{3}}$
$\mathbf{P M}_{\mathbf{2 . 5}}$	1.054 $(0.961,1.156)$	NA	0.944 $(0.842,1.06)$	0.962 $(0.854,1.082)$	0.980 $(0.880,1.091)$
$\mathbf{N O}_{\mathbf{2}}$	1.101 $(1.038,1.168)$	1.125 $(1.045,1.212)$	NA	1.143 $(0.998,1.309)$	1.076 $(0.993,1.165)$
$\mathbf{B C}$	1.084 $(1.02,1.151)$	1.101 $(1.019,1.19)$	0.959 $(0.835,1.101)$	NA	1.045 $(0.967,1.13)$
$\mathbf{O}_{\mathbf{3}}$	0.890 $(0.821,0.966)$	0.882 $(0.802,0.971)$	0.952 $(0.854,1.063)$	0.924 $(0.832,1.027)$	NA

NA=not applicable; $\mathrm{N}=325,367$; HR (95% confidence interval) presented for the following increments: $\mathrm{PM}_{2.5}-5 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{NO}_{2}-10 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{BC}-0.5^{*} 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI, marital status, employment status and 2001 neighbourhood-level mean income.

Section 7 Sensitivity analyses

Figure S13 Temporal trends in $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3} concentrations based upon the Danish DEHM model for different regions in Europe

Figure S14 Distribution of $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3} exposure at participant addresses using 2010 and back-extrapolated exposure at baseline year

Red: 2010 exposure; green: backextapolated exposure using the difference method; blue: backextapolated exposure using the the ratio method.The boundary of the box closest to zero indicates P25; furthest from zero - P75; bold line in the middle of the box - P50; whiskers indicate P5 and P95.

Figure S14 continued.

Figure S14 continued.

Figure S14 continued.

Table S9 Hazard ratios for associations between air pollution and natural mortality using baseline year exposure

Pollutant	Main model $\mathbf{H R}^{\mathbf{a}}$	Back-extrapolated baseline exposure (ratio method)	Back-extrapolated baseline exposure (difference method)
PM2.5	1.130 $(1.106,1.155)$	1.048 $(1.038,1.059)$	1.058 $(1.042,1.075)$
$\mathbf{N O}_{\mathbf{2}}$	1.086 $(1.070,1.102)$	1.056 $(1.045,1.067)$	1.082 $(1.067,1.098)$
$\mathbf{B C}$	1.081 $(1.065,1.098)$	1.046 $(1.034,1.058)$	1.072 $(1.057,1.088)$
$\mathbf{O}_{\mathbf{3}}$	0.896 $(0.878,0.914)$	0.918 $(0.902,0.935)$	0.916 $(0.899,0.933)$

${ }^{\text {a }}$ Main model 3 restricted to subjects available in the back-extrapolated baseline exposure analysis ($\mathrm{N}=325,342$). HR (95% confidence interval) presented for the following increments: $\mathrm{PM}_{2.5}-5 \mu \mathrm{~g} / \mathrm{m}^{3}$, $\mathrm{NO}_{2}-10 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{BC}-0.5^{*} 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI, marital status, employment status and 2001 neighbourhood-level mean income.

Table S10 Hazard ratios for associations between air pollution and natural mortality in timevarying analyses: time-varying exposure including residential mobility and strata for 1- or 5-year time periods to adjust for time trends in mortality and pollution

Pollutant	Main model HR, reduced set of cohorts ${ }^{\text {a }}$	Strata for 1 year ${ }^{\text {b }}$ (ratio method)	Strata for 1 year (difference method)	Strata for 5 year (ratio method)	Strata for 5 year (difference method)
PM2.5	$\begin{gathered} 1.123 \\ (1.090,1.157) \end{gathered}$	$\begin{gathered} 1.123 \\ (1.093,1.153) \end{gathered}$	$\begin{gathered} 1.136 \\ (1.103,1.170) \end{gathered}$	$\begin{gathered} 1.085 \\ (1.061,1.109) \end{gathered}$	$\begin{gathered} 1.081 \\ (1.057,1.107) \end{gathered}$
NO_{2}	$\begin{gathered} 1.104 \\ (1.083,1.126) \end{gathered}$	$\begin{gathered} 1.109 \\ (1.089,1.130) \end{gathered}$	$\begin{gathered} 1.112 \\ (1.091,1.133) \end{gathered}$	$\begin{gathered} 1.112 \\ (1.093,1.133) \end{gathered}$	$\begin{gathered} 1.116 \\ (1.095,1.138) \end{gathered}$
BC	$\begin{gathered} 1.098 \\ (1.076,1.120) \end{gathered}$	$\begin{gathered} 1.108 \\ (1.086,1.131) \end{gathered}$	$\begin{gathered} 1.103 \\ (1.081,1.124) \end{gathered}$	$\begin{gathered} 1.085 \\ (1.064,1.107) \end{gathered}$	$\begin{gathered} 1.102 \\ (1.081,1.124) \end{gathered}$
O_{3}	$\begin{gathered} 0.887 \\ (0.864,0.910) \end{gathered}$	$\begin{gathered} 0.932 \\ (0.920,0.945) \end{gathered}$	$\begin{gathered} 0.932 \\ (0.920,0.944) \end{gathered}$	$\begin{gathered} 0.897 \\ (0.887,0.907) \end{gathered}$	$\begin{gathered} 0.895 \\ (0.885,0.906) \end{gathered}$

${ }^{\text {a }}$ Main model 3 restricted to subjects available in the time-varying analysis ($\mathrm{N}=185,585$).
${ }^{\mathrm{b}}$ The 1-year and 5-year strata refer to calendar time periods we used to adjust for time trends inmortality.

HR (95% confidence interval) presented for the following increments: $\mathrm{PM}_{2.5}-5 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{NO}_{2}-10$ $\mu \mathrm{g} / \mathrm{m}^{3}, \mathrm{BC}-0.5^{*} 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI, marital status, employment status and 2001 neighbourhood-level mean income.

Figure S15 Natural cubic splines (3 degrees of freedom) for associations between time-varying exposure and natural mortality

Red dotted lines are air quality limit and guideline values. X-axis truncated at 30, 60, 3 and $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{PM} 2.5, \mathrm{NO}_{2}, \mathrm{BC}$ and O_{3}. $\mathrm{HR}=1$ for minimum pollution exposure.

Table S11 Hazard ratios for associations between air pollution and natural mortality: alternative confounder adjustment

Additional confounder analysis	Confounder model	Cohorts	PM2.5	NO_{2}	BC	O_{3}
	Model 1	$\begin{gathered} \text { All } \\ (\mathrm{N}=325,367) \end{gathered}$	$\begin{array}{r} 1.152 \\ (1.127 \\ 1.177) \end{array}$	$\begin{gathered} 1.113 \\ (1.097 \\ 1.129) \end{gathered}$	$\begin{gathered} 1.113 \\ (1.096, \\ 1.129) \end{gathered}$	$\begin{gathered} 0.844 \\ (0.828 \\ 0.862) \end{gathered}$
Smoking	Model 1 + smoking status	$\begin{gathered} \text { All } \\ (\mathrm{N}=325,367) \end{gathered}$	$\begin{gathered} 1.138 \\ (1.114, \\ 1.163) \end{gathered}$	$\begin{gathered} 1.089 \\ (1.073, \\ 1.104) \end{gathered}$	$\begin{gathered} 1.089 \\ (1.073, \\ 1.105) \end{gathered}$	$\begin{array}{r} 0.872 \\ (0.855 \\ 0.890) \end{array}$
	Model $1+$ smoking status + smoking intensity (linear)	$\begin{gathered} \text { All } \\ (\mathrm{N}=325,367) \end{gathered}$	$\begin{gathered} 1.139 \\ (1.115 \\ 1.164) \end{gathered}$	$\begin{gathered} 1.088 \\ (1.073, \\ 1.104) \end{gathered}$	$\begin{gathered} 1.088 \\ (1.072 \\ 1.104) \end{gathered}$	$\begin{gathered} 0.876 \\ (0.858, \\ 0.893) \end{gathered}$
	Model $1+$ smoking status + smoking intensity (linear) smoking intensity (squared)	$\begin{gathered} \text { All } \\ (\mathrm{N}=325,367) \end{gathered}$	$\begin{gathered} 1.139 \\ (1.114 \\ 1.163) \end{gathered}$	$\begin{gathered} 1.088 \\ (1.072, \\ 1.103) \end{gathered}$	$\begin{gathered} 1.088 \\ (1.072 \\ 1.104) \end{gathered}$	$\begin{gathered} 0.875 \\ (0.857 \\ 0.892) \end{gathered}$
	Model $1+$ smoking status + smoking intensity (linear) smoking intensity (squared) + smoking duration	$\begin{gathered} \text { All } \\ (\mathrm{N}=325,367) \end{gathered}$	$\begin{gathered} 1.136 \\ (1.112 \\ 1.160) \end{gathered}$	$\begin{gathered} 1.086 \\ (1.071 \\ 1.102) \end{gathered}$	$\begin{gathered} 1.086 \\ (1.070, \\ 1.102) \end{gathered}$	$\begin{gathered} 0.877 \\ (0.860 \\ 0.895) \end{gathered}$
BMI	Model $1+$ smoking status + smoking intensity (linear) + smoking intensity (squared) + smoking duration + BMI	$\begin{gathered} \text { All } \\ (\mathrm{N}=325,367) \end{gathered}$	$\begin{gathered} 1.131 \\ (1.107 \\ 1.156) \end{gathered}$	$\begin{gathered} 1.085 \\ (1.070 \\ 1.101) \end{gathered}$	$\begin{gathered} 1.085 \\ (1.069, \\ 1.101) \end{gathered}$	$\begin{gathered} 0.881 \\ (0.863, \\ 0.899) \end{gathered}$
Marital status	Model $1+$ smoking status + smoking intensity (linear) + smoking intensity (squared) + smoking duration + BMI + marital status	$\begin{gathered} \text { All } \\ (\mathrm{N}=325,367) \end{gathered}$	$\begin{gathered} 1.118 \\ (1.095 \\ 1.143) \end{gathered}$	$\begin{gathered} 1.067 \\ (1.052, \\ 1.083) \end{gathered}$	$\begin{gathered} 1.067 \\ (1.051, \\ 1.083) \end{gathered}$	$\begin{gathered} 0.901 \\ (0.883, \\ 0.920) \end{gathered}$

Table S11 continued.

Additional confounder analysis	Confounder model	Cohorts	PM2.5	NO_{2}	BC	O_{3}
Employment	Model 1 + smoking status + smoking intensity (linear) $+$ smoking intensity (squared) + smoking duration + BMI + marital status + employment = Model 2	$\begin{gathered} \text { All } \\ (\mathrm{N}=325,367) \end{gathered}$	$\begin{array}{r} 1.121 \\ (1.097, \\ 1.146) \end{array}$	$\begin{gathered} 1.070 \\ (1.055, \\ 1.086) \end{gathered}$	$\begin{gathered} 1.069 \\ (1.053, \\ 1.085) \end{gathered}$	$\begin{gathered} 0.899 \\ (0.881, \\ 0.918) \end{gathered}$
	Main model (model 3)	$\begin{gathered} \text { All } \\ (\mathrm{N}=325,367) \end{gathered}$	$\begin{gathered} 1.130 \\ (1.106 \\ 1.155) \end{gathered}$	$\begin{gathered} 1.086 \\ (1.070 \\ 1.102) \end{gathered}$	$\begin{gathered} 1.081 \\ (1.065, \\ 1.098) \end{gathered}$	$\begin{gathered} 0.896 \\ (0.878 \\ 0.914) \end{gathered}$
Education	Main model	$\begin{gathered} - \text { VHM } \\ (\mathrm{N}=179,773) \end{gathered}$	$\begin{array}{r} 1.131 \\ (1.085 \\ 1.179) \end{array}$	$\begin{gathered} 1.058 \\ (1.039 \\ 1.078) \end{gathered}$	$\begin{gathered} 1.051 \\ (1.031 \\ 1.071) \end{gathered}$	$\begin{gathered} 0.954 \\ (0.930, \\ 0.979) \end{gathered}$
	Main model + education		$\begin{gathered} 1.132 \\ (1.086, \\ 1.180) \end{gathered}$	$\begin{gathered} 1.059 \\ (1.040, \\ 1.079) \end{gathered}$	$\begin{gathered} 1.052 \\ (1.032, \\ 1.072) \end{gathered}$	0.955 (0.931, 0.980)
Smoking in former smokers	Main model	$\begin{gathered} - \text { VHM } \\ (\mathrm{N}=180,984) \end{gathered}$	$\begin{gathered} 1.129 \\ (1.083, \\ 1.177) \end{gathered}$	$\begin{gathered} 1.058 \\ (1.038 \\ 1.078) \end{gathered}$	$\begin{gathered} 1.051 \\ (1.031 \\ 1.071) \end{gathered}$	$\begin{gathered} 0.954 \\ (0.930 \\ 0.979) \end{gathered}$
	Main model + smoking		$\begin{gathered} 1.123 \\ (1.078, \\ 1.171) \end{gathered}$	$\begin{gathered} 1.055 \\ (1.035, \\ 1.075) \end{gathered}$	$\begin{gathered} 1.048 \\ (1.028, \\ 1.068) \end{gathered}$	$\begin{gathered} 0.957 \\ (0.933, \\ 0.981) \end{gathered}$
Fruit (tertile)	Main model	- CEANS, DNC, HNR, KORA, VHM(N=125,3 53)	$\begin{gathered} 1.113 \\ (1.061, \\ 1.166) \end{gathered}$	$\begin{gathered} 1.060 \\ (1.036, \\ 1.085) \end{gathered}$	$\begin{gathered} 1.046 \\ (1.022, \\ 1.070) \end{gathered}$	$\begin{gathered} 0.957 \\ (0.930, \\ 0.984) \end{gathered}$
	Main model + fruit		$\begin{gathered} 1.112 \\ (1.060 \\ 1.165) \end{gathered}$	$\begin{gathered} 1.060 \\ (1.036, \\ 1.084) \end{gathered}$	$\begin{gathered} 1.045 \\ (1.022, \\ 1.069) \end{gathered}$	$\begin{gathered} 0.957 \\ (0.930, \\ 0.985) \end{gathered}$
Fruit (elapse)	Main model	- CEANS-SALT, VHM(N=173,7 10)	$\begin{gathered} 1.128 \\ (1.082, \\ 1.176) \end{gathered}$	$\begin{gathered} 1.058 \\ (1.038 \\ 1.078) \end{gathered}$	$\begin{gathered} 1.050 \\ (1.030, \\ 1.070) \end{gathered}$	$\begin{gathered} 0.956 \\ (0.932, \\ 0.982) \end{gathered}$
	Main model + fruit		$\begin{gathered} 1.127 \\ (1.081, \\ 1.175) \end{gathered}$	$\begin{gathered} 1.057 \\ (1.037 \\ 1.078) \end{gathered}$	$\begin{gathered} 1.050 \\ (1.030, \\ 1.070) \end{gathered}$	$\begin{gathered} 0.957 \\ (0.932 \\ 0.982) \end{gathered}$

Table S11 continued.

Additional confounder analysis	Confounder model	Cohorts	PM2.5	NO_{2}	BC	O_{3}
Fruit (cat)	Main model	$\begin{gathered} \text { - CEANS-SALT, } \\ \text { E3N, EPIC_NL, } \\ \text { VHM } \\ (\mathrm{N}=101,994) \end{gathered}$	$\begin{gathered} 1.177 \\ (1.115, \\ 1.243) \end{gathered}$	$\begin{gathered} 1.074 \\ (1.050, \\ 1.099) \end{gathered}$	$\begin{gathered} 1.070 \\ (1.046, \\ 1.095) \end{gathered}$	$\begin{gathered} 0.946 \\ (0.914, \\ 0.979) \end{gathered}$
	Main model + fruit		$\begin{gathered} 1.174 \\ (1.111, \\ 1.240) \end{gathered}$	$\begin{gathered} 1.072 \\ (1.048 \\ 1.097) \end{gathered}$	$\begin{gathered} 1.069 \\ (1.045, \\ 1.094) \end{gathered}$	$\begin{gathered} 0.948 \\ (0.916, \\ 0.981) \end{gathered}$
Total vegetables	Main model	$\begin{gathered} \text { - CEANS, DNC, } \\ \text { HNR, KORA, } \\ \text { VHM } \\ (\mathrm{N}=125,353) \end{gathered}$	$\begin{gathered} 1.113 \\ (1.061, \\ 1.166) \end{gathered}$	$\begin{gathered} 1.060 \\ (1.036, \\ 1.085) \end{gathered}$	$\begin{gathered} 1.046 \\ (1.022, \\ 1.070) \end{gathered}$	$\begin{gathered} 0.957 \\ (0.930, \\ 0.984) \end{gathered}$
	Main model + total vegetables		$\begin{gathered} 1.110 \\ (1.058, \\ 1.163) \end{gathered}$	$\begin{gathered} 1.057 \\ (1.033, \\ 1.082) \end{gathered}$	$\begin{gathered} 1.043 \\ (1.019 \\ 1.067) \end{gathered}$	$\begin{gathered} 0.960 \\ (0.933, \\ 0.987) \end{gathered}$
Raw vegetables (tertile)	Main model	- CEANS, DNC, EPIC_NL, HNR, KORA, VHM(N=92,60 7)	$\begin{gathered} 1.101 \\ (1.048, \\ 1.156) \end{gathered}$	$\begin{gathered} 1.060 \\ (1.033, \\ 1.087) \end{gathered}$	$\begin{gathered} 1.046 \\ (1.021 \\ 1.072) \end{gathered}$	$\begin{gathered} 0.955 \\ (0.925, \\ 0.986) \end{gathered}$
	Main model + vegetables		$\begin{gathered} 1.092 \\ (1.039, \\ 1.147) \end{gathered}$	$\begin{gathered} 1.053 \\ (1.027 \\ 1.080) \end{gathered}$	$\begin{gathered} 1.039 \\ (1.014 \\ 1.065) \end{gathered}$	$\begin{gathered} 0.957 \\ (0.927 \\ 0.989) \end{gathered}$
Raw vegetables (elapse)	Main model	$\begin{gathered} \text { - CEANS, DNC, } \\ \text { EPIC_NL, } \\ \text { VHM } \\ (\mathrm{N}=102,116) \end{gathered}$	$\begin{gathered} 1.102 \\ (1.050, \\ 1.157) \end{gathered}$	$\begin{gathered} 1.059 \\ (1.033, \\ 1.085) \end{gathered}$	$\begin{gathered} 1.046 \\ (1.022, \\ 1.071) \end{gathered}$	$\begin{gathered} 0.949 \\ (0.920, \\ 0.980) \end{gathered}$
	Main model + vegetables		$\begin{gathered} 1.094 \\ (1.042, \\ 1.148) \end{gathered}$	$\begin{gathered} 1.053 \\ (1.028 \\ 1.079) \end{gathered}$	$\begin{gathered} 1.040 \\ (1.015, \\ 1.065) \end{gathered}$	$\begin{gathered} 0.952 \\ (0.922, \\ 0.983) \end{gathered}$
Raw vegetables (cat)	Main model	$\begin{gathered} \text { - CEANS, DNC, } \\ \text { E3N, EPIC_NL, } \\ \text { VHM } \\ (\mathrm{N}=63,139) \end{gathered}$	$\begin{gathered} 1.162 \\ (1.087, \\ 1.243) \end{gathered}$	$\begin{gathered} 1.084 \\ (1.052, \\ 1.117) \end{gathered}$	$\begin{gathered} 1.071 \\ (1.041 \\ 1.102) \end{gathered}$	$\begin{gathered} 0.939 \\ (0.901 \\ 0.978) \end{gathered}$
	Main model + vegetables		$\begin{gathered} 1.147 \\ (1.073, \\ 1.227) \end{gathered}$	$\begin{gathered} 1.074 \\ (1.043 \\ 1.107) \end{gathered}$	$\begin{gathered} 1.060 \\ (1.030 \\ 1.090) \end{gathered}$	$\begin{gathered} 0.944 \\ (0.906, \\ 0.983) \end{gathered}$
Meat (tertile)	Main model	$\begin{gathered} \text { - CEANS, DNC, } \\ \text { HNR, KORA, } \\ \text { VHM } \\ (\mathrm{N}=125,353) \end{gathered}$	$\begin{gathered} 1.113 \\ (1.061, \\ 1.166) \end{gathered}$	$\begin{gathered} 1.060 \\ (1.036, \\ 1.085) \end{gathered}$	$\begin{gathered} 1.046 \\ (1.022, \\ 1.070) \end{gathered}$	$\begin{gathered} 0.957 \\ (0.930, \\ 0.984) \end{gathered}$
	Main model + meat		$\begin{array}{r} 1.113 \\ (1.062, \\ 1.167) \end{array}$	$\begin{array}{r} 1.061 \\ (1.037, \\ 1.085) \end{array}$	$\begin{gathered} 1.046 \\ (1.023, \\ 1.070) \end{gathered}$	$\begin{gathered} 0.956 \\ (0.929, \\ 0.984) \end{gathered}$
Meat (elapse)	Main model	$\begin{gathered} \text { - CEANS-SALT, } \\ \text { CEANS-SDPP, } \\ \text { CEANS- } \\ \text { SIXTY,DNC, } \\ \text { VHM } \\ (\mathrm{N}=137,242) \end{gathered}$	$\begin{gathered} 1.121 \\ (1.071, \\ 1.175) \end{gathered}$	$\begin{gathered} 1.061 \\ (1.038, \\ 1.085) \end{gathered}$	$\begin{gathered} 1.048 \\ (1.025, \\ 1.071) \end{gathered}$	$\begin{gathered} 0.949 \\ (0.923, \\ 0.976) \end{gathered}$
	Main model + meat		$\begin{gathered} 1.122 \\ (1.071, \\ 1.175) \end{gathered}$	$\begin{gathered} 1.062 \\ (1.038 \\ 1.085) \end{gathered}$	$\begin{gathered} 1.048 \\ (1.026 \\ 1.072) \end{gathered}$	$\begin{gathered} 0.949 \\ (0.922, \\ 0.976) \end{gathered}$

Table S11 continued.

Additional confounder analysis	Confounder model	Cohorts	PM2.5	NO_{2}	BC	O_{3}
Meat (cat)	Main model	- CEANS-SALT, CEANS-SDPP, CEANS-SIXTY, DNC, E3N, EPIC_NL, VHM ($\mathrm{N}=65,485$)	$\begin{gathered} 1.185 \\ (1.109 \\ 1.265) \end{gathered}$	$\begin{gathered} 1.091 \\ (1.059 \\ 1.123) \end{gathered}$	$\begin{gathered} 1.077 \\ (1.047, \\ 1.108) \end{gathered}$	$\begin{gathered} 0.928 \\ (0.892 \\ 0.966) \end{gathered}$
	Main model + meat		$\begin{gathered} 1.183 \\ (1.108 \\ 1.264) \end{gathered}$	$\begin{gathered} 1.090 \\ (1.059 \\ 1.122) \end{gathered}$	$\begin{gathered} 1.077 \\ (1.047, \\ 1.108) \end{gathered}$	$\begin{gathered} 0.929 \\ (0.893 \\ 0.967) \end{gathered}$
Alcohol	Main model	- CEANSSIXTY, CEANSSNACK, VHM ($\mathrm{N}=171,523$)	$\begin{gathered} 1.119 \\ (1.073, \\ 1.168) \end{gathered}$	$\begin{array}{r} 1.056 \\ (1.035 \\ 1.076) \end{array}$	$\begin{gathered} 1.047 \\ (1.027, \\ 1.068) \end{gathered}$	$\begin{gathered} 0.959 \\ (0.934, \\ 0.984) \end{gathered}$
	Main model + alcohl		$\begin{gathered} 1.120 \\ (1.074, \\ 1.169) \end{gathered}$	$\begin{gathered} 1.055 \\ (1.035 \\ 1.076) \end{gathered}$	$\begin{gathered} 1.047 \\ (1.026, \\ 1.067) \end{gathered}$	$\begin{gathered} 0.958 \\ (0.933 \\ 0.983) \end{gathered}$
Occupational status	Main model	$\begin{gathered} -\mathrm{DCH} \\ (\mathrm{~N}=271,720) \end{gathered}$	$\begin{gathered} 1.111 \\ (1.086, \\ 1.137) \end{gathered}$	$\begin{gathered} 1.068 \\ (1.049 \\ 1.086) \end{gathered}$	$\begin{gathered} 1.066 \\ (1.047, \\ 1.086) \end{gathered}$	$\begin{gathered} 0.906 \\ (0.884 \\ 0.929) \end{gathered}$
	Main model + Occupational Status		$\begin{gathered} 1.110 \\ (1.085, \\ 1.136) \end{gathered}$	$\begin{gathered} 1.068 \\ (1.049, \\ 1.087) \end{gathered}$	$\begin{gathered} 1.066 \\ (1.047, \\ 1.086) \end{gathered}$	$\begin{gathered} 0.907 \\ (0.884 \\ 0.929) \end{gathered}$
Blue collar job	Main model	- DCH, E3N, EPIC_NL, HNR ($\mathrm{N}=181,302$)	$\begin{gathered} 1.124 \\ (1.096, \\ 1.153) \end{gathered}$	$\begin{gathered} 1.090 \\ (1.067 \\ 1.113) \end{gathered}$	$\begin{gathered} 1.095 \\ (1.071 \\ 1.119) \end{gathered}$	$\begin{gathered} 0.863 \\ (0.835 \\ 0.891) \end{gathered}$
	Main model + Collar Blue		$\begin{gathered} 1.125 \\ (1.096 \\ 1.154) \end{gathered}$	$\begin{gathered} 1.098 \\ (1.075 \\ 1.121) \end{gathered}$	$\begin{gathered} 1.100 \\ (1.076 \\ 1.125) \end{gathered}$	$\begin{gathered} 0.855 \\ (0.828 \\ 0.883) \end{gathered}$
Neighborhood unemployment rate	Main model	$\begin{gathered} \text { - CEANS } \\ (\mathrm{N}=304,536) \end{gathered}$	$\begin{gathered} 1.128 \\ (1.103, \\ 1.152) \end{gathered}$	$\begin{gathered} 1.086 \\ (1.070 \\ 1.103) \end{gathered}$	$\begin{gathered} 1.080 \\ (1.063, \\ 1.097) \end{gathered}$	$\begin{gathered} 0.897 \\ (0.879 \\ 0.915) \end{gathered}$
	Main model + Neighborhood unemployment rate		$\begin{gathered} 1.127 \\ (1.103, \\ 1.152) \end{gathered}$	$\begin{gathered} 1.084 \\ (1.068, \\ 1.101) \end{gathered}$	$\begin{gathered} 1.078 \\ (1.062, \\ 1.095) \end{gathered}$	$\begin{gathered} 0.899 \\ (0.880 \\ 0.917) \end{gathered}$
Neighborhood low educational level rate	Main model	- EPIC_NL, HNR, KORA ($\mathrm{N}=282,908$)	$\begin{gathered} 1.131 \\ (1.107 \\ 1.156) \end{gathered}$	$\begin{gathered} 1.092 \\ (1.075 \\ 1.109) \end{gathered}$	$\begin{gathered} 1.088 \\ (1.071 \\ 1.105) \end{gathered}$	0.885 (0.866, $0.904)$
	Main model + Neighborhood low educational level rate		$\begin{gathered} 1.132 \\ (1.108, \\ 1.157) \end{gathered}$	$\begin{gathered} 1.096 \\ (1.079, \\ 1.113) \end{gathered}$	$\begin{gathered} 1.092 \\ (1.075, \\ 1.110) \end{gathered}$	$\begin{gathered} 0.880 \\ (0.861 \\ 0.900) \end{gathered}$

Table S11 continued.

Additional confounder analysis	Confounder model	Cohorts	PM2.5	NO_{2}	BC	O3
Neighborhood high educational level rate	Main model	- EPIC_NL, HNR, KORA ($\mathrm{N}=282,908$)	$\begin{gathered} 1.131 \\ (1.107 \\ 1.156) \end{gathered}$	$\begin{gathered} 1.092 \\ (1.075, \\ 1.109) \end{gathered}$	$\begin{gathered} 1.088 \\ (1.071 \\ 1.105) \end{gathered}$	$\begin{gathered} 0.885 \\ (0.866, \\ 0.904) \end{gathered}$
	Main model + Neighborhood high educational level rate		$\begin{gathered} 1.133 \\ (1.109 \\ 1.158) \end{gathered}$	$\begin{gathered} 1.098 \\ (1.081, \\ 1.115) \end{gathered}$	$\begin{gathered} 1.094 \\ (1.077, \\ 1.112) \end{gathered}$	$\begin{gathered} 0.879 \\ (0.860 \\ 0.899) \end{gathered}$
Neighborhood ethnicity	Main model	- CEANS, HNR, KORA ($\mathrm{N}=295,078$)	$\begin{gathered} 1.128 \\ (1.104, \\ 1.153) \end{gathered}$	$\begin{gathered} 1.088 \\ (1.071, \\ 1.105) \end{gathered}$	$\begin{gathered} 1.081 \\ (1.065, \\ 1.098) \end{gathered}$	$\begin{gathered} 0.897 \\ (0.879, \\ 0.916) \end{gathered}$
	Main model + Neighborhood Ethnicity		$\begin{gathered} 1.120 \\ (1.095 \\ 1.145) \end{gathered}$	$\begin{gathered} 1.083 \\ (1.064 \\ 1.101) \end{gathered}$	$\begin{gathered} 1.074 \\ (1.056, \\ 1.092) \end{gathered}$	$\begin{gathered} 0.905 \\ (0.886 \\ 0.925) \end{gathered}$

HR (95\% confidence interval) presented for the following increments: $\mathrm{PM}_{2.5}-5 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{NO}_{2}-10 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{BC}-$ $0.5^{*} 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI, marital status, employment status and 2001 neighbourhoodlevel mean income.

Figure S16 Hazard ratios for associations between air pollution and natural mortality: impact of dropping one cohort at a time

Sensitivity: exclude one cohort at a time

Table S12 Hazard ratios for associations between air pollution and natural and cause-specific mortality: additional adjustment for road-traffic noise

Pollutant	Main model	Additional adjustment for road-traffic noise
Natural mortality		
PM2.5	1.176(1.115, 1.241)	1.156(1.093, 1.223)
NO_{2}	1.073(1.050, 1.097)	1.068(1.042, 1.095)
BC	1.071(1.047, 1.096)	1.064(1.038, 1.091)
O_{3}	0.942(0.911, 0.974)	0.958(0.924, 0.993)
Cardiovascular mortality		
PM2.5	1.127 (1.006, 1.262)	1.105 (0.980, 1.245)
NO_{2}	1.060 (1.013, 1.110)	1.053 (1.000, 1.110)
BC	1.051 (1.003, 1.103)	1.041 (0.988, 1.098)
O_{3}	0.945 (0.881, 1.013)	0.961 (0.891, 1.036)
Cerebrovascular mortality		
PM2.5	1.172 (0.944, 1.456)	1.149 (0.915, 1.443)
NO_{2}	1.039 (0.951, 1.134)	1.023 (0.927, 1.130)
BC	1.039 (0.949, 1.138)	1.025 (0.927, 1.132)
O_{3}	0.905 (0.791, 1.034)	0.916 (0.793, 1.059)
Ischemic heart disease mortality		
PM2.5	0.940 (0.786, 1.124)	0.949 (0.786, 1.146)
NO_{2}	1.000 (0.931, 1.075)	1.012 (0.933, 1.098)
BC	0.995 (0.923, 1.071)	1.004 (0.924, 1.090)
O_{3}	1.000 (0.896, 1.117)	0.988 (0.877, 1.113)
Diabetes mortality		
PM2.5	1.151 (0.759, 1.746)	1.096 (0.708, 1.696)
NO_{2}	1.154 (0.964, 1.380)	1.143 (0.933, 1.400)
BC	1.139 (0.953, 1.361)	1.123 (0.922, 1.369)
O_{3}	0.949 (0.735, 1.226)	0.991 (0.751, 1.307)

Table S12 continued.

Pollutant	Main model	Additional adjustment for road-traffic noise
Cardio-metabolic mortality		
$\mathrm{PM} 2.5^{\mathrm{NO}_{\mathbf{2}}}$	$1.132(1.015,1.263)$	$1.108(0.987,1.243)$
BC	$1.067(1.021,1.116)$	$1.060(1.008,1.115)$
$\mathrm{O}_{\mathbf{3}}$	$0.942(0.881,1.008)$	$0.959(0.892,1.032)$

$\mathrm{N}=109,021$; road-traffic noise available for CEANS, DCH, DNC (using the Nordic Prediction method), HNR and KORA(using the German VDUS/RLS-90 method); HR (95\% confidence interval) presented for the following increments: $\mathrm{PM}_{2.5}-5 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{NO}_{2}-10 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{BC}-0.5 * 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI, marital status, employment status and 2001 neighbourhood-level mean income.

Table S13 Hazard ratios for associations between air pollution and natural mortality in twopollutant models, without VHM\&PP cohort

Pollutant	Single pollutant HR	HR adjusted for PM2.5	HR adjusted for NO2	HR adjusted for BC	HR adjusted for $\mathbf{O}_{\mathbf{3}}$
PM2.5	1.129 $(1.083,1.177)$	NA	1.071 $(1.013,1.133)$	1.092 $(1.036,1.152)$	1.115 $(1.065,1.168)$
$\mathbf{N O}_{\mathbf{2}}$	1.058 $(1.038,1.078)$	1.036 $(1.010,1.062)$	NA	1.064 $(1.021,1.109)$	1.056 $(1.032,1.080)$
BC	1.051 $(1.031,1.071)$	1.024 $(1.000,1.050)$	0.993 $(0.952,1.036)$	NA	1.044 $(1.021,1.067)$
$\mathbf{O}_{\mathbf{3}}$	0.954 $(0.930,0.979)$	0.983 $(0.955,1.011)$	0.995 $(0.965,1.027)$	0.982 $(0.954,1.011)$	NA

$\mathrm{NA}=$ not applicable; Two-pollutant models of BC and NO_{2} are difficult to interpret because of high correlation between BC and NO_{2}.
$\mathrm{N}=325,367$; HR (95% confidence interval) presented for the following increments: $\mathrm{PM} 2.5-5 \mu \mathrm{~g} / \mathrm{m}^{3}$, $\mathrm{NO}_{2}-10 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{BC}-0.5^{*} 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI, marital status, employment status and 2001 neighborhood-level mean income.

Table S14 Hazard ratios for associations between air pollution and natural mortality in twopollutant models, without VHM\&PP cohort and adjusting for road-traffic noise

Pollutant	Single pollutant HR	HR adjusted for PM2.5	HR adjusted for $\mathbf{N O 2}$	HR adjusted for BC	HR adjusted for $\mathbf{O}_{\mathbf{3}}$
PM2.5	1.156 $(1.093,1.223)$	NA	1.090 $(1.015,1.171)$	1.101 $(1.028,1.179)$	1.151 $(1.083,1.224)$
NO $_{2}$	1.068 $(1.042,1.095)$	1.043 $(1.011,1.077)$	NA	1.048 $(0.998,1.100)$	1.069 $(1.039,1.100)$
BC	1.064 $(1.038,1.091)$	1.039 $(1.008,1.071)$	1.022 $(0.974,1.073)$	NA	1.062
$\mathbf{O}_{\mathbf{3}}$	0.958 $(0.924,0.993)$	0.992 $(0.954,1.032)$	1.003 $(0.963,1.045)$	0.995 $(0.956,1.035)$	NA

$\mathrm{NA}=$ not applicable; Two-pollutant models of BC and NO_{2} are difficult to interpret because of high correlation between BC and NO_{2}.
$\mathrm{N}=325,367$; HR (95% confidence interval) presented for the following increments: PM2.5-5 $\mu \mathrm{g} / \mathrm{m}^{3}$, $\mathrm{NO}_{2}-10 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{BC}-0.5^{*} 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI, marital status, employment status and 2001 neighborhood-level mean income. Noise was not available in VHM\&PP cohort.

Table S15 Hazard ratios for associations between air pollution and natural mortality: multiple imputation

Pollutant	Main model	Main model with multiple imputation
PM2.5	$1.13(1.11,1.16)$	$1.12(1.10,1.15)$
$\mathbf{N O}_{\mathbf{2}}$	$1.09(1.07,1.10)$	$1.09(1.07,1.10)$
$\mathbf{B C}$	$1.08(1.06,1.10)$	$1.08(1.06,1.09)$
$\mathbf{O}_{\mathbf{3}}$	$0.90(0.88,0.91)$	$0.90(0.88,0.91)$

HR (95% confidence interval) presented for the following increments: $\mathrm{PM}_{2.5}-5 \mu \mathrm{~g} / \mathrm{m}^{3}, \mathrm{NO}_{2}-10$ $\mu \mathrm{g} / \mathrm{m}^{3}, \mathrm{BC}-0.5^{*} 10-5 / \mathrm{m}, \mathrm{O}_{3}-10 \mu \mathrm{~g} / \mathrm{m}^{3}$; main model adjusted for cohort id, age, sex, year of baseline visit, smoking (status, duration, intensity, intensity ${ }^{2}$), BMI , marital status, employment status and 2001 neighbourhood-level mean income.

Figure S17 Effect modification for associations between air pollution and natural mortality

Table S16 Comparison of findings for natural mortality with recent North American administrative cohorts, ESCAPE and recent meta-analyses estimates

	HR PM2.5 per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$	$\begin{gathered} \mathrm{HR} \mathrm{NO}_{2} \\ \text { per } 10 \mu \mathrm{~g} / \mathrm{m}^{3} \end{gathered}$	$\begin{gathered} H R O_{3} \\ \text { per } 10 \mu \mathrm{~g} / \mathrm{m}^{3} \end{gathered}$
ELAPSE (current study)	1.28 (1.22, 1.33)	1.09 (1.07, 1.10)	0.90 (0.88, 0.91)
MAPLE CanCHEC (Crouse et al., 2015; Pinault et al., 2017)	1.05 (1.04, 1.07)	1.004 (1.002, 1.006)	1.036 (1.033, 1.038)
MAPLE CCHS (Pinault et al., 2016)	1.11 (1.04, 1.18)	1.024 (1.016, 1.040)	1.025 (1.015, 1.034)
MEDICARE (Di et al., 2017)	1.084 (1.081, 1.086)		1.012 (1.011, 1.012)
ESCAPE (Beelen et al., 2011)	1.14 (1.04, 1.26)	1.01 (0.99, 1.03)	
Pope et al., 2020	1.08 (1.06, 1.11)		
Chen and Hoek, 2020	1.08 (1.06, 1.09)		
Huangfu and Atkinson, 2020		1.02 (1.01, 1.04)	1.01 (1.00, 1.02)
Raaschou-Nielsen et al., 2020	1.08 (1.04, 1.13)	1.05 (1.04, 1.06)	0.96 (0.95, 0.97)

References:

Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on naturalcause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014;383:785-95.
Chen J and Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ Int 2020:105974.

Crouse DL, Peters PA, Hystad P, et al. Ambient PM 2.5, O_{3}, and NO_{2} Exposures and Associations with Mortality over 16 Years of Follow-Up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ Health Perspect 2015;123(11):1180-6.
Di Q, Wang Y, Zanobetti A, et al. Air pollution and mortality in the medicare population. N Engl J Med 2017;376:2513-22.

Pinault L, Tjepkema M, Crouse DL, et al. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ Heal 2016;15:18.
Pinault LL, Weichenthal S, Crouse DL, et al. Associations between fine particulate matter and mortality in the 2001 Canadian Census Health and Environment Cohort. Environ Res 2017;159:406-15.

Pope CA, Coleman N, Pond ZA, Burnett RT. Fine particulate air pollution and human mortality: 25+ years of cohort studies. Environ Res 2020;183:108924.

Raaschou-Nielsen O, Thorsteinson E, Antonsen S, et al. Long-term exposure to air pollution and mortality in the Danish population a nationwide study. EClinicalMedicine 2020;28:100605.

[^0]: ${ }^{1}$ First quartile is the reference

