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Abstract
Purpose Supracondylar fractures are common injuries accounting for approximately 15% of all fractures in children with a 
large body of literature on this subject.
Methods  This article critically appraises the available evidence to provide an overview of the treatment options including 
the role and timing of surgery, the geometry of wire fixation and the management of nerve and arterial injury.
Conclusion  Management decisions are based on a number of considerations particularly fracture stability. Closed reduction 
and percutaneous K-wire stabilisation are commonly recommended for an unstable displaced fracture. These techniques are 
however associated with the potential for iatrogenic neurological injury. Vascular injury is also rare but must be recognised 
and treated promptly to avoid significant permanent morbidity.
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Introduction

In 1959, Dr John J Gartland [1] noted “the trepidation with 
which men, otherwise versed in the management of trauma, 
approach a fresh supracondylar fracture”. Whilst the man-
agement has evolved since this description, this fracture 
continues to challenge contemporary orthopaedic surgeons. 
This article critically appraises published evidence to pro-
vide an overview of the treatment options including the role 
and timing of surgery, the geometry of wire fixation and the 
management of nerve and arterial injury.

Epidemiology

Supracondylar fractures of the distal humerus account 
for approximately 15% of all paediatric fractures [2–4]. 
The median age of presentation is six years [5–8], and the 
incidence gradually reduces with age until age 15, when 
patients tend to present with an adult pattern [8]. This injury 
is reported to be more common in males [5, 8, 9] but there 
is a lack of consensus, some reports indicating a higher 
incidence in females [10, 11] and a recent evaluation of a 
cohort of > 63,000 children over a five year period did not 
demonstrate a statistically significant difference [7]. The 
mechanism of injury is usually a fall onto an outstretched 
hand, with axial transmission of body weight through the 
maximally extended elbow. This produces an extension type 
fracture, which accounts for 97–99% of injuries and may be 
influenced by the ligamentous laxity that is common in this 
age group, predisposing to elbow hyper-extension [8, 12, 
13]. There is a higher incidence of injury over weekends 
and during the summer months [5, 7]. And falls from play 
equipment are frequently implicated [5, 14]. Flexion type 
injuries are far less common, accounting for 1–3% [5, 14], 
and open fractures are also rare, occurring in approximately 
1% and more frequently in the older child [7].
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Anatomy and mechanism of injury

An appreciation of the morphology of the distal humerus is 
necessary to understand the high incidence of fractures in 
this region. The distal humerus is roughly triangular in the 
coronal plane, with a base formed by the transverse condylar 
masses (lateral epicondyle, capitellum, trochlear and medial 
epicondyle) and the sides formed by the medial and lateral 
supracondylar ridges. The olecranon and coronoid fossae 
form the centre of this triangle, with a thin area of bone 
proximal to the condylar masses and between the supracon-
dylar pillars. This produces a dumbbell shape in the axial 
plane and the thin plate of bone acts as a stress riser that 
fails under excessive axial load. The relative ligamentous 
laxity predisposes to hyper-extension [13] and results in the 
olecranon acting as a fulcrum against the olecranon fossa 
until the anterior periosteum tears and the cortex fails. The 
fracture may progress to the posterior cortex with the pos-
terior periosteum acting as a hinge, preserving stability and 
facilitating reduction [15].

The direction of displacement of the distal fragment may 
indicate whether the medial or lateral periosteum remains 
intact and assists in planning the appropriate reduction 
manoeuvre [16]. Posteromedial displacement is associated 
with a posterolateral periosteal tear, with preservation of 
the posteromedial periosteum. Placing the forearm in prona-
tion tensions the medial periosteum and potentially assists 
with fracture reduction, avoiding varus malalignment. Con-
versely, posterolateral displacement tends to disrupt the 
medial periosteum and in this circumstance, supination is 
appropriate [17].

Classification

A number of classification systems are used to describe 
supracondylar fractures and are effectively assessing stabil-
ity, which is of primary importance in determining appropri-
ate management.

It is important to initially discriminate between the com-
mon extension and unusual flexion types on the basis of the 
initial lateral radiograph.

Gartland [1] classified extension injuries as non-dis-
placed, moderately displaced and severely displaced (Fig. 1). 
Wilkins extended this to include the concept of posterior 
humeral cortical contact with a rotational deformity, sug-
gested by translation, visible in either plane [18]. Fractures 
were subdivided into IIa: posterior hinge intact without rota-
tion and IIb: posterior hinge intact with rotation and this 
modification has good intra- and inter-observer reliability 
[19–22].

De Boeck [23] advocated surgical management when 
the medial column of the humerus was comminuted and 
therefore unstable, leading to alteration of Baumann’s angle. 
Leitch (2004) added intra-operative multiplanar instability 
(type IV injuries), due to complete disruption of the peri-
osteum [24].

The AO-Muller classification system discriminates on the 
basis of completeness of the fracture, displacement in either 
AP or lateral planes and bone contact. It provides a practical 
guide to management and provides a reproducible method 
of codifying these injuries [25].

Fig. 1  The modified Gartland classification system a type I non-displaced, b type II moderately displaced, posterior cortex remains in continuity 
(IIa no rotation, IIb rotation), c type III complete displacement and d type IV unstable in flexion/extension (intraoperative discovery)
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Assessment

An accurate history and clinical assessment is crucial 
although not always straightforward, particularly in younger 
patients. Supracondylar fracture in isolation is an uncom-
mon presentation of non-accidental injury (NAI) [26] 
with < 0.5% of fractures caused deliberately [27–30]. A 
consistent and appropriate account of the circumstances and 
mechanism of injury from both the patient (if applicable) 
and the parents are important.

Initial visual inspection considers swelling, bruising and 
the integrity of the skin, with any sign of bleeding suggest-
ing an open injury. Puckering of the skin in the antecubital 
fossa suggests that the proximal, metaphyseal fragment has 
perforated the brachialis muscle and is associated with an 
increased risk of injury to the brachial artery and median 
nerve, which can also become incarcerated in the frac-
ture site during reduction [31]. The incidence of vascular 
compromise is reported between 10 and 20% in displaced 
supracondylar fractures [16, 32]. A meta-analysis of > 5000 
fractures reported an overall rate of traumatic neurapraxia of 
11.3%, extension fractures with associated neurapraxia most 
frequently involved the anterior interosseous nerve (34.1%) 
and neurapraxias associated with flexion injuries most com-
monly involved the ulnar nerve (91.3%) [33]. Ipsilateral limb 
injuries, most commonly concurrent forearm fractures, occur 
in up to 5% [34, 35] are associated with an increased risk of 
neurovascular injury and compartment syndrome [36, 37].

Informal examination may be necessary in a young 
patient and games, particularity ‘rock, paper, scissors, ok’ 
can provide a rapid and accurate assessment of neurologi-
cal function. Motor function in median nerve is evaluated 
by asking the child to make a fist (rock), radial nerve by 
extending the fingers (paper) and ulnar nerve by abduct-
ing the fingers (scissors). The anterior interosseous nerve is 
evaluated by flexing the inter-phalangeal joint of the thumb 
and distal inter-phalangeal joint of the index finger (OK 
sign). This is accompanied by an assessment of sensation, 
making note of sensory loss in a peripheral nerve distribu-
tion. An accurately documented neurovascular examination 
is essential and should be repeated before and following any 
intervention.

Radiographic assessment

At birth, the distal humeral epiphysis is wholly cartilagi-
nous, with the capitellar ossification centre appearing at 
age one year [38], making the diagnosis of supracondylar 
fracture difficult in the very young. The order of appearance 
and fusion of the ossific centres of the distal humerus is 
consistent and reliable between individuals [39] and AP and 

lateral plain radiographs of the elbow are usually sufficient 
in older children. The only radiographic sign of injury in 
non-displaced, stable fractures may be the presence of an 
effusion signified by an anterior or posterior ‘fat pad sign’, 
with a 75% positive prediction of an occult fracture of the 
elbow [40, 41].

The anterior humeral line (AHL) intersects the middle 
third of the capitellum and is a convenient radiological sign 
of sagittal plane alignment (Fig. 2) [42] and an important 
indicator of successful reduction [43, 44].

Accurate coronal plane alignment is an important con-
sideration and Baumann’s angle is a commonly used radio-
logical measurement. The original description measured the 
intersection of a line drawn down the humeral shaft axis and 
a line running through the lateral condylar physis [45, 46]. 
The population normal is 64°–81° and angles in excess of 
this suggests varus angulation of the distal humerus [47] 
with measurement errors of up to 7° to be anticipated [48]. 
This measurement, whilst not identical to the carrying angle 
is a reasonable surrogate and can be used to predict cubitus 
varus deformity [49, 50].

Specific injury patterns

Transphyseal separation

Transphyseal separation is the least common physeal injury 
of the distal humerus and present in children aged under 
three years [51, 52]. Although rare, it is most commonly 

Fig. 2  Anterior humeral line (AHL, yellow dotted line) passing in 
front of the capitellum suggesting posterior/extension displacement of 
the distal humerus
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associated with birth trauma or minor falls but is also seen 
after deliberate injury. It should be considered as a diagnosis 
in the presence of elbow swelling or pseudoparalysis of the 
arm [53]. Plain radiographs centred on the elbow may dem-
onstrate an abnormality of alignment of the forearm with 
the humeral shaft but this can be subtle, frequently over-
looked and ultrasonography may be necessary to confirm 
the diagnosis [54]. Closed reduction with an intraoperative 
arthrogram is conventional and percutaneous pinning may be 
required in selected cases [51]. Neurovascular compromise 
is rare however residual cubitus varus deformity is described 
as a long-term consequence of this injury [51, 52, 55].

Flexion type

A flexion pattern is uncommon with rates estimated between 
1 and 3% of all distal humeral fractures [38, 56]. A large 
population study conducted over a nine-year period reported 
a rate of 1.2% [12]. The mechanism of injury includes axial 
loading but is usually due to a direct blow to the elbow [12, 
56, 57]. This results in failure of the posterior cortex and 
flexion of the distal fragment, which hinges on the ante-
rior cortex/periosteum resulting in the anterior humeral line 
passing posterior to the capitellum (Fig. 3). This injury tends 
to occur in older children, is frequently displaced [12, 56], 
and is associated with an increased risk of ulnar nerve symp-
toms, which may be due to incarceration of the nerve in the 
fracture site, causing a block to reduction [58].

There is a lack of good quality evidence on the manage-
ment of these injuries. Manipulation and casting in extension 
have been shown to give good results [59], although can be 
poorly tolerated. Closed reduction and percutaneous pinning 
are usually necessary but open reduction may be necessary 
[12, 56–58, 60].

Extension type

There has been considerable debate about the optimum treat-
ment of these injuries, which continues. The most controver-
sial topics include the wiring technique, timing of surgery 
and the necessity to explore neurovascular structures at risk.

There is a paucity of high-level evidence to guide man-
agement with one systematic review of four randomised 
control trials comparing crossed wire and lateral wire pin-
ning reporting an inability to draw a conclusion because 
of methodological limitations [61]. The following account 
attempts to present the best available evidence according to 
fracture type.

Gartland I (AO 1)

This fracture pattern is inherently stable and does not require 
reduction, and these injuries are managed conservatively.

Liebs et  al. [63] recommended a collar and cuff, as 
described by Blount [62] in maximum flexion (≥ 125°) in 
type I injuries and reported good outcomes in 327 chil-
dren using Quick Disabilities of Arm, Shoulder and Hand 
(QDASH) and Physical Quality of Life Index (PQLI) scores. 
An alternative is a long-arm splint [64], with Ballal et al. 
[65] observing that collar and cuff in isolation provided sub-
optimal pain control, particularly in the immediate period 
following injury.

Gartland IIa (AO 2)

The management of this fracture includes a spectrum of 
options that essentially depend on the assessment of intrin-
sic stability. Interpretation of the available literature is con-
founded by lack of consensus on the definition of IIa and 
IIb injuries [66].

Ariyawatkul et al. [67] defined type IIa as fractures with 
Baumann angle (BA) differing from the uninjured side by 
less than 5°. The authors recommended closed reduction 
and casting if the difference in shaft condylar angle and lat-
eral capitello-humeral angle was < 18° compared with the 
uninjured side. Liebs et al. [63] also recommended a collar 
and cuff, often referred to as Blount’s method [62] in treating 
Gartland IIa (AO 2) injuries and reported good outcomes 
in 143 children using QDASH and PQLI scores. Kish et al. 
[68] recommended a single lateral entry pin for stabilisation 
of type IIa fractures.

Gartland IIb (AO 3)

Rotational deformity is suggested radiographically by trans-
lation in either plane, the corollary is that these fracture pat-
terns are unstable.

Fig. 3  Flexion type supracondylar fracture
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Closed reduction and percutaneous pinning (CRPP) is 
conventional treatment for IIb fractures (AO 3), as reduc-
tion with simple casting is difficult and unpredictable. Flex-
ion > 90° is often required to maintain reduction without 
wire stabilisation and this potentially impairs vascular sup-
ply with an associated risk of compartment syndrome [69, 
70].

Pandey et al. [71] reported a randomised control trial of 
MUA and casting in hyperflexion vs closed reduction and 
crossed K-wire pinning in type IIb and III fractures. Closed 
reduction and pinning were associated with superior stabil-
ity, maintaining the carrying angle of the elbow.

Liebs et al. [63] reported excellent mid- and long-term 
health-related quality of life scores (HQoL) in 136 patients 
treated with CRPP and lateral K-wires for Gartland IIb frac-
tures (AO 3).

Anatomical reduction has traditionally been recom-
mended, in part, because of poor anticipated remodelling 
of the distal humerus, but also as a result of studies report-
ing percutaneous pinning as a safe treatment option [72, 
73]. There is; however, evidence to suggest that anatomical 
reduction is not necessary for a good outcome [74, 75].

Gartland III (AO 4)

Muccioli 2017 reported the use of closed reduction and 
collar and cuff immobilisation in hyperflexion (Blount’s 
method) in treating Gartland III fractures in the absence of 
neurovascular compromise and instability (in 120° of flex-
ion) and reported very good to good outcomes in all cases 
[62, 76].

Liebs et al. [63] reported excellent mid- and long-term 
HQoL scores in 141/155 AO 4 (Gartland III) treated with 
CRPP with lateral 1.6 mm K wires and 14/155 with a lateral 
external fixator. Prashant et al. [77] compared lateral entry 
with crossed wires in a randomised trial (n = 62) and did 
not demonstrate a significant difference in loss of reduction, 
restoration of carrying angle, Baumanns angle and range of 
movement.

Technique

Wire diameter

Larger diameter wires offer increased stability, in particular 
in the sagittal plane [61, 78–80] without increased risk of 
iatrogenic ulnar nerve injury [78, 80]. The British Orthopae-
dic Association Standards for Trauma (BOAST) supports 
using 2 mm wire diameter, to improve stability [81].

Crossed wires verses Lateral‑only wires

Following reduction, the specific wire configuration is deter-
mined by the fracture configuration (Fig. 4), surgeon experi-
ence and personal preference.

Superior biomechanical properties have been demonstrated 
with crossed wires in particular in resisting rotational stresses 
[82–84] but it is not clear whether this improved stability is of 
clinical relevance [77]. Brauer et al. performed a systematic 
review of 35 studies comparing lateral and crossed wire tech-
niques. Crossed wires provided improved stability (RR 0.58), 
however pooling prospective data alone found no statistical 
significance, suggesting that whilst some retrospective stud-
ies observed a difference in stability, studies with more robust 
methodology fail to prove clinical relevance [77, 83]. Abdel 
et al. [82] reported the results of a randomised study between 
crossed wires and lateral wires that favoured crossed wires, 
with no reported complications. The authors reported instabil-
ity following parallel lateral wires, limiting the value of this 
study, as this configuration has shown inferior stability when 
compared to divergent wires [84]. All procedures were per-
formed by junior trainees and the wire diameter ranged from 
1.6 to 2 mm, with smaller diameter wires used in the younger 
children. The authors did not specify if there was an observed 
association between wire diameter and outcome [82].

Crossed wires are associated with iatrogenic ulnar nerve 
injury, with variable reported incidence. Brauer et al. [83] 
reported a greater than 5 times higher risk of iatrogenic ulnar 
nerve injury following crossed wires compared to lateral-only 
wires (RR 5.04). Woratanarat et al. [85] performed a meta-
analysis of 18 studies involving 1315 patients and identified 
a 4.5 times greater risk of iatrogenic ulnar nerve injury in 

Fig. 4  Crossed wires used to stabilise a high medial (reverse oblique) 
fracture pattern
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the crossed wires group (RR 4.5) concluding “for every 100 
children treated by cross-pinning vs lateral pinning, two extra 
cases of loss of fixation are prevented but five extra cases of 
ulnar nerve damage are caused. Hence, the net effect favours 
lateral pinning”, where medial wires are required, meticu-
lous technique and avoiding multiple passes of the wires are 
recommended.

When lateral wires are used, inserting a third lateral wire 
can increase stability and obviate inserting a medial–lateral 
wire, minimising the risk of iatrogenic injury to the ulna nerve 
[86, 87]. It has been established in biomechanical [84] and 
clinical studies [86] that divergent wire configuration creates 
a more stable construct than the parallel configuration.

Complications

Neurological injury

Traumatic neurapraxia is regularly associated with supra-
condylar fractures, with a reported rate of 11.3% [33]. The 
anterior interosseus nerve (AIN) is most commonly injured 
however incidence varies with injury type. The median 
nerve, and in particularly, the AIN is most frequently injured 
following extension-type fractures (34.1% of associated neu-
ropathies), whilst the ulnar nerve is more commonly asso-
ciated with the less common flexion-type fractures (91.3% 
of associated neuropathies) [33, 88–91] and is likely to be 

related to the direction of distal humeral fragment displace-
ment. McGraw et al. [89] identified an association between 
posterolateral displacement and median nerve injury and 
posteromedial displacement (Fig. 5) with an equal incidence 
of radial, median and ulnar nerve injury.

The majority of neuropathies resolve expectantly [91–94]. 
But ulnar nerve recovery may be less reliable [94]. It is also 
important to consider entrapment within the fracture site as 
a potential cause of neurovascular injury and may require 
surgical release [91, 93, 95].

Cramer et al. reported 15 median and anterior interosseus 
nerve injuries in a review of 101 supracondylar fractures, 13 
(80%) were identified preoperatively and all fully recovered. 
Exploration was however necessary in three cases, two with 
absent pulses for median nerve/brachial artery entrapment at 
the fracture site [93]. These findings highlight the value of 
the clinical examination in identifying preoperative, injury-
associated neurovascular injury.

Iatrogenic nerve injury may occur after closed manipula-
tion, percutaneous fixation or during open procedures for 
reduction and vascular exploration [92]. Babal et al. [33] 
reported a meta-analysis, which included 5154 fractures 
and identified a substantial risk of injury to the ulnar nerve 
with medial wires and although lateral-only wires have a 
significantly lower risk of injury to the ulnar nerve, this tech-
nique is not risk-free and is associated with median nerve 
injury. Prashant et al. [77] reported a rate of iatrogenic ulnar 
nerve palsy of 6% with medial pinning and none with lat-
eral pinning. Brown et al. [96] reported a review of 162 
fractures with four cases of direct nerve injury and Blakey 
et al. [95] observed two ulnar nerves transected by wires 
in a review of 56 nerve injuries. Lyons et al. reported good 
results associated with iatrogenic ulnar nerve injuries fol-
lowing crossed K-wire fixation irrespective of whether the 
wire was removed, the nerve explored or treated conserva-
tively [96, 97].

Ramachandran et al. reported a series of 37 radial, median 
and ulnar nerve injuries that presented at an average of 
7.7 months after supracondylar fracture. Spontaneous recov-
ery was noted in 27 at an average time of 7–8 months and 
81% had an excellent outcome. Exploration was necessary 
in 10 patients, demonstrating nine nerves in continuity and 
one transection. Ulnar neurolysis was necessary in six for 
entrapment within a fibrous/callous cubital tunnel and four 
required nerve grafting [92].

Vascular injury

Blakey et al. reported the long-term follow-up of 26 children 
with a “pink and pulseless” hand in whom 23 developed a 
contracture, with deformity of the forearm and hand. One 
patient had undergone exploration of the vessel at an interval Fig. 5  Gartland III (AO 4) injury with posteromedial displacement
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of 48 h but three patients, who underwent urgent explora-
tion, did not develop a contracture. Late exploration was 
performed in 21 cases and identified entrapment of the ves-
sel within the fracture site in nine and constriction by scar 
tissue in 12, decompression returned pulsatile flow in all 
cases [95].

Vascular injury noted at the time of presentation requires 
urgent fracture reduction. Absence of a palpable radial pulse 
in an otherwise perfused (‘pink and warm’) hand usually 
resolves after reduction of the fracture and rarely requires 
surgical exploration [77]. Exploration, where required, 
should be performed by surgeons with the ability to per-
form small vessel repair [81] and a tourniquet should not be 
routinely used [95].

Several studies have reported an association between 
absent radial pulse and median nerve injury and this com-
bination of clinical findings should alert to the possibility 
of neurovascular bundle injury/entrapment at the fracture 
site [98, 99].

Ischemic contracture affects primarily the flexor compart-
ment due to prolonged muscle ischaemia but several studies 
have reported a low incidence of contracture, in the absence 
of concomitant neurological injury [100–102].

Mangat et al. reported the outcome of 19 patients present-
ing with a perfused pulseless hand of whom 11 were treated 
conservatively after closed reduction. Delayed exploration 
was required in four, of which three had median and/or ante-
rior interosseus nerve palsy at presentation. Urgent explora-
tion was performed in eight patients and the brachial artery 
was tethered at the fracture site in six [99].

Rasool et al. [103] recommended exploration prior to 
manipulation of postero-laterally displaced supracondylar 
fractures with an absent or weak pulse and median nerve 
symptoms where clinical signs of brachialis buttonholing 
exist, due to the proximity of the neurovascular bundle 

Fig. 6  Exploration of the brachial artery and median nerve for neuro-
vascular injury

Fig. 7  Management flowchart for supracondylar fractures related to adequate and inadequate perfusion
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(Fig. 6). The authors reported the results of exploration in 
27 patients, with signs of median nerve injury in 22 patients 
at presentation and the neurovascular bundle was noted to 
be in immediate proximity to, tethered or interposed within 
the fracture site in all cases (Fig. 7).

Cubitus varus

Conventional wisdom considers a varus elbow deformity as 
a cosmetic problem but recent studies have identified associ-
ated functional disadvantage. Posterolateral rotatory instabil-
ity (PLRI), snapping triceps, progressive varus deformity of 
the ulna and elbow joint malalignment have been described 
[104, 105], often presenting decades after the onset of the 
deformity [105].

Alteration of the normal mechanical axis increases 
the tensile force through the lateral structures and medial 
displacement of the triceps creates a supination force on 
the olecranon [105]. O’Driscoll et al. [105] described lat-
eral ulnar collateral ligament attenuation in patients with 
untreated postero-lateral rotatory instability with radial head 
dislocation in severe cases.

Lateral closing wedge osteotomy of the humerus is an 
effective treatment with a reliable outcome [106]. Alterna-
tive techniques have also been described including a step-cut 
osteotomy [107, 108], dome osteotomy [109], distraction 
external fixator [110] and computer-aided osteotomies [111].

Cubitus valgus

Valgus deformity is a rare complication of supracondylar 
fractures with a reported incidence < 1–3% [112, 113] and 
is more frequently encountered following malunion/physeal 
arrest in lateral condyle fractures. Similarly to varus cor-
rection, various surgical techniques have been reported for 
post-traumatic cubitus valgus including Ilizarov frame [114], 
dome osteotomy [115] and step-cut osteotomy [116].

Final remarks

Supracondylar fractures that represent approximately 15% of 
all paediatric fractures [2–4] are associated with a 10–20% 
rate of vascular compromise in displaced fractures [16, 32] 
and > 11% incidence of traumatic neurapraxia in all fractures 
[33].

Fracture management depends on stability, with closed 
reduction and percutaneous pinning being the preferred 
treatment for the unstable displaced fracture [63, 73, 77].

Nerve injuries are related to injury subtype, with poste-
rolateral displacement associated with ulnar nerve injury, 

posteromedial displacement associated with an equal inci-
dence of radial, median and ulnar nerve injury [89] and flex-
ion-type fractures with injury to the ulnar nerve [33, 89, 91].

The vast majority of neuropathies resolve expectantly 
[91–94]. Anterior interosseous nerve palsy is the most com-
mon neuropathy and is most commonly caused by traction 
either at the time of injury or during manipulation [33].

Median nerve symptoms that exist with vascular compro-
mise suggest neurovascular bundle entrapment in the frac-
ture site [98, 99] with improved outcomes associated with 
early exploration [95, 99].

Current evidence is generally poor and limited by inad-
equate methodology with low-quality retrospective studies 
and small population numbers. These do little to inform the 
continuing debate and there is a need for multi-centre pro-
spective trials to outline the optimum management for these 
injuries.
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