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Genetic analysis in European ancestry individuals
identifies 517 loci associated with liver enzymes
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Serum concentration of hepatic enzymes are linked to liver dysfunction, metabolic and car-

diovascular diseases. We perform genetic analysis on serum levels of alanine transaminase

(ALT), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) using data on

437,438 UK Biobank participants. Replication in 315,572 individuals from European descent

from the Million Veteran Program, Rotterdam Study and Lifeline study confirms 517 liver

enzyme SNPs. Genetic risk score analysis using the identified SNPs is strongly associated

with serum activity of liver enzymes in two independent European descent studies (The

Airwave Health Monitoring study and the Northern Finland Birth Cohort 1966). Gene-set

enrichment analysis using the identified SNPs highlights involvement in liver development

and function, lipid metabolism, insulin resistance, and vascular formation. Mendelian ran-

domization analysis shows association of liver enzyme variants with coronary heart disease

and ischemic stroke. Genetic risk score for elevated serum activity of liver enzymes is

associated with higher fat percentage of body, trunk, and liver and body mass index. Our

study highlights the role of molecular pathways regulated by the liver in metabolic disorders

and cardiovascular disease.Lists of authors and their affiliations appear at the end of

the paper.
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G lobal mortality due to liver disease has been on the rise
since 20051. Liver disease is now the third cause of pre-
mature mortality in the UK that kills 40 people a day in

the UK alone overtaking deaths from diabetes and cancer2. While
90% of liver diseases can be prevented, 75% of the patients are
diagnosed in late stages2. The great majority of liver disease in the
UK is caused by alcohol consumption, obesity, and viral hepatitis,
all of which may result in liver inflammation, cirrhosis, and
hepatocellular carcinoma2.

Obesity is linked to liver disease through association with non-
alcoholic fatty liver disease (NAFLD) or its newly proposed term
metabolic (dysfunction)-associated fatty liver disease3–5. Research
has shown an increased risk of cardiovascular disease (CVD) in
people with NAFLD in both men and women6. Elevated serum
activity of liver enzymes is an indicator of the underlying liver
problems. Specific liver diseases such as NAFLD2, alcohol liver
disease7, viral hepatitis8, autoimmune hepatitis9, and cholestatic
disorders may have genetic underlying factors contributing to the
initiation of liver disease or progression of the clinical course of
the disease. Genetic factors are known to alter serum con-
centrations of liver enzymes10 and several genetic loci have been
identified associated with serum activity of liver enzymes.

A previous genome-wide association study (GWAS) of serum
activities of liver enzymes11 on ~60,000 individuals of European
ancestry identified 44 genetic loci for serum level of alanine
transaminase (ALT), alkaline phosphatase (ALP), and γ-glutamyl
transferase (GGT).

Here, we sought to identify genetic factors involved in serum
levels of ALT, ALP, and GGT using data from 437,438 individuals
of European ancestry within the UK Biobank (UKB) and sought
replication in 315,572 individuals of European ancestry from the
Million Veteran Program (MVP), the Rotterdam Study, and the
Lifelines Study. Our aim was to identify etiological genetic and
molecular pathways underlying liver function and the link to
metabolic disorders and CVDs. We identified and replicated the
loci associated with serum activity of liver enzymes and high-
lighted the pathways involved in metabolic disorders and CVD.

We identified 517 liver enzyme single-nucleotide polymorph-
isms (SNPs) with evidence of involvement in liver development
and function, lipid metabolism, insulin resistance, vascular for-
mation, body mass index (BMI), and body and liver fat percen-
tage. Liver enzyme SNPs show association with coronary heart
disease and ischemic stroke.

Results
We performed a two-stage GWAS in European ancestry indivi-
duals on serum concentrations of ALT, ALP, and GGT using a
discovery sample of 437,438 individuals (Fig. 1) and a replication
sample of 315,572 individuals (Supplementary Data 1). At the
discovery stage, Q–Q plots (Fig. 2) showed an early deviation
from the expected line. To estimate if this is due to population
stratification or polygenicity, we performed univariate linkage
disequilibrium (LD) score regression (LDSR). The LDSR inter-
cepts (standard error) in UKB were 1.12 (0.02) for ALT, 1.24
(0.02) for ALP, and 1.22 (0.02) for GGT, indicating that inflated
test statistics are due to polygenicity of the traits. SNP heritability
estimates (standard error) showed that 11% (0. 7%) of ALT,
20.9% (2%) of ALP, and 17% (1%) of GGT is heritable. At
the discovery stage, we identified 328 SNPs for GGT, 230 for
ALT, and 369 for ALP surpassing our pre-set stringent threshold
at P < 1 × 10−8 (see “Methods”) within the UKB sample (Sup-
plementary Data 2–4). Conditional analysis using the genome-
wide complex traits analysis (GCTA) software12 identified addi-
tional independent SNPs for ALT (n= 17), ALP (n= 118), and
GGT (n= 43).

We then sought replication of the discovered variants in three
independent studies (total N= 315,572). We successfully repli-
cated 517 SNPs including 144 ALT, 265 ALP, and 167 GGT SNPs
(Fig. 3 and Supplementary Data 5–7) using our pre-set stringent
replication criteria (see “Methods”).

We examined variance explained by the known and novel liver
enzyme SNPs in the Airwave study13 cohort of UK police forces.
We observed that ALT SNPs explained 10.3% variation in the
circulating level of ALT; ALP SNPs explained 6.2% variation in
the circulating level of ALP, and GGT SNPs explained 7.0%
variation in the circulating level of GGT in the Airwave study.

Cross-trait associations. To investigate evidence for shared
genetic components with other traits, we used LDSR, which
supports the hypothesis for shared genetic contribution with lipid
and glucose metabolism, as well as coronary heart disease (CHD)
across all three liver enzymes (Supplementary Fig. 1 and Sup-
plementary Data 8). Liver enzyme SNPs showed positive genetic
correlations surpassing our pre-setP value threshold of 1.94 ×
10−4 with several cardiometabolic factors such as waist-to-hip
ratio (PALT= 1.52 × 10−55; PGGT= 1.19 × 10−41), type 2 diabetes
(PALT= 1.77 × 10−34PGGT= 1.16 × 10−15), CHD (PGGT= 3.79 ×
10−23; PALT= 2.17 × 10−21; PALP= 1.52 × 10−8), and high-
density lipoprotein (HDL) cholesterol (PALT= 2.31 × 10−13).
Meanwhile, liver enzyme SNPs showed negative genetic correla-
tion with years of education (PGGT= 1.13 × 10−33; PALT= 4.40 ×
10−29; PALP= 6.45 × 10−20), parental age of first birth (PALT=
2.13 × 10−21; PGGT= 3.36 × 10−21; PALP= 3.59 × 10−10), lung
function (PALT= 2.18 × 10−17; PGGT= 9.98 × 10−11; PALT=
5.67 × 10−07), and intelligence (PGGT= 1.73 × 10−10; PALT=
1.73 × 10−10). Association of replicated liver enzyme SNPs with
these genetically correlated traits are presented in Supplementary
Data 9.

Assessment of cross-trait associations on DisGeNET14,15, a
database on previously published gene–disease associations,
showed that the ALT, ALP, and GGT known and novel SNPs
were linked to multiple traits such as CVDs, lipid levels, alcohol
consumption, NAFLD, and other cardiometabolic traits (Fig. 4).
Metabolomics analysis showed that liver enzyme SNPs were
mainly associated with lipid and drug metabolites (Supplemen-
tary Data 10).

Tissue and protein expression assessment. We assessed gene
expression of liver enzyme loci in 51 tissues (Supplementary
Figs. 3–5). Genes mapped to liver enzyme genes showed medium
to high gene expression in liver, adipose tissue, brain, artery, and
urogenital system.

We compared the liver expression of genes mapped to our
discovery stage SNPs with other tissues and we observed that
among genes mapped to the identified SNPs, 26 ALP, 9 ALT, and
20 GGT SNPs were more expressed in the liver compared to all
other 51 tissues. This result highlighted SERPINA1 gene with the
highest expression in the liver among all genes assessed. We also
sought to identify which of the associated SNPs affect gene
expression (expression quantitative trait locus (eQTL)) within the
Genotype-Tissue Expression (GTeX) database. We found that 21
ALT, 31 ALP, and 30 GGT SNPs affected the expression of genes
(cis-eQTL) across tissues. We then specifically looked for eQTL
effects in the liver and observed that 5 ALT, 4 ALP, and 8 GGT
SNPs (with one SNP overlapping between GGT and ALT)
affected expression of genes in the liver (Supplementary Data 11).
For example, ALP SNP rs5760119 (proxy SNP for rs5751777) had
an eQTL effect on the expression of several genes in the liver
including DDT, DDTL, MIF, and GSTT2B. Evaluation of protein
expression information on the Human Protein Atlas16 available
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from www.proteinatlas.org showed high RNA and protein
expression for DDT, DDTL, and MIF in the liver. We observed
evidence of expression of a further ten liver enzyme genes
(SPTLC3, ACTG1, CD276, CHEK2, EFHD1, MIF, MLIP, NYN-
RIN, PGAP3, and SHROOM3) in the liver or gallbladder.

Pathway analysis. Using the Ingenuity Pathway Analysis (IPA)17

software, we found multiple canonical pathways involving gene
lists mapped to the three liver enzyme SNPs. For example, the
farnesoid X receptor (FXR) pathway that is involved in multiple
biological systems including the metabolism of bile acid, lipids,
glucose, and the immune system appeared as top canonical
pathway across all three liver enzyme SNPs. Upstream regulator
analysis identified multiple transcription regulators including
nuclear receptors (RXRA, NR1I2, ESR1, NR1H3, and PPARG),
and transcription regulators (TP53, HNF4A, FOXA2, and
CEBPA).

We also used Data-driven Expression Prioritized Integration
for Complex Traits (DEPICT)18 to find gene sets associated with
molecular pathways and tissues enriched with genes mapped to
the liver enzyme SNPs. We identified enrichment across multiple
organs, tissues, and cells (Figs. 5 and 6). We observed enrichment
for ALT SNPs in the liver, adrenal glands, and adipocytes within a
range of adipose tissues. ALP SNPs were enriched in hepatocytes
in the liver and GGT SNPs were enriched mainly in hepatocytes,
embryoid bodies, and epithelial cells across digestive, mucus
membranes, and urogenital systems. Evaluation of enriched
mammalian phenotypes in relation to liver enzyme SNPs
highlighted the importance of a range of phenotypes including
abnormal liver physiology and morphology, liver fibrosis, and
abnormalities in lipid, glucose, bile acid, and iron metabolisms
(Supplementary Data 12). Evaluation of Gene Ontology data in
relation to all three liver enzyme SNPs showed the importance of
retinoic acid receptor-binding pathway (P= 3.14 × 10−7), regula-
tion of lipid biosynthetic process (P= 7.48 × 10−7), basolateral

Fig. 1 Overview of study design and findings. The figure illustrates the genotype and phenotype quality control (QC) within the UK Biobank (UKB) data.
Statistical analysis and replication resulted in 517 loci associated with liver enzymes. PC principal component, SNP single-nucleotide polymorphism,
GWAS-genome-wide association studies, LD linkage disequilibrium.
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Fig. 2 Overview of ALT, ALP, and GGT loci identified within the UKB study (discovery sample). Manhattan (MH) plots illustrated have been created
based on summary statistics of GWAs on liver enzymes where the x-axis demonstrates chromosome number and the y-axis represents −log 10 (P value)
for the association of SNP with liver enzymes. Q–Q plots are illustrated to show the inflation of test statistics using the summary statistics of the liver
enzyme GWAS. Where the x-axis represents the expected log (P value). The red line shows the expected results under the null association. Y-axis
illustrates the observed log (P value). a MH plot based on ALP GWAS summary statistics. b MH plot based on ALT GWAS summary statistics. c MH plot
based on GGT GWAS summary statistics. d Q–Q plots for ALP, e Q–Q plots for ALT, and f Q–Q plots for GGT. Inflation of test statistics was represented
by lambda (λ) values.

Fig. 3 Overview of nearest genes mapped to known and novel ALT, ALP, and GGT replicated SNPs and their overlap. Yellow box depicts replicated
genes mapped to ALT. Red box depicts replicated genes mapped to ALP. Blue box depicts replicated genes mapped to GGT. Boxes in overlapping sections
depict genes identified to be associated with more than one liver enzyme.
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plasma membrane (P= 5.40 × 10−9), and multiple other
pathways involved mainly in liver development and lipid
homeostasis. Within KEGG and REACTOME pathways, we
observed that enrichment of REACTOME PPARA activates the
gene expression (P= 1.93 × 10−9) pathway, and regulation of
lipid metabolism by PPARA gene expression activation (P=
2.86 × 10−9) were consistently enriched pathways across the three
liver enzymes.

Mendelian randomization (MR). As our cross-trait assessment
showed a link between liver enzyme loci with adiposity, lipid, and
glucose metabolism that are the main risk factors for major
cardiovascular events, we performed MR analysis to test the
causality of the observed associations. To this end, we used the
meta-analysis of discovery and replication samples to select the
list of variants proxying liver enzyme levels, with genetic asso-
ciation estimates for CHD and stroke risk taken from previously
published GWAS. We observed associations of genetically prox-
ied serum levels of all three liver enzymes on CHD risk, although
with heterogeneity in estimates obtained across methods that
make different assumptions regarding the inclusion of pleiotropic
variants. We also observed an MR association of ALT with
ischemic stroke (Supplementary Data 13). MR using the inverse-
variance-weighted (IVW) method showed that for 10-fold
increase in genetically proxied serum level of ALT, the odds
ratio (OR) for CHD was 5.84 (95% confidence interval (CI)=
2.52–13.52, P= 3.73 × 10−5). This was 2.15 (95% CI= 1.07–4.31,
P= 0.03) per 10-fold increase in genetically proxied level of ALP
and it was 1.46 (95% CI= 1.16–1.83, P= 0.001) per 10-fold
increase in genetically proxied level of GGT. In addition, for 10-
fold increase in genetically proxied ALT, the OR for ischemic
stroke was 2.33 (95% CI= 1.30–4.19, P= 0.005).

Genetic risk score (GRS) analysis. To investigate cumulative
effect of liver enzyme SNPs on various complex traits, we per-
formed GRS analysis in the Airwave sample. The GRS was
weighted according to the meta-analysis effect estimates for
serum level of liver enzyme SNPs (Supplementary Tables 5–7).
Here, each standard deviation of increase in ALT GRS was
associated with 3.09 U/L in ALT (95% CI= 2.02–4.17; P= 3.5 ×
10−8). Each standard deviation increase in ALP GRS was asso-
ciated with 2.07 U/L in ALT (95% CI= 1.49–2.66; P= 3.05 ×
10−11), whereas each standard deviation increase in GGT GRS
was associated with 1.43 U/L increase in GGT (95% CI=
1.35–1.52; P= 2.58 × 10−210). We similarly observed association
between GRSs and liver enzymes in NFBC1966 cohort for serum
levels of ALT (OR= 1.72; 95% CI= 1.36–2.07; P= 7.55 × 10−21),
ALP (OR= 1.88; 95% CI= 1.67–2.09; P= 1.32 × 10−65), and
GGT (OR= 1.96; 95% CI= 1.72–2.19; P= 2.98 × 10−56).

We investigated the association of GRS with liver and
metabolic traits (see “Methods”) within UKB (Supplementary
Data 14). GRS was associated with the metabolic syndrome (β=
0.001; 95% CI= 0.001–0.01; P= 2.47 × 10−38), and body fat
distribution indices such as body fat percent (β= 0.07; 95% CI=
0.05–0.09; P= 5.97 × 10−13), and liver fat percent (β= 0.28; 95%
CI= 0.13–0.42; P= 1.28 × 10−4). Our liver enzyme GRS showed
a marginal inverse association with basal metabolic rate (β=
−2.76; 95% CI=−5.3 to −0.23; P= 0.03) and left ventricular
diastolic volume (β=−1.77; 95% CI=−3.51 to −0.03; P=
0.04). We additionally observed that liver enzyme GRS was
associated with a small increase in the risk of incident CVD
(OR= 1.03; 95% CI= 1.01–1.05; P= 6.47 × 10−4). To investigate
the mediatory/confounding effect of adiposity, lipid, and glucose
metabolism on the association of GRS and CVD, we corrected
our CVD analysis for the effect of body fat percent, BMI, and the
metabolic syndrome, as well as biomarkers of lipid and glucose

Fig. 4 Overview of diseases and traits known to be related to liver enzyme SNPs using DisGeNET. Previous knowledge on the association of all (pink),
known (brown), ALT (stone), ALP (light gray), and GGT(aegean) loci are depicted.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22338-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2579 | https://doi.org/10.1038/s41467-021-22338-2 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


metabolism. Of these factors, we observed that adjustment for
metabolic syndrome or HDL cholesterol gave a partial reduction
in risk of liver enzyme GRS on CVD (Supplementary Data 15)
more than other factors.

Discussion
We performed a GWAS for serum activity of liver enzymes using
a sample size of 437,438 participants from the UKB study and
replicated the findings among 315,572 individuals from three
independent cohorts of European ancestry, in a combined sample
size of 753,010. Using this design, we identified 517 SNPs asso-
ciated with the serum level of three liver enzymes. These SNPs
explained 6–10% of the variation in the liver enzyme levels in an
independent study. Our analysis indicates an SNP-based herit-
ability of 11% for ALT, 17% for GGT, and 21% for ALP. These
estimates are much higher (up to 10%) than previously reported
SNP-based heritability estimates for serum activity of liver
enzymes19.

Genetic correlation analysis supports that genetic determinants
of liver enzyme serum levels are linked to lipid and glucose
metabolism, adiposity, and CVDs. Metabolomics analysis high-
lighted the association of lipids and lipoproteins with individual

liver enzyme loci. We additionally showed that liver enzyme SNPs
collectively are associated with increased lipid levels, increased
body fat distribution indices, increased insulin-like growth factor-
1 and hemoglobin A1C, and increased NAFLD. In GRS asso-
ciation with CVD, we showed that adjustment for metabolic
syndrome or HDL gave 10–15% reduction in the effect size of
liver enzyme GRS on CVD, implying that some of this CVD risk
may be attributable to the metabolic syndrome/ lipid metabolism.

The top canonical pathway analysis by IPA highlighted the role
of FXR, a nuclear receptor involved in the regulation of bile acid
synthesis and transport20. The FXR pathway is known to protect
against liver inflammation associated with non-alcoholic
steatohepatitis21 and is involved in lipid transport and glucose
metabolism. The biological links within the FXR pathway may
provide a biological support for the observed link between liver
enzyme loci, lipid dysregulation, diabetes, and obesity.

Furthermore, our gene-set enrichment analysis using
DEPICT18 once again highlighted the regulation of lipid meta-
bolism processes and abnormal liver physiology and morphology.
These in silico analyses from multiple sources suggest inter-
connectivity of lipid and glucose metabolism with processes
involved in liver physiology and morphology.

Fig. 5 Overview of tissue enrichment for GGT SNPs using DEPICT. Illustrated are the tissues and organs enriched with genes mapped to GGT SNPs. False
discovery rate <0.05 was used to identify enriched tissue/cells.
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Among the genes identified, we found that LIPC (hepatic type
of lipase C) is associated with liver enzyme levels. This gene is
highly expressed in the liver and is involved in receptor-mediated
lipoprotein uptake, affecting lipid levels22. Polymorphisms in
LIPC have been associated with hypertension, type 2 diabetes, and
metabolic syndrome23. Since familial lipid disorders such as
familial combined hyperlipidemia24 that commence in infancy
are known to cause NAFLD, changes in lipid levels due to
polymorphisms in genes such as LIPC might occur prior to
changes in serum activity of liver enzymes, perhaps due to the
accumulation of fat in the liver. This also applies to another liver
enzyme locus, APOE, that is a well-studied lipid-modulating locus
linked to LIPC and hepatic injury.

We observed a genetic correlation between femoral neck bone
mineral density and ALP in our discovery stage within the UKB.
This was not the case for ALT or GGT. ALP has multiple iso-
forms with the bone and liver being the most abundant circu-
lating isoforms25. In our replication strategy, for each locus to be
considered replicated, we implemented concordance of effect with
another liver enzyme. This strategy filtered out the signals that
were probably due to bone diseases rather than the liver and
eventually none of the replicated ALP SNPs reported here show
the previous link to bone traits.

Our study additionally confirms the association of various loci
that have been shown to be involved in liver disorders. A recent
GWAS on non-alcoholic fatty liver and steatohepatitis by Anstee
et al.26 highlighted the role of PNPLA3, TM6SF2, GCKR, PYGO1,
HSD17B13, and LEPR in these liver disorders. In addition, a
recent GWAS on NAFLD by Namjou et al.27 highlighted the role
of TRIB1, PNPLA3, TM6SF2, COL13A1, and GCKR in the
pathogenesis of NAFLD. Our study confirms that SNPs in
PNPLA3, TM6SF2, GCKR, and LEPR are associated with the
serum activity of liver enzymes.

Some of the SNPs we replicated play a role in rare familial liver
disorders. For instance, we identified and replicated SNPs in
SLC22A1, LIPC, ABCC2, CYP7A1, NR1H4, ADH4, MTTP, and
ATP8B1 regions that have been previously linked to familial

intrahepatic cholestasis28. The disease onset is in childhood and
manifests with cholestasis in the liver, leading to liver failure. The
pathologic underlying factors are defects in bile acid secretion and
metabolism.

One of our lead SNPs in SERPINA1 gene rs28929474 has
previously been associated with liver traits, and mutations in
SERPINA1 is known to cause liver cirrhosis29. Our study con-
firms a strong association between this locus across all three liver
enzymes.

In summary, here we increase the number of SNPs identified so
far for modulating circulating liver enzymes to a total of 561
SNPs. Our tissue expression lookup supported the role of genes
with strong evidence of expression in the liver or gallbladder. We
show evidence of involvement of liver enzyme SNPs in metabolic
syndrome and in coronary artery disease. Our study shows that
up to 10% of the variance in serum activity of liver enzymes is
genetically determined and suggests the possible role of SNPs
involved in liver fat percent in variation in serum activity of liver
enzymes and a shared genetic contribution with CVD. Our study
implies a role for genetic loci for liver enzyme levels in creating
multiple abnormalities in lipid, glucose, and bile acid metabolism.
These disturbances seem to be linked to the accumulation of fat in
the liver and the body, as well as abnormalities in lipid levels,
glucose control, and liver enzyme levels. Adiposity, hyperlipide-
mia, and abnormal glucose metabolisms are known to be linked
to accelerated atherosclerosis and CVD risk. Dedicated investi-
gations are needed on the biological effect of genes within the
FXR pathway, their physical interaction, and their link to liver
abnormalities and cardiometabolic changes.

Methods
Study design and participants. We used data from the UKB30–32 and included
437,267 individuals aged 40–69 years in the discovery stage. Study participants
were ascertained through United Kingdom National Health Service registers across
22 centers in Great Britain between 2006 and 201032. We included individuals of
European ancestry following quality measures and exclusions (sex discordance,
high missingness, and/or heterozygosity). Allocating individuals to ethnicity groups
was based on self-reported ethnicity matched with principal component analysis

Fig. 6 Overview of tissue and physiological systems enrichment using DEPICT. Illustrated are the tissues and organs enriched with genes mapped to ALT
(a) and ALP (b) SNPs. False discovery rate <0.05 was used to identify enriched tissue/cells.
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ancestry clustering using the k-means clustering method. We excluded participants
who had withdrawn consent (n= 39), as well as those who were pregnant or
unsure of their pregnancy status at recruitment (n= 372). Non-European ancestry
individuals were excluded from the main analysis. We limited our analysis to
individuals with complete values for ALT, ALP, and GGT concentration. After
exclusions, there were 437,267 individuals for ALT analysis, 437,438 for ALP, and
437,194 for GGT (Fig. 1) analyses. Values of ALT, ALP, and GGT were log 10
transformed to approximate normal distribution. To replicate our SNPs, we used
data for 315,572 individuals from three independent studies, namely (i) the Rot-
terdam Study (NL, N= 6943)33; (ii) the Lifelines study (NL, N= 13,386)34; and
(iii) the MVP (USA, N= 294,043)35 (see Supplementary information). For addi-
tional replication, we used GRS and sought the effect estimate and explained
variance of the GRS on serum level of ALT, ALP, and GGT in independent samples
from the Airwave health monitoring study13, a cohort of UK police forces, and in
the Northern Finland Birth Cohort 196636,37 (NFBC1966; see Supplementary
information).

For subsequent analyses such as the association of GRS with various trait and
association testing with NAFLD within the UKB, we excluded 918 individuals who
had (based on Hospital Episode Statistics [HES] at the time of recruitment)
documented International Classification of Diseases Tenth Revision (ICD10) diagnosis
code for osteopathy (M45-49 and M80-90), vitamin D deficiency (E55), any liver
disorders (K70-K77) including NAFLD (ICD10 code K760), alcohol liver disorder
(K70), primary biliary cholangitis (PBC; K74.3), primary sclerosing cholangitis (PSC
and K83), autoimmune hepatitis (AIH; K75.4), diseases of the gallbladder (K80-K87),
and parathyroid diseases (E214, E215, D351, C750, and D442).

Ethical consideration. The North West Multi-Center Research Ethics Committee
has approved the UKB study. Any UKB participants who withdrew consent were
removed from the current analysis. Local ethical approval was obtained for all
independent replication cohorts.

The MVP received ethical and study protocol approval from the Veteran Affair
Central Institutional Review Board and site-specific Research and Development
Committees in accordance with the principles outlined in the Declaration of
Helsinki. Informed consent was obtained from all participants of the MVP study.

Lifelines are conducted according to the principles of the Declaration of
Helsinki and is approved by the medical ethics committee of the University
Medical Centre Groningen, The Netherlands. Written informed consent was
obtained from all participants.

The Rotterdam Study has been approved by the medical ethics committee
according to the Population Screening Act: Rotterdam Study, executed by the
Ministry of Health, Welfare, and Sports of the Netherlands. All participants from
the Rotterdam Study in the present analysis provided written informed consent to
participate and to obtain information from their treating physicians.

The Airwave Health Monitoring Study is approved by the National Health
Service Multi-site Research Ethics Committee (MREC/13/NW/0588).

The NFBC1966 study was approved by the Ethics Committee of the Northern
Ostrobothnia Hospital District, and the Ethics Committee of the University of
Oulu. All participants gave written informed consent.

Liver and metabolic traits. The serum concentration of ALT, ALP, and GGT in
stored blood samples was measured using the enzymatic rate analytical method on
a Beckman Coulter AU5800. The manufacturer’s analytic range for ALT was
3–500 U/L, for ALP, 5–1500 U/L, and it was 5–1200 U/L for GGT. Details of
quality control and sample preparation for the measurements of serum activity of
liver enzymes have been published by the UKB38.

We investigated the effect of genetic determinants of liver enzyme levels on
BMI, basal metabolic rate (explain methods), electrocardiographic traits, left
ventricular ejection fraction, cardiac index, bioimpedance measures using the
Tanita BC418MA body composition analyzer including basal metabolic rate, body
fat mass, body fat percentage (n= 415,692), fat-free mass, predicted muscle mass,
and impedance for the trunk (n= 415,667), as well as coronary artery disease. Liver
fat distribution was available in a subset of the UK Biobank, which had undergone
imaging analysis of the liver and had genetic data available (n= 4085).

Cardiovascular events. UK Biobank data are linked to electronic health data
including HES and Office for National Statistics cause of death data. HES data
provide information on hospital admissions for diagnoses and procedures. Using
HES we defined CVD as coronary artery disease, stroke, or myocardial infarction
classified using our published algorithm39 comprising codes from the ICD 9th
(428, 410, 411, 412, 413, 414, 4297, 431, 430, 434, 436, 428, 425) and 10th (I20, I21,
I22, I23, I24, I25, I61, I60, I63, I64, I61, I60, I50, and I42) Revision codes. Prevalent
cases were removed from the analyses.

We additionally investigated electrocardiographic traits, left ventricular ejection
fraction, and cardiac index in relation to genes identified in this study.

Genotyping and Imputation. Genotyping and imputation in the UKB have been
described in detail elsewhere40,41. Briefly, two custom Affymetrix UKBileve and
UKB Axiom arrays42 (designed to optimize imputation performance) were used for
genotyping of DNA samples obtained from the UKB study participants. The UKB

performed imputation centrally using an algorithm implemented in the IMPUTE2
program. Only markers that were present in both UKBileve and UKB Axiom arrays
were used for imputation. To maximize the use of haplotypes with British and
European ancestry, a special reference panel comprising a merged sample of
UK10K sequencing and 1000 Genomes imputation reference panels was used for
genotype imputation by the UKB. Genetic principal components to account for
population stratification were computed centrally by UKB.

Genome-wide association analysis in UKB. We restricted the main association
analysis to SNPs from the third release of UKB genetic data (GRCh37). For GWAS
on serum activity of liver enzymes, we performed linear mixed models (LMM) as
implemented in the BOLT-LMM (v2.3) software43. The BOLT method accounts
for the population structure and cryptic relatedness simultaneously. We assumed
an additive genetic model on log 10-transformed ALT, ALP, and GGT values,
adjusted for age, sex, and 40 genetic principal components for European ancestry.
We applied several filters on a random subset of individuals and common SNPs
(minor allele frequency [MAF] > 5%) to estimate parameters of LMM with
Hardy–Weinberg equilibrium P > 1 × 10−6 and missingness <0.015 for the initial
modeling step.

For the BOLT-LMM analysis to estimate the effect of SNPs on serum level liver
enzymes, we set the discovery stage significance threshold of P < 1 × 10−8. This
stringent threshold (compared with the usual GWAS threshold of P < 5 × 10−8)
was used to robustly define lead SNPs to be put forward for replication and
functional assessment. Multiallelic SNPs were removed from the database. We
removed all SNPs in the HLA region (chr6:25-34 MB) and removed SNPs with
MAF < 0.001. A total of 13,995,440 SNPs passed our quality control criteria and
were included in ALP, ALT, and GGT GWAS.

Genetic data of the UKB include many SNPs in high LD that might inflate
GWAS test statistics. To distinguish confounding due to population stratification
from polygenicity in such data, we applied a univariate LDSR method44. We
calculated LDSR intercept for ALP, ALT, and GGT GWAS, which was then used as
a genomic control factor to account for cryptic relatedness.

Locus definition. For the selection of lead SNPs at the discovery stage, all asso-
ciations surpassing the stringent threshold of P < 1 × 10−8 were ranked in order of
statistical significance with the strongest SNP associations located at the top of the
list. We then removed all SNPs in the region of ±500 kb spanning the strongest
ranking SNPs (lead SNP) that showed larger association P values than the lead
SNP. We additionally LD pruned the list of final lead SNPs considering SNPs with
LD threshold of r2 < 0.1 as independent signals.

To detect any secondary signals, we used UKB GWAS summary-level data for
ALT, ALP, and GGT and performed approximate conditional analysis using the
GCTA software12. We used locus-specific conditional analysis for ALT, ALP, and
GGT conditioned on the lead SNPs within each locus. Our criteria for the selection
of secondary signals included MAF ≥ 0.001 and P < 1 × 10−8 both in the BOLT-
LMM GWAS and in joint conditional analysis within GCTA. The individual-level
data for the European ancestry participants of UKB were used for LD calculation in
GCTA analysis. We accepted and added the signals passing these selection criteria
to the list of lead SNPs.

For further exploratory analyses, we searched proxy SNPs (r2 > 0.8) within 1Mb
region spanning the final LD pruned lead SNPs. Our criteria to choose proxy SNPs
included location within 1Mb window around the sentinel SNP and r2 ≥ 0.8 with
the sentinel SNP. For proxy SNPs to be eligible for further analyses, we used
MAF ≥ 0.001 and an imputation score >0.3. Both LD pruning and proxy search
were performed using the PLINK2 software45,46.

Replication and concordance. We sought replication for all independent lead
SNPs from the BOLT-LMM and GCTA analysis in independent samples. We used
data from multiple cohorts of (i) the Rotterdam Study (n= 6943)33, (ii) the Life-
lines study (n= 13,386)34, (iii) and the Million Veterans Program (n= 294,043)35,
and performed a meta-analysis across all replication cohorts. Later, we carried out a
meta-analysis of discovery and replication results using inverse-variance fixed-
effects models in the METAL software47. Our replication criteria included (i)
stringent (P < 5 × 10−9) association P value in the meta-analysis of discovery and
replication, to minimize false-positive signals; (ii) P < 0.01 in the meta-analysis of
replication cohorts together with the concordant direction of effects in the meta-
analysis of replication and discovery; (iii) concordant direction of effects on serum
level of at least two of the three liver enzymes. In addition, we cross-referenced the
ALP-replicated SNPs against reports of bone traits reported in GWAS Catalog48 to
exclude any potential bone signals. We listed all unique replicated SNPs across all
three liver enzymes, and we considered every two SNPs in 500 kb distance of one
another as a single locus.

Cross-trait associations. In addition to the final replicated SNPs, we included
their proxy SNPs (r2 ≥ 0.8) for functional assessment and cross-trait lookups.

To investigate shared heritable contribution between serum activity of liver
enzymes and other phenotypes, we used the Broad institute LD hub49 tool on 257
LD hub traits (excluding Neal’s lab GWAS analyses http://www.nealelab.is/uk-
biobank/ that are based on UKB) to agnostically assess the genetic correlation
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between any two given traits using LDSR method44 implemented in online LD hub
tool. The LDSR method developed by Bulik-Sullivan lab uses summary statistics
from previously published GWAs. The method estimates genome-wide genetic
correlation calculated from the additive genetic variance and covariance between
any pair of traits44. We used three GWAS summary statistics data from our
discovery stage for ALP, ALT, and GGT traits against 257 LD hub summary
statistics creating 771 combinations of paired traits. LDSR method uses summary
statistics from GWAs of two different traits to identify the genetic correlation
between the two traits using SNP data and is described in detail by Bulik-Sullivan
et al.44. To claim significance, we used a P value threshold of 1.94 × 10−4

corresponding to a nominal P value (0.05) with Bonferroni correction for 257 LD
hub traits.

To assess and identify disease traits that are linked to ALT, ALP, and GGT
SNPs, we sought evidence of previous associations using DisGeNET14,15. As input,
we used ALT, ALP, and GGT lead SNPs and their proxy SNPs (r2 > 0.8) within 1
Mb region.

To investigate the metabolomic signatures of the identified SNPs, we used
individual-level metabolomics data on 1941 serum samples from the Metabolon
platform in the Airwave study13, a cohort of UK police forces, and performed
association tests using linear regression analyses, adjusted for age and sex and
principal components of genetically inferred ancestry.

Tissue and Protein expression analysis. We used the online portal of the GTEx
database50–52 to obtain the multi-tissue eQTL summary statistics (V7) on gene
expression levels by Transcripts per Million using expression data from 48 tissues.
To account for multiple testing, we used Benjamini–Hochberg corrected P values
to denote statistical significance.

We additionally retrieved median gene expression levels by Transcripts per
Million for genes mapped to ALT, ALP, and GGT SNPs from the RNA seq GTEX
(V7) database for 51 tissues. For each tissue, we calculated mean and standard
deviations of gene expression values. We then standardized gene expression levels
across gene transcript-tissue combinations from GTEx to facilitate comparison
across tissues. We finally used proteomics (https://www.proteomicsdb.org), tissue
expression databases (https://tissues.jensenlab.org), and human protein atlas16

(www.proteinatlas.org) to check for protein expression of the genes in eQTL with
liver enzyme SNPs.

Pathway analysis and gene-set enrichment analysis. We annotated replicated
SNPs to the nearest gene within a distance of ±500 kb using the University of
California Santa Cruz (UCSC) genome browser. We performed gene-based variant
effect analysis using the IPA17 software (IPA®, Qiagen Redwood City) on genes
mapped to ALT, ALP, and GGT SNPs to evaluate over-representation of these
genes in canonical pathways and in association with previously reported diseases
and biological functions.

The P value of overlap implemented in IPA states the statistical significance of
the enrichment of a biological attribute (e.g., canonical pathway, upstream analysis,
etc.) in the user’s dataset. It compares the proportion of input molecules (e.g.,
genes) that are associated with a particular biological attribute to the proportion of
molecules that we expect to see if the dataset were made up of randomly selected
molecules. It is calculated using the right-tailed Fisher’s exact test. A P value < 0.05
or (−log P value= 1.3) is considered significant by IPA. The smaller the P value,
the less likely that the association is random and the more statistically significant
the association53.

For our replicated SNPs for each of the three liver enzymes, we used DEPICT18

at enrichment false discovery rate <0.05 to highlight gene sets associated with
specific molecular pathways and mammalian phenotypes.

GRS analysis. To estimate the cumulative contribution of genetic variants to liver
enzyme concentrations, we created a GRS for the novel and known loci, weighted
according to the effect estimates from the meta-analysis of discovery and repli-
cation (n= 753,010). This was separately done across all three liver enzyme SNPs
and then an average value of the three GRSs was calculated. This averaged GRS was
then standardized so that each unit in the GRS represents 1 SD. We tested the GRS
against liver enzyme levels in the independent Airwave study (nALP= 331; nALT=
330; nGGT= 13,420)13 and estimated the percentage of variance in serum activity of
liver enzymes explained by the GRS. We additionally replicated the GRS results in
the NFBC1966 cohort (nALP= 3619; nALT= 3620; nGGT= 3617).

To test the involvement of replicated liver enzyme SNPs in complex conditions
and diseases relevant to the liver, we created a GRS within the UKB weighted
according to effect estimates from the meta-analysis of independent replication
cohorts (n= 315,572). We investigated the association of this GRS with liver and
metabolic traits (described above) within UKB.

Mendelian randomization. To further investigate the effect of circulating levels of
the liver enzymes on the risk of cardiovascular outcomes, a two-sample MR
approach was employed54. We considered the outcomes of CHD, ischemic stroke,
and intracerebral hemorrhage (ICH). Genetic association estimates on outcomes
were obtained from the CARDIoGRAMplusC4D Consortium for CHD (60,801
cases and 123,504 controls, multiethnic)55, the MEGASTROKE Consortium for

ischemic stroke (60,341 cases and 454,450 controls, multiethnic)56, and the
International Stroke Genetic Consortium for ICH (1545 cases and 1481 controls,
European ancestry)57. For the main analysis, the random-effects IVW meta-
analysis MR approach was used, with the simple and weighted median, and MR-
Egger approaches also employed as sensitivity analyses as these are more robust to
the inclusion of potentially pleiotropic variants58.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary statistics will be made available through the NHGRI-EBI GWAS Catalog
[https://www.ebi.ac.uk/gwas/downloads/summary-statistics] under accession number
GCP000102. The direct links to download the summary statistics from GWAS Catalog
are as follow: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90013405,
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90013406, and ftp://ftp.
ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90013407. Genetic association
estimates for outcomes considered in Mendelian randomization were obtained from
publicly available sources. For coronary heart disease this was the
CARDIoGRAMplusC4D Consortium, for ischemic stroke this was the MEGASTROKE
Consortium, and for intracerebral hemorrhage this was the International Stroke Genetic
Consortium (https://cd.hugeamp.org/downloads.html].
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