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Platelet Activation and the Immune
Response to Tuberculosis
Daniela E. Kirwan*, Deborah L. W. Chong and Jon S. Friedland

Institute for Infection & Immunity, St. George’s, University of London, London, United Kingdom

In 2019 10 million people developed symptomatic tuberculosis (TB) disease and 1.2
million died. In active TB the inflammatory response causes tissue destruction, which
leads to both acute morbidity and mortality. Tissue destruction in TB is driven by host
innate immunity and mediated via enzymes, chiefly matrix metalloproteinases (MMPs)
which are secreted by leukocytes and stromal cells and degrade the extracellular matrix.
Here we review the growing evidence implicating platelets in TB immunopathology. TB
patients typically have high platelet counts, which correlate with disease severity, and a
hypercoagulable profile. Platelets are present in human TB granulomas and platelet-
associated gene transcripts are increased in TB patients versus healthy controls. Platelets
most likely drive TB immunopathology through their effect on other immune cells,
particularly monocytes, to lead to upregulation of activation markers, increased MMP
secretion, and enhanced phagocytosis. Finally, we consider current evidence supporting
use of targeted anti-platelet agents in the treatment of TB due to growing interest in
developing host-directed therapies to limit tissue damage and improve treatment
outcomes. In summary, platelets are implicated in TB disease and contribute to MMP-
mediated tissue damage via their cellular interactions with other leukocytes, and are
potential targets for novel host-directed therapies.

Keywords: tuberculosis, platelets, innate immunity, inflammation, lung fibrosis, anti-platelet drugs
INTRODUCTION

Tuberculosis (TB) is one of the most important infectious diseases of our time. In 2019 10.0 million
people developed symptomatic disease and 1.2 million died, with little change in these figures over
the past decade (1). Although many patients are never diagnosed or treated, a significant proportion
of deaths occurs in individuals who have received appropriate anti-TB treatment (2). This is largely
due to the inflammatory immune response to Mycobacterium tuberculosis (M.tb), the causative
agent of TB. This response is highly complex encompassing both the innate and adaptive immune
systems, resulting in severe disease manifestations and facilitating onwards transmission (3). In
addition, the co-evolution of M.tb and humans has led to bi-directional adaptations that enable the
bacteria to persist in a semi-dormant state, and consequently current treatment regimens require a
minimum of six months of therapy to ensure eradication of all viable bacilli within the patient (4).
Treatment is further complicated by the rise of single-, multi- and extensively drug-resistant disease.

Moreover, even when successfully treated, patients can suffer long-term impaired lung function
and reduced quality of life (5–9). This is long established (10–15) and, given that TB primarily
org May 2021 | Volume 12 | Article 6316961
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affects adults within the economically active age group, has
significant public health and economic implications.
Pulmonary rehabilitation leads to improvements in pulmonary
function following TB (16), so it is important to identify patients
with post-TB sequelae so that they can be appropriately managed
pending the development of therapies that can reverse or prevent
progression of sequelae including lung fibrosis.

Despite these clear indications that heightened immune
activity in TB impacts its morbidity and mortality, current
treatment regimens focus solely on bacterial killing.
Consequently, there is a drive to develop interventions
targeting inflammatory responses in TB. Designed to be given
alongside standard treatment, achieving a more controlled
inflammatory response could have a number of benefits
including improving drug penetration at the site of disease and
limiting the damage sustained by lung tissues, and thereby
improve both acute and long-term clinical outcomes. This
could have a huge impact particularly in the era of rising
antimicrobial drug resistance. However, for this to be
successful a detailed understanding of the innate response in
TB is needed. Accumulating evidence indicates that platelets play
an important role and may be key to unlocking therapies
designed to improve prognosis.
IMMUNOPATHOLOGY IN TB: THE MATRIX
DEGRADING PHENOTYPE

Pulmonary TB is characterized by pathophysiology that is
disproportionate to the mycobacterial load, and even in
paucibacillary disease, patients may present with severe
inflammation. The commonly held belief is that following
inhalation mycobacteria are phagocytosed by macrophages, the
main innate immune effector cells and hosts for bacterial
replication. Macrophages become activated and recruit other
innate immune cells including neutrophils (17) which are
important early responders to TB infection, involved in both
pathogen elimination and in inflammation (18). In addition, a
secondary cell-mediated immune reaction involving cross-
presentation and priming of CD8+ T cells occurs days after
initial antigen exposure (19), known as delayed-type
hypersensitivity. These processes can lead to the formation of a
granuloma whereby lymphocytes and neutrophils surround
infected macrophages to isolate the bacteria; if this containment
is unsuccessful, bacterial replication and dissemination occur.

A classic feature of pulmonary TB which is often present at
diagnosis is cavitation of the lung. Here, the destruction of lung
parenchyma leads to the development of large, air-filled spaces
that are relatively immunoprivileged sites where M.tb can
proliferate exponentially. The presence of cavities is associated
with treatment failure (20) and drug resistance (21), and patients
with cavitary disease are highly contagious and represent the
main drivers of transmission (22). Cavities are formed through
the activity of enzymes called matrix metalloproteinases (MMPs)
that are the final effectors of the host innate inflammatory
response (23, 24). MMPs are a family of zinc-dependent
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proteases that collectively degrade all components of the
extracellular matrix (ECM), and also have immunological
functions including modulating cytokine and chemokine
activity, activating defensins, and cleaving proteinase-activated
receptors (25, 26). They are tightly regulated by mechanisms
such as gene expression, compartmentalization, secretion as
proenzymes, enzymatic inactivation, and by specific tissue
inhibitors of metalloproteinases (TIMPs). MMPs are
responsible for the turnover of normal tissues; if produced in
excess they cause tissue damage. In pulmonary TB MMP-1,
interstitial collagenase, is the main effector of lung degradation
and cavity formation (24, 27). MMP concentrations in plasma
and bronchoalveolar lavage fluid (BALF) have consistently been
shown to be elevated in patients with acute TB, and correlate
with clinical and radiological disease severity (27–30). Genetic
polymorphisms that result in greater MMP-1 secretion in
pulmonary TB have been identified as a risk factor for
developing fibrosis following TB (31).

Persistent inflammation in TB can lead to fibrosis, and
following TB treatment many patients suffer long-term lung
damage, with reported rates of impairment of up to 68% (8, 32–
34). Affected patients can have restrictive, obstructive, or mixed
patterns on spirometric testing (34) and this can manifest as
various chronic lung diseases including pulmonary fibrosis,
emphysema, and bronchiectasis (35). Consequently, TB
survivors have shortened life expectancies, with one model
predicting an average loss of 3.6 years of life (36), and this is
associated with a reduced perceived mental health-related quality
of life (HRQoL) even after microbiological cure (37). The extent
of radiological disease severity at diagnosis is the most important
determinant of residual pulmonary function post treatment (33,
38, 39), however the mechanisms that link initial bacterial
infection to the development of fibrosis are poorly understood.
CLINICAL EVIDENCE FOR THE ROLE OF
PLATELETS IN THE RESPONSE TO TB

The initial detection of M.tb and subsequent rapid innate
immune response may be initiated and accelerated by platelets.
Numerous observational studies report thrombocytosis in
patients with TB (40–45) and, in some, platelet count correlated
with levels of acute phase reactants such as C-reactive Protein
(CRP) and with disease severity (45–47). Sahin et al. identified
thrombocytosis in 44/100 pulmonary TB patients, and they had
higher plateletcrit and platelet distribution width (PDW) than
healthy controls. Thrombocytosis was associated with clinically
and radiologically advanced disease, and platelet count correlated
with CRP and erythrocyte sedimentation rate (ESR) values in
pulmonary TB patients but not in patients with community
acquired pneumonia (48). In a South Korean study, platelet
counts were higher in TB patients than in controls, and in TB
patients, the mean platelet volume (MPV) correlated with CRP
levels (49). Other studies, however, have associated
thrombocytopenia with tuberculosis. For example, in 128
Indian patients, thrombocytopenia was observed in 37.5% (50).
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Platelet-associated gene transcripts are upregulated in TB
patients (51). As platelet RNA is formed in megakaryocytes
prior to platelet formation, the megakaryocyte itself may be
influenced by disease states and platelets may be pre-
programmed to respond specifically to TB. This has been
shown in other diseases such as cancer, where the platelet
transcriptome can be used to accurately diagnose various
cancers and may predict outcomes (52).

Changes in platelet structure and function have been described
in TB patients. Patients with acute TB have increased numbers of
alpha granules (53) which contain pro-inflammatory mediators
such as tumor necrosis factor alpha (TNFa) and interleukin-1
beta (IL-1b), known to be elevated in TB patients (54). In
contrast, patients with chronic TB exhibited elongated platelets
and increased numbers of alpha and dense granules. The latter
contain a range of mediators including adenosine diphosphate
(ADP), adenosine triphosphate (ATP), serotonin, and ionized
calcium which is involved in the coagulation cascade. These
differences may reflect distinct functional roles at different
disease stages, with a predominantly pro-inflammatory
phenotype in acute TB and a mixed inflammatory-thrombotic
state in chronic disease.

Increased platelet activity can be detected by quantifying
markers released from platelet granules upon activation.
Elevated plasma concentrations of platelet factor 4 (PF4;
CXCL4), a component of alpha granules specific to platelets,
are found in patients with pulmonary TB and correlate with
radiological disease severity (55). In a cohort of Peruvian patients
with newly diagnosed, drug-sensitive smear-positive pulmonary
TB, plasma levels of PF4, platelet-derived growth factor (PDGF)-
BB, C-C motif chemokine ligand 5 (CCL5; RANTES), MMP-9,
soluble CD40 ligand (sCD40L), and Pentraxin-3 (PTX-3; TNF-
stimulated gene (TSG)-14) were elevated at baseline compared to
age- and sex-matched controls. Fifty percent of these patients
were followed up during their anti-TB treatment, and the plasma
concentrations of all of these markers increased at Day 14 and
then decreased, returning to normal by Day 60 (56). Levels of
platelet-derived mediators such as PF4 have been shown to
correlate with disease progression and severity in other chronic
inflammatory conditions including inflammatory bowel disease
(57), atherosclerosis (58), and rheumatoid arthritis (59);
therefore, platelet-derived mediators may also drive
inflammatory processes in TB, and could be important in the
resolution of inflammation and/or development of fibrosis.
PRE-CLINICAL EVIDENCE FOR THE ROLE
OF PLATELETS IN THE RESPONSE TO TB

Platelets are present at the site of TB disease either as a result of
extravasation of platelets that localize to the lesion, or secondary
to platelet biogenesis within the lung itself. Megakaryocytes have
been identified within the lungs and may have the capacity to
scale up platelet generation in response to specific stimuli (60).
This would support a role of platelets as first responders in M.tb
infection, placing them at close proximity to any mycobacterial
Frontiers in Immunology | www.frontiersin.org 3
intruders. Lung tissue from M.tb-infected Balb/C mice has
demonstrated the presence of the platelet marker CD41 which
is not detected in uninfected lung. CD41 expression mostly
occurred in association with anucleate cells consistent with the
morphology of platelets, predominantly within the alveoli, but
also in nucleated cells, indicating platelet phagocytosis and/or
adherence to leukocytes (56). Similarly, platelet-specific marker
CD42b was observed within epithelioid cells and multinuclear
giant cells in human TB lung granulomas (61). Microthrombi
occur around TB cavities and have been proposed to prevent
dissemination (62). Platelet aggregations and platelet-neutrophil
adhesions have been observed within pulmonary lesions and
mycobacteria have been visualized within platelets, located
mainly alongside the mitochondria (53). Such leukocyte-platelet
interactions may be critical in regulating the immune response in
TB. PDGF-BB, P-selectin, and RANTES concentrations were
elevated in BALF from TB patients compared to patients with
non-TB respiratory disease. The formation of platelet-leukocyte
aggregates also correlates with secreted levels of platelet-derived
mediators in other inflammatory diseases such as atherosclerosis
(63). To further support the notion that platelet activity may be
involved in immune responses in TB, concentrations of P-
selectin, a platelet activation marker, positively correlate with
levels of well-characterised markers of disease severity including
IL-1b, MMP-1, -3, -7, -8 and -9 in TB patients (56).
PLATELET-LEUKOCYTE SIGNALING AND
CELLULAR INTERACTIONS IN TB

Platelets can sense pathogens directly via expressed Toll-like
receptors (TLRs) such as TLR2 and TLR4 (64, 65) to lead to
activation and release of reactive oxygen species (66) and pro-
inflammatory cytokines (67). Activated platelets also interact
directly with leukocytes to facilitate cellular recruitment towards
the site of infection (68). These adhesive interactions can form
platelet-monocyte aggregates (PMA) and platelet-neutrophil
aggregates (PNA) which lead to cell activation and enhance
immune function such as cytokine or MMP production. Platelets
can stimulate neutrophils to release neutrophil extracellular traps
(NETs) (69), which are increased in the plasma of TB patients
(70) and have been associated with severe TB-associated lung
damage and subsequent sequelae (71). These adhesive
interactions are mediated by the two main families of cell
adhesion molecules, selectins and integrins.

Selectins are expressed on most leukocytes and consist of
three family members, L-, P- and E-selectin (CD62L, CD62P and
CD62E respectively). These single transmembrane glycoproteins
initiate the leukocyte adhesion cascade to aid leukocyte tethering
and rolling along inflamed endothelium prior to transmigration
(72). Platelets only express P-selectin, which is translocated from
alpha granules to the surface membrane in response to agonists
such as thrombin, and can be measured in soluble form as a
marker of platelet activation; soluble P-selectin levels are higher
in TB patients compared to healthy controls (56, 73). P-selectin
ligation can activate platelets leading to aggregation, enhanced
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adhesion, and activation of other platelet expressed integrins
such as GPIIb/IIIa (74). Moreover, P-selectin on platelets can
interact with P-selectin glycoprotein ligand-1 (PSGL1) expressed
on leukocytes to form PMA (75). This interaction has a central
role in the pathology of chronic inflammatory diseases including
atherosclerosis (76) and heart disease (77). Increased circulating
PMA are found in TB patients compared to healthy controls
(78), and treatment of M.tb-infected whole blood with anti-P-
selectin antibody decreases PMA (78).

Integrins are composed of two subunits, a and b, to form
heterodimers that facilitate platelet binding to inflamed
endothelium or leukocytes. Platelets express three families of
integrins, b1 (CD29), b2 (CD18), and b3 (CD61). b1 integrins
recognize sub-endothelial ECM proteins such as collagen (79) or
endothelial ligands like VCAM-1 (CD106) (80), whilst b2
integrins bind to intracellular cell adhesion molecule-1 or -2
(ICAM-1/CD54 or ICAM-2/CD102), found on the endothelium,
epithelium, or platelets (81, 82). Platelets express two b3
integrins, avb3 and aIIbb3 (GPIIb/IIIa or CD41/CD61).
aIIbb3 is the most dominant integrin expressed on platelets
(83) and can recognize arginine-glycine-aspartic acid (RGD)-
containing ligands such as fibrinogen and fibrin (84). Ligation of
integrins on platelets initiates “inside-out” or “outside-in”
signaling pathways to result in functional outcomes such as
cell activation, adhesion, or degranulation (85).

Other important adhesive interactions demonstrated between
platelets and leukocytes include the binding of surface expressed
glycoprotein-Iba (GPIba, CD42a), part of a receptor complex
that binds von Willibrand factor (vWF), to aMb2 (CD11b/
CD18, Mac-1) on monocytes (86). In addition, platelets
express ICAM-2 (87), the ligand for aMb2 and aLb2 (CD11a/
CD18, LFA-1) expressed on monocytes. In atherosclerosis
platelet-derived CD40L (CD154) can interact with CD40 (TNF
receptor) expressed on leukocytes to form platelet-leukocyte
aggregates (88). Whilst these cellular interactions have been
observed in vitro or in animal models, the specific interactions
important in PMA formation in TB patients remain unclear and
require further investigation.

In TB, cellular networks involving resident and influxing
leukocytes, stromal cells, and other cells enable amplification of
initial responses, leading to secretion of MMPs and other pro-
inflammatory mediators (89). There is evidence that cross-talk
between platelets and leukocytes, particularly monocytes, may be
key to driving TB immunopathology. Platelets have been shown
to significantly upregulate the MMP secretion from M.tb-
infected monocytes (56) and are important in the development
of granulomas and macrophage differentiation in TB (61). M.tb-
infected monocytes co-cultured with platelets may phagocytose
them and differentiate into larger, multinucleated giant cells with
enhanced phagocytosis and shared traits with multinucleated
giant cells observed in TB granulomas. Moreover, on extended
culture, macrophages differentiated with both platelets and M.tb
upregulate genes involved in leukocyte chemotaxis, including
CXCL5 and PPBP/CXCL7, and ECM receptor interactions
compared to those cultured with M.tb alone. Although the
effect of platelets on inflammatory responses in TB depends
Frontiers in Immunology | www.frontiersin.org 4
upon the stage, site, and severity of TB infection, they appear to
predominantly steer monocyte differentiation towards an anti-
inflammatory phenotype: the presence of M.tb does not affect
cytokine secretion from platelets themselves, but has been shown
to raise IL-10 and reduce TNFa secretion by platelet-
transformed macrophages (61). Similarly, M.tb-infected
peripheral blood mononuclear cells (PBMCs) incubated with
platelets led to decreased secretion of pro-inflammatory
cytokines TNFa, IL-1b, IL-6 and IFNg but increased IL-10
compared to M.tb-infected PBMCs incubated without
platelets (78).

What remain unexplored are the mechanisms by which
platelets induce leukocyte activation during M.tb infection to
cause reported cellular responses. Data from in vitro studies
utilizing uninfected cells show that following engagement of
platelet expressed P-selectin and PSGL1 on leukocytes, signal
transduction pathways are initiated to enhance tyrosine
phosphorylation and activation of mitogen-activated protein
kinase (MAPK) (90). MAPK are phosphorylation-dependent
signal-transducing enzymes involved in immune responses and
cellular regulation (91). The p38 and extracellular signal-related
kinase (ERK)/MAPK pathways are key in regulating MMP and
cytokine secretion during M.tb infection (92–96). Therefore, we
hypothesize that P-selectin-PSGL1 binding between platelets and
leukocytes in M.tb infection could lead to MMP and pro-
inflammatory cytokine gene and protein production via MAPK
signaling, although this requires confirmation. In contrast,
phosphatidyl inositol 3-kinase (PI3K) signaling negatively
regulates MMP-1 secretion from M.tb-infected macrophages
(97). PSGL1 activation can induce signaling via PI3K (98) and
activation of mTOR and Rho-associated kinases (ROCKs) in
macrophages to facilitate cell motility and phagocytosis (99).
Whether platelets interacting with macrophages during M.tb
infection also utilize PSGL1-PI3K/mTOR signaling is unknown.

Taken together, these studies indicate that platelets have a key
role in directing cellular outcomes in response to M.tb through
interactions with cell adhesion molecules and by maneuvering
intracellular signaling pathways as summarized by Figure 1. A
better understanding of these cellular interactions may reveal
which signaling mechanisms could be targeted to decrease
TB immunopathology.
ANTI-PLATELET AGENTS FOR THE
TREATMENT OF TB

Imbalances in eicosanoids have been associated with the
development of TB (100, 101). Eicosanoids are lipid mediators
derived from the activity of the enzymes cyclooxygenase (COX)-1
and -2 on arachidonic acid, which enter either the cyclooxygenase
or the lipoxygenase pathway. The cyclooxygenase pathway leads
to prostaglandins D, E and F, prostacyclin, and thromboxane A2
(TXA A2) production. Prostaglandins are powerful vasodilators,
inhibit platelet aggregation, and act as signaling molecules linking
the innate immune system to acute inflammatory pathways (102),
whereas thromboxanes are vasoconstrictors that trigger platelet
May 2021 | Volume 12 | Article 631696
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aggregation (103). The lipoxygenase pathway causes the
production of lipoxins, which reduce pro-inflammatory
cytokine production and neutrophil recruitment (104). Non-
steroidal anti-inflammatory drugs (NSAIDs) inhibit COX-1 and
-2, and include aspirin (Acetylsalicylic acid, ASA), the most
commonly prescribed anti-platelet agent. Aspirin irreversibly
inhibits both COX enzymes and displays powerful anti-
thrombotic effects at low doses as well as anti-inflammatory
activity at higher doses.

Repurposing anti-platelet and anti-inflammatory NSAIDs for
use in TB is attractive because they are already approved for use
and have well-established safety profiles. Data indicate they may
be effective at enhancing TB control (105); animal and human
studies are presented in Table 1. NSAIDs have some direct anti-
mycobacterial activity (104, 109, 113, 116, 124, 125), directly
interfering with M.tb metabolism via downregulation of genes
involved in energy production (126). However, their main effect
in TB is likely to be due to their action on the host immune
system, particularly by modulating inflammatory pathways that
are active in TB disease (104, 107, 111, 116, 117). Administration
of ibuprofen to TB-infected C3HeB/FeJ mice led to fewer and
smaller lung lesions, decreased neutrophil infiltration, reduced
bacillary load, and enhanced survival (115). The effects of NSAID
treatment may be either protective, by enabling effective clearance
of pathogens, or harmful by causing tissue destruction,
particularly where immune activity is disproportionate to the
magnitude of the infective insult (118). This will depend upon
multiple factors including timing, route of administration, and
dose, all of which must be considered when proposing NSAIDs as
a potential adjunctive treatment.

Data from TB patients suggest that anti-platelet agents can be
beneficial. One of the first drugs in use for TB, P-amino-salicylic
acid (PAS), is an aspirin homologue that was deemed effective
Frontiers in Immunology | www.frontiersin.org 5
despite an unknown mechanism of action when it was first given
to a patient in 1944. We showed that PAS modulates anti-
inflammatory immune activity, and suppresses MMP-1 secretion
through a PGE2-dependent mechanism without affecting M.tb
replication (93). PAS therefore represents the first example of a
host-directed therapy used to treat TB. More recently, a
Taiwanese population-based study of patients with drug-
sensitive TB found that use of antiplatelet drugs was associated
with significantly improved overall survival and a lower 12-
month mortality rate, as well as lower rates of smear positivity
and fewer cavities. Benefits were greater with aspirin compared
to non-aspirin anti-platelet agents such as clopidogrel (122). In a
randomized controlled trial, giving 100mg aspirin to diabetic
patients with pulmonary TB resulted in decreased secretion of
inflammatory mediators including ESR and CRP, a higher
sputum-negative conversion rate (87% versus 54%), and fewer
and smaller cavities following treatment, compared to placebo-
treated control patients (123). In TB meningitis, both
inflammation and thrombosis are associated with higher
mortality and complications including stroke in survivors;
randomized controlled trials of aspirin have shown benefits in
morbidity and mortality (119, 121). Further studies are currently
underway to evaluate NSAIDS including meloxicam and
ibuprofen as adjuncts to standard TB treatment regimens
(127–129).

Drugs blocking other platelet signaling pathways are
potentially important in the management of TB. ADP is the
endogenous ligand for P2Y12 and P2Y13 receptors, which are
implicated in platelet aggregation. ADP induces MCP-1
expression to enhance macrophage migration, and P2Y13
expression is increased in TB patients (130). Ticagrelor and
clopidogrel, both P2Y12 inhibitors, given to healthy volunteers
significantly reduced inflammatory and prothrombotic
FIGURE 1 | A summary of cellular interactions between platelets and monocyte during M.tb infection and actions of anti-platelet therapies. Platelets may be able to
directly sense M.tb infection (step 1) via TLR2 and TLR4 to become activated and degranulate to release pro-inflammatory cytokines (step 2). Activated platelets
upregulate surface P-selectin expression and bind to PSGL1 on monocytes (step 3) leading to PMA formation (step 4). Ligation of PSGL1 can initiate signal
transduction via MAPK and induce gene expression (step 4) to result in cellular functional outcomes such as MMP and cytokine production or phagocytosis (step 5).
Anti-platelet agents such as non-steroidal anti-inflammatory drugs (NSAIDs) and P2Y12 inhibitors (shown in red) may exhibit direct anti-mycobacterial activity on M.tb
or block the actions of platelets to decrease PMA formation and MMP expression that cause collateral host tissue damage. This figure was created with images
adapted from Servier Medical Art by Servier. Original images are licensed under a Creative Commons Attribution 3.0 Unported License.
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TABLE 1 | Animal and human studies investigating the effects of anti-platelet agents in tuberculosis.

Summary of findings

ted mice showed a delayed type hypersensitivity
s non-treated mice did not.

lomas with sepharose beads coated with CFP
production and delayed-type hypersensitivity
obacterial antigens; this was reversed with the
yclophosphamide and indomethacin.
niflumic acid early in infection produced greater
-a, IL-1a, and IFN-g, with a reduction in inhaled nitric
OS) expression and an increased bacterial load. Mice
ays of infection showed increased pro-inflammatory
ations, a striking increment of iNOS expression, and
load.
exhibited bactericidal activity in most mycobacterial
of 15-25µg/ml. Diclofenac sodium treatment of
lted in reduced macroscopic lesions and a reduction
oad.

trol animals, treatment produced higher expression of
, iNOS and lower expression of IL‐4, with decreased
acillary load; there was a higher inflammatory
ted as a greater area of lung affected by
ddition of niflumic acid was synergistic, with reduced
increased TNF‐a.
fen had no effect alone, but increased bactericidal
mide when given in combination.

of aspirin and isoniazid antagonized the
activity of isoniazid. Ibuprofen had no interaction with

reptomycin both resulted in improved survival, reduced
d reduced splenic weight. The two drugs acted

ed 60-day survival from 86% to 100% and reduced
den; conversely, MK-886 reduced 60-day survival from
increased lung bacterial load.

animals had a reduction in size and number of lung
oad, and improved survival.
tion reduced bacterial load, attenuated the severity of
changes, and improved survival. Aspirin and ibuprofen-
J and C3H/HeN mice had lower levels of pro-
iators including TNF-a, IL-6, IL-17 and CXCL5 than
/FeJ mice.
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Reference Anti-platelet
agent(s) tested

Host species/patients studied Intervention

Animal studies
Shroff et al, 1990
(106)

Indomethacin Swiss white mice Six intraperitoneal injections of indomethacin, 50µg
per mouse, given at 12 hour intervals; immunization
with intraperitoneal M. vaccae 12 hours after the last
dose

Indomethacin-tre
response, where

Hernández-Pando
et al, 1995 (107)

Indomethacin Male 6-8 week old BALB/c mice
immunized with culture filtrate proteins
(CFP) from H37Rv M.tb delivered via
endotracheal route

20mg/kg cyclophosphamide or 5mg/kg
indomethacin given by intraperitoneal injection one
day prior to endotracheal challenge with CFP

Induction of gran
reduced antibody
responses to my
administration of

Rangel Moreno et
al, 2002 (108)

Niflumic acid Male 6-8 week old BALB/c mice infected
with H37Rv M.tb via endotracheal route

500µg/ml niflumic acid given by intragastric cannula
twice per day

Mice treated with
expression of TN
oxide synthase (i
treated after 60 d
cytokine concent
reduced bacillary

Dutta et al, 2004
(109)

Diclofenac sodium 45 mycobacterial strains including drug-
sensitive and -resistant strains in Kirchner’s
liquid culture medium; male Swiss Albino
mice infected via intraperitoneal route with
M.tb H37Rv102

Mycobacteria were tested with increasing
concentrations of diclofenac sodium. Infected mice
were injected with 10mg/kg diclofenac sodium daily
for 6 weeks

Diclofenac sodium
strains at a range
infected mice res
in mycobacterial

Hernández-Pando
et al, 2006 (110)

Niflumic acid (a
COX-2 inhibitor)
and soluble
betaglycan (an anti-
TGF-b agent)

Male 6-8 week old BALB/c mice infected
with H37Rv M.tb

30µg soluble betaglycan administered twice a week
by intraperitoneal route from 30 days post infection,
with/without 500µg niflumic acid administered twice
a day by intragastric cannulation, or pan-specific
TGF-b antibodies. Mice euthanased at 15, 30, 45,
and 60 days

Compared to con
TNF‐a, IFN‐g, IL‐
lung fibrosis and
response manifes
pneumonia. The
bacillary load and

Byrne et al, 2007
(111)

Aspirin and
ibuprofen

BALB/c mice infected with M.tb H37Rv by
aerosol administration

Oral treatment of aspirin (10, 20, 40 mg/kg) and
ibuprofen (10, 20, 40 mg/kg) +/- pyrazinamide (150
mg/kg) daily for 1 month

Aspirin and ibupr
activity of pyrazin

Byrne et al, 2007
(112)

Aspirin and
ibuprofen

Four week old BALB/c mice infected with
M.tb H37Rv by aerosol administration

Aspirin or ibuprofen (10-40mg/kg) with or without
isoniazid (25mg/kg) administered by oral gavage five
times per week for one month. Mice were euthanized
one day after treatment completion

Co-administration
antimycobacteria
isoniazid.

Dutta et al, 2007
(113)

Diclofenac Male Swiss Albino mice infected via
intraperitoneal route with M.tb H37Rv

Infected mice treated with diclofenac 10µg/g or
streptomycin 150µg/g, alone or in combination, daily
for 4 weeks

Diclofenac and s
bacillary count, a
synergistically

Peres-Buzalaf et al,
2011 (114)

Celecoxib and MK-
886 (5-LO
activation protein
inhibitor)

Male 5-8 week old BALB/c mice infected
intratracheally with M.tb H37Rv strain

Oral treatment with celecoxib 5mg/kg/0.5ml, and/or
MK-886 5mg/kg/0.5ml, 1h prior to infection with
M.tb and again every 24h for 60 days

Celecoxib enhan
lung bacterial bu
86% to 43% and

Vilaplana et al,
2013 (115)

Ibuprofen C3HeB/FeJ pathogen-free mice infected
intravenously with M.tb H37Rv

Ibuprofen 80mg/kg given orally 3 or 4 weeks post
infection.

Ibuprofen treated
lesions, bacillary

Marzo et al, 2014
(116)

Aspirin and
ibuprofen

C3HeB/FeJ and C3H/HeN pathogen-free
mice infected intravenously with M.tb
H37Rv

Aspirin 3mg/kg, sodium heparin 20 UI/kg, ibuprofen
80mg/kg orally

Aspirin administra
histopathological
treated C3HeB/F
inflammatory med
untreated C3HeB
a
a
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TABLE 1 | Continued

Summary of findings

n with Low-dose aspirin reduced bacterial load and increased survival,
reduced lung pathology, decreased production of pro-inflammatory
cytokines and delayed neutrophil recruitment and T cell responses. In
combination with anti-TB treatment aspirin enhanced survival and
reduced lung pathology.

rin, 20µg/
rin, or

Mycobacterial burden correlated with thrombocyte density. Aspirin,
tirofiban, and eptifibatide reduced mycobacterial burden by inhibiting
thrombocyte-granuloma interactions.

mouse Aerosol-infected mice treated with celecoxib or ibuprofen had higher
bacillary burdens in lung and spleen and there was no difference in
pulmonary immune cell infiltration or cytokine levels measured in plasma
or lung homogenates. Celecoxib led to increased bacterial burden and
altered function/differentiation of Type 1 helper T cells in mice re-infected
following antibiotic treatment. IV-infected mice had reduced inflammation
and bacterial burden following ibuprofen treatment.

aspirin
ndard
mide and

Aspirin resulted in insignificantly fewer strokes (24.2% versus 43.3%, OR
0.42, 95%CI 0.121-1.39) and significantly reduced mortality (21.7%
versus 43.4%, p=0.02) compared to placebo. Aspirin was well tolerated.

se
g/day)

There was no benefit in morbidity or mortality.

ay or
0 days
ne

There was no difference in rates of gastro-intestinal or cerebral bleeding,
new brain infarction, or death by 60 days. There was a reduction in new
infarcts and deaths by day 60 in aspirin-treated participants with
microbiologically confirmed TBM compared to placebo.

irin After 1:1 propensity score matching, antiplatelet use was associated
with longer survival (adjusted hazard ratio (HR): 0.91, 95% confidence
interval (CI): 0.88-0.95, p < 0.0001) but no increase in major bleeding
risk (p=0.604).

day) or
d were

Erythrocyte sedimentation rate and C-reactive protein levels were lower
(p=0.000), the sputum-negative conversion rate was higher (86.7%
versus 53.8%, p=0.031), and the number and size of cavities was
smaller in the aspirin-treated than the placebo-treated group.
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Reference Anti-platelet
agent(s) tested

Host species/patients studied Intervention

Kroesen et al, 2018
(104)

Aspirin C3HeB/FeJ infected with M.tb H37Rv
Pasteur strain

Aspirin 3mg/kg given alone or in combinatio
anti-TB treatment

Hortle et al, 2019
(117)

Aspirin, and
tirofiban and
eptifibatide (specific
inhibitors of
glycoprotein IIb/IIIa–
fibrinogen binding)

Zebrafish infected with M. marinum Infected zebrafish treated with 10µg/ml aspi
ml tirofiban, 10uM eptifibatide, or 5uM warfa
control

Mortensen et al,
2019 (118)

Celecoxib and
ibuprofen

CB6F1 mice infected with M.tb Erdman
strain via aerosol or intravenous (IV) routes

Celecoxib or ibuprofen administered orally in
feed 4-12 weeks post infection

Human Studies
Misra et al, 2010
(119)

Aspirin Patients with TB meningitis diagnosed
based on clinical, magnetic resonance
imaging (MRI), and cerebrospinal fluid
(CSF) criteria

118 patients randomized to receive 150mg
per day or placebo. All patients received sta
treatment with rifampicin, isoniazid, pyrazina
ethambutol with/without corticosteroids

Schoeman et al,
2011 (120)

Aspirin Children with TB meningitis 146 children randomized to placebo, low-do
aspirin (75mg/day), and high-dose (100mg/k
aspirin, alongside standard treatment plus
prednisolone for the first month of treatment

Mai et al, 2018
(121)

Aspirin HIV-uninfected adults with TB meningitis 120 patients randomized to aspirin (81mg/d
1000mg/day) or placebo added to the first 6
of anti-tuberculosis drugs plus dexamethaso

Lee et al, 2019
(122)

Antiplatelet agents
including aspirin

Retrospective cohort study of incident TB
cases in the Taiwan National Tuberculosis
Registry between 2008 and 2014

9,497 antiplatelet users (including 7,764 asp
users) compared to 8,864 non-users

Wang et al, 2020
(123)

Aspirin Patients with pulmonary TB and type 2
diabetes mellitus

348 patients randomized to aspirin (100mg/
placebo. 168 patients completed the trial an
included in analysis

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kirwan et al. Platelets in Tuberculosis
mechanisms including PMA formation and pro-inflammatory
cytokine release following endotoxin challenge (131). In a
double-blind placebo-controlled study a single dose of oral
ticagrelor reduced PMA formation in healthy volunteers, and
this was associated with an increase in pro-inflammatory
cytokines in blood exposed to the TLR2 ligand Pam3CSK4 and
a decrease in blood exposed to TLR4 ligand LPS, suggesting that
platelets may differentially modulate cytokine responses
depending upon the receptors involved (132). The role of such
compounds and of inhibitors of platelet signaling pathways,
proposed in Figure 1, as potential therapy targets in TB, are
not yet known but merit detailed investigation and this
represents a major avenue of future research.
CONCLUSIONS AND FUTURE
DIRECTIONS

In this review, we have presented substantial evidence that platelets
are a key component of the innate immune response to tuberculosis.
Both observational and experimental data show that the
administration of anti-platelet agents in patients with TB may be
effective at limiting disease manifestations and improving long-term
Frontiers in Immunology | www.frontiersin.org 8
outcomes in patients who are successfully treated. These findings
are highly promising, however much remains to be understood
about the exact mechanisms of platelet engagement with
mycobacteria and other cells in the orchestration of the complex
immune response to M.tb. Research is needed to ascertain the effect
of therapeutic blockade of specific targets within the platelet on
downstream signaling and leukocyte activity. In particular, the
timing of anti-platelet administration will be of utmost
importance to ensure optimal use, enabling interruption of
harmful tissue destructive processes whilst preserving, or even
enhancing, the immune system’s anti-infective properties.
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Céspedes M, et al. A Beneficial Effect of Low-Dose Aspirin in a Murine
Model of Active Tuberculosis. Front Immunol (2018) 9:798. doi: 10.3389/
fimmu.2018.00798

105. Kroesen VM, Groschel MI, Martinson N, Zumla A, Maeurer M, van der
Werf TS, et al. Non-Steroidal Anti-Inflammatory Drugs as Host-Directed
Therapy for Tuberculosis: A Systematic Review. Front Immunol (2017)
8:772. doi: 10.3389/fimmu.2017.00772

106. Shroff KE, Sainis KB, Sengupta SR, Kamat RS. Role of Antigen-Presenting
Cells in Variation in Immunogenicity of Mycobacteria. Clin Exp Immunol
(1990) 79(2):285–90. doi: 10.1111/j.1365-2249.1990.tb05192.x

107. Hernández-Pando R, Orozco H, Mancilla R. T-Cell Lung Granulomas
Induced by Sepharose-Coupled Mycobacterium Tuberculosis Protein
Ant i gens : Immunosuppre s s i v e Phenomena Reve r s ed Wi th
Cyclophosphamide and Indomethacin. Immunology (1995) 86(4):506–11.
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