

International Journal of Environmental Research and Public Health

Correction

Lingqian Xu¹, Debapriya Mondal^{2,*} and David A. Polya¹

- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK;
- lingqian.xu@postgrad.manchester.ac.uk (L.X.); david.polya@manchester.ac.uk (D.A.P.)
- ² School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
- * Correspondence: d.mondal@salford.ac.uk; Tel.: +44-161-295-4137

Received: 4 November 2020; Accepted: 26 November 2020; Published: 2 December 2020

In our recently published meta-analysis, due to an oversight, we treated urinary As concentration data reported by Tsinovoi et al. [1] instead as drinking water As data. This oversight impacted, in minor way, our linear and non-linear published dose-response models for combined fatal and non-fatal strokes. The oversight does not impact, in any way, any of our other published [2] dose-response models.

We corrected both Table 1 and Supplementary Materials Table S1; the exposure media for Tsinovoi et al. [1] is changed to 'urinary As (μ g/g creatinine)' from 'water As (μ g/L)'. Accordingly, we modified dose-response models (Table 2) and goodness of fit parameters (Table 3) for the relationships between drinking water As and combined fatal and non-fatal risks of strokes in the corrected Manuscript [2]. These are based on using Equation (3) of Xu et al. [2] to calculate equivalent drinking water As concentrations from the reported urinary As values from Tsinovoi et al. [1]. Over the drinking water arsenic concentration range 1 to 50 μ g/L, the absolute differences between the originally published and corrected relative risks (RR) for the linear and non-linear dose-response models for combined fatal and non-fatal stroke risks are all < 0.001 and < 0.020 respectively.

Study (Year)	Study (Year) Design Cas		Person or Person-Years	Exposure Media	Concentration Category	Median	RR (95% CI)			
Mortality										
CHD										
14 20,064 0.1–12.0 2.3 1 (referent)										
Chen et al.		16	19,109	water (ug/L)	12.1-62.0	34.0	1.22	0.56	2.65	
[15] (2011)	11	15	18,699	water (µg/L)	62.1-148.0	101.0	1.49	0.70	3.19	
		26	19,380		148.1-864.0	237.0	1.94	0.99	3.84	
D/Involiti at al		684	771,860		< 10	7.4		1 (referent)		
D Ippoliti et al.	ir	573	713,276	water (µg/L)	10-20	12.9	1.40	1.19	1.64	
[29] (2013)		1014	904,129		> 20	29.7	1.46	1.07	2.01	
M 1 (1		88,566	18,978,000		< 1	0.7		1 (referent)		
Medrano et al.	ci	19,709	4,803,000	water (µg/L)	1-10	3.9	1.05	1.01	1.10	
[74] (2010)		4725	1,011,000		> 10	23.3	1.02	0.96	1.08	
		68	13,616		< 5.8	4.2		1 (referent)		
Moon et al.		67	13,430	urine (µg/g	5.8-9.7	7.5	0.99	0.70	1.41	
[63] (2013)	ır	87	12,720	creatinine)	9.8-15.7	12.4	1.18	0.83	1.69	
		119	12,033		> 15.7	21.8	1.71	1.19	2.44	
Chen et al. [81] (1996)		4	2748		< 10	5		1 (referent)		
	ir	5	1417	water (µg/L)	10-500	255	3.30	0.80	13.69	
		16	4309		≥ 510	755	5.30	1.49	18.85	
		44	14,636		0-5	1.1		1 (referent)		
		26	9047		5.1-20	11.8	1.07	0.64	1.78	
Vade et al.	ir	72	21,367	water (µg/L)	20.1-100	26.2	1.22	0.82	1.82	
[79] (2009)		17	3313		100.1-300	156.1	1.55	0.88	2.73	
		2	249		Over 300	387.9	2.47	0.50	12.18	
F (1		57	898	t : 1	0.01-0.07	0.05		1 (referent)		
farzan et al.	ir	51	852	(ua/a)	0.07-0.11	0.09	1.13	0.77	1.67	
[19] (2013)		46	754	(µg/g)	0.11-3.26	0.23	1.22	0.82	1.82	
					CVD					
		43	20,064		0.1-12.0	2.3		1 (referent)		
Chen et al.		51	19,109	water (ug/L)	12.1-62.0	34.0	1.21	0.80	1.84	
[15] (2011)	11	41	18,699	water (µg/L)	62.1-148.0	101.0	1.24	0.80	1.93	
		63	19,380		148.1-864.0	237.0	1.46	0.96	2.20	
		147	114,068		< 10	0.7		1 (referent)		
Cohol et al		168	139,233		10-49	31.8	1.03	0.82	1.29	
Sohel et al.	ir	463	365,496	water (µg/L)	50-149	95.0	1.16	0.96	1.40	
[00] (2009)		318	241,930		150-299	201.2	1.23	1.01	1.51	
		115	78,786		> 300	371.5	1.37	1.07	1.77	
D/Innaliti at -1		2752	771,860		< 10	7.4		1 (referent)		
[29] (2015)	ir	2115	713,276	water (µg/L)	10-20	12.9	1.28	1.08	1.51	
[29] (2015)		3514	904,129		> 20	29.7	1.36	1.06	1.74	

 Table 1. Characteristics of studies included for dose-response meta-analysis.

Study (Year)	Design	Cases	Person or Person-Years	Exposure Media	Concentration Category	Median		RR (95% CI)	
		285.049	18.978.000		<1	0.7		1 (referent)	
Medrano et al.	ci	62.739	4,803,000	water (µg/L)	1-10	3.9	1.02	0.99	1.06
[74] (2010)		13,962	1,011,000		> 10	23.3	1.03	0.98	1.08
		86	13,616		< 5.8	4.2		1 (referent)	
Moon et al.		95	13,430	urine (µg/g	5.8-9.7	7.5	1.12	0.83	1.52
[63] (2013)	ir	115	12,720	creatinine)	9.8-15.7	12.4	1.26	0.92	1.73
,		143	12,033	,	> 15.7	21.8	1.65	1.20	2.27
		97	14,636		0-5	1.1		1 (referent)	
X47 1 / 1		42	9047		5.1-20	11.8	0.72	0.32	1.60
Wade et al.	ir	113	21.367	water (µg/L)	20.1-100	26.2	0.79	0.34	1.86
[79] (2009)		24	3313		100.1-300	156.1	0.62	0.10	3.70
		3	249		Over 300	387.9	1.70	0.51	5.72
_		125	1987		0.01-0.07	0.05		1 (referent)	
Farzan et al.	ir	103	1691	toenail (ug/g)	0.07-0.11	0.09	1.04	0.80	1.35
[19] (2015)	11	84	1334		0.11-3.26	0.23	0.99	0.74	1.32
		428	19.360		<10	5.0		1 (referent)	
Wang et al		84	2130		10-49	29.5	0.95	0.74	1.21
[82] (2005)	ir	116	2317	water (µg/L)	50-499	274.5	1.34	1.08	1.66
		60	1165		>500	724 5	1.80	1 36	2 38
		00	1100		Stroke	,21.0	1.00	1.00	2.00
		660	771 860		< 10	74		1 (referent)	
D'Ippoliti et al.	ir	448	713,276	water (µg/L)	10-20	12.9	1.33	1.12	1.58
[29] (2015)		789	904.129	(+-0/)	> 20	29.7	1.66	1.16	1.78
		15	233		0.01-0.07	0.05		1 (referent)	100
Farzan et al.	ir	16	243	toenail (µg/g)	0.07-0.11	0.09	1.28	0.64	2 61
[19] (2015)	11	12	161	(P6/6)	0.11-3.26	0.03	1.20	0.50	2.01
		62	38 198		< 10	17	1.10	1 (referent)	2.10
Rahman et al.	ir	196	156 362	water (µg/L)	10-49	21.1	1 20	0.92	1 57
[17] (2014)	11	271	42 579	(+-0/)	> 50	102.2	1.20	1.04	1.75
		6	13 616		< 5.8	4 2	1.55	1 (referent)	1.75
Moon et al		17	13,430	urine (ug/g	58-97	7.5	1 41	0.54	3.67
[63] (2013)	ir	13	12 720	creatinine)	98-157	12.4	2.16	0.77	6.09
[00] (2010)		18	12,720	cicatilitic)	> 15 7	21.8	3.03	1.08	8 50
		10	20.064		01-120	21.0	5.05	1.00 1 (referent)	0.00
Chen et al		26	19 109		12 1_62 0	34.0	1 35	0.75	2 43
[15](2011)	ir	18	18 699	water (µg/L)	62 1-148 0	101.0	1.00	0.63	2.40
[10] (2011)		22	19 380		148 1_864 0	237.0	1.20	0.05	2.27
		53	14 636		140.1-004.0	11	1.07	1 (referent)	2.12
		16	9047		5 1_20	1.1	0.47	0.27	0.84
Wade et al.	ir	10 /1	7047 01 247	water (ug/L)	20 1_100	26.2	0.47	0.27	0.04
[79] (2009)	11	41 7	21,307	,,,αις, (μ <u>β</u> , Γ)	20.1-100	20.2 156 1	0.51	0.54	2.95
		1	2/0		Over 200	387.0	1.02	0.14	6.71
		1	249		Over 500	307.9	1.02	0.10	0.71

Table 1. Cont.

Study (Year)	Design	Cases	Person or Person-Years	Exposure Media	Concentration Category	Median		RR (95% CI)		
Madaaa at al		81,368	18,978,000		< 1	0.7	1 (referent)			
Medrano et al.	ci	18,327	4,803,000	water (µg/L)	1-10	3.9	1.00	0.99	1.05	
[74] (2010)		3895	1,011,000		> 10	23.3	1.02	0.95	1.09	
				Fatal	and non-fatal					
				Carotid athe	erosclerosis disease					
		25	64		< 50.00	25		1 (referent)		
Wu et al. [69]	сс	46	95	water (µg/L)	50.01-100.00	75	1.90	0.90	3.80	
(2006)		89	183		> 100.01	125	2.60	1.30	5.00	
		17	48		< 10	5		1 (referent)		
Hsieh et al.	сс	23	61	water (ug/L)	10.1-50	30	1.80	1.00	3 20	
[72] (2008)		195	370	(1.8/-)	> 50	70	1.00	1.00	3.10	
		24	55		× 10	5	1.90	1 (referent)	0.10	
Hsieh et al.	CC.	31	81	water (ug/L)	101-500	30	1 53	0.67	3 50	
[73] (2011)	cc	325	720	Water (µg/1)	> 50.0	70	2.01	1.05	3.85	
		323	720		CHD	70	2.01	1.00	0.00	
		168	305		< 10	10		1 (referent)		
Wade et al.	66	105	226	water (ug/L)	10 20	1.9	1 22	0.78	1 02	
[83] (2015)	cc	105	230	water (µg/L)	10-39	10.0 E8.6	1.25	0.78	1.93	
		202	20		> 40	30.0	4.05	1.10	14.99	
Moon stal		202	12,140	uning (ugla	< 3.0	4.2	1.05		1 00	
Moon et al.	ir	206	11,701	urine (µg/g	5.8-9.7	7.5	1.05	0.86	1.28	
[63] (2013)		197	11,305	creatinine)	9.8-15.7	12.4	0.95	0.77	1.19	
		241	10,586		> 15.7	21.8	1.50	1.04	1.62	
T / 1		58	4806	water (µg/L)	1-20	5.7	1.05	1 (referent)	0.01	
James et al.	ir	18	1335		20-30	25.3	1.25	0.70	2.31	
[84] (2015)		16	534		30-45	35.1	2.14	1.22	3.98	
		4	98		45-88	50.5	3.12	1.12	9.02	
Chen et al.		61	2823		0.1-25	5.1		1 (referent)		
[20] (2013)	ir	72	2718	water (µg/L)	25.1-107	57.0	1.18	0.75	1.84	
[]()		75	2770		108-864	198.5	1.54	1.02	2.31	
					CVD					
		265	12,146		< 5.8	4.2		1 (referent)		
Moon et al.	ir	297	11,701	urine (µg/g	5.8–9.7	7.5	1.14	0.95	1.35	
[63] (2013)	11	291	11,305	creatinine)	9.8–15.7	12.4	1.05	0.87	1.26	
		331	10,586		> 15.7	21.8	1.32	1.05	1.28	
Chen et al		114	2823		0.1-25	5.1		1 (referent)		
[20] (2013)	ir	120	2718	water (µg/L)	25.1-107	57.0	1.00	0.67	1.50	
		132	2770		108-864	198.5	1.49	1.06	2.11	
				Hy	pertension					
Wang at al		93	618	-	< 538	269		1 (referent)		
wang et al.	ir	103	721	water (µg/L)	538-700	619	1.18	0.60	2.34	
[/1] (2011)		83	634		> 700	781	0.83	0.40	1.68	

Table 1. Cont.

Study (Year)

Jones et al.

[26] (2011)

Chen et al.

[75] (2007)

Islam et al.

[67] (2012)

Li et al. [66]

(2013)

Mendez et al.

[59] (2016)

Hall et al. [16]

(2017)

Rahman et al.

[70] (1999)

Tsinovoi et al.

[36] (2018)

Moon et al.

[63] (2013)

Chen et al.

[20] (2013)

Design

ir

сс

сс

сс

сс

сс

сс

ir

ir

ir

Cases 418

451

273

259 265 22

19

13 12 29

30

45 106

106

109 118 140

246

225 9

50

93 55

150

138

139

119

125

55

75

62

72

50

46

52

637

622

624

606

608

12,146

11,701

11,305

10,586

2823

2718

2770

	Tab	le 1. Cont.				
Person Person-Ye	or Exposure ears Media	Concentration Category	Median		RR (95% CI)	
952		< 4.2	2.1		1 (referent)	
1057	uning (ug/L)	4.2 to 8.3	6.3	1.08	0.83	1.40
1090	unne (µg/L)	> 8.3 to 17.1	12.7	1.30	0.94	1.80
1068		> 17.1	21.5	1.17	0.75	1.83
2242		0.1-8.0	2.8	1 (referent)		
2116		8.1-40.8	23.2	1.10	0.90	1.33
2187	water (µg/L)	40.9-91.0	63.9	1.03	0.85	1.25
2181		91.1-176.0	128.1	1.01	0.83	1.22
2184		176.1-864.0	283.1	1.02	0.84	1.23
291		10-22	15.5		1 (referent)	
208	water (ug/L)	23-32	27.5	1.33	0.67	2.62
252	water (µg/L)	33-261	180.0	1.10	0.49	2.44
243		≥ 262	376.0	0.96	0.42	2.23
120	wator	< 100	61.0		1 (referent)	
119	(ug/L year)	100 to 350	223.8	1.20	0.63	2.29
121	(µg/L-year)	> 350	427.7	1.87	1.02	3.42
260		< 25.5	12.8		1 (referent)	
260	water (ug/L)	25.5-47.9	36.7	1.30	0.84	2.00
259	water (µg/L)	47.9-79.0	63.5	1.27	0.82	1.94
259		≥ 79.0	94.6	1.41	0.91	2.17
323		< 60	30.0		1 (referent)	
482	water (µg/L)	60-859	459.5	1.33	0.98	1.79
450		> 859	1258.5	1.42	1.04	1.92
114		< 0	2		1 (referent)	
623	water (ug/L)	0-500	250	1.20	0.60	2.30
576	water (µg/L)	500-1000	750	2.20	1.10	4.30
282		> 1000	1250	2.50	1.20	4.90

3.3

5.3

8.1

13.9

34.1

4.2

7.5

12.4

21.8

5.1

57.0

198.5

0.97

1.03

0.87

1.01

1.18

1.16

1.47

0.86

1.38

1 (referent)

0.73

0.77

0.64

0.74

1 (referent)

0.82

0.77

0.97

1 (referent)

0.49

0.84

1.30

1.38

1.18

1.36

1.69

1.72

2.21

1.51

2.27

Stroke

urine (µg/g

creatinine)

urine (µg/g

creatinine)

water (µg/L)

2.72-3.72

4.75-5.88

8.26-9.18

11.99-16.72

26.11-54.81

< 5.8

5.8-9.7

9.8-15.7

> 15.7

0.1-25

25.1-107

108-864

Study (Year)	Design	Cases	Person or Person-Years	Exposure Media	Concentration Category	Median	RR (95% CI)			
		486	172,202		0.049-0.573	0.435	1	1 (referent)		
Ersboll et al.		657	180,891	(/Т)	0.573-0.760	0.584	1.21	1.07	1.36	
[57] (2018)	ır	475	169,470	water (µg/L)	0.760-1.933	1.174	1.05	0.92	1.19	
		577	173,856		1.933-25.34	2.109	1.17	1.04	1.32	
				CVD ma	arkers					
Pulse blood pressure (SBP-DBP $\geq 55 \text{ mmHg}$))										
		205	2242	-	0.1-8.0	2.8	1	(referent)		
Chan at al		252	2116		8.1-40.8	23.2	1.39	1.14	1.71	
[75] (2007)	CC	232	2187	water (µg/L)	40.9-91.0	63.9	1.21	0.99	1.49	
		227	2181		91.1-176.0	128.1	1.19	0.97	1.45	
		233	2184		176.1-864.0	283.1	1.19	0.97	1.46	
		5	291	water (ug/L)	10-22	15.5	1	(referent)		
Islam et al.	22	10	208		23–32	27.5	3.87	1.22	12.2	
[67] (2012)		10	252	water (µg/L)	33-261	180.0	4.32	1.23	15.11	
		16	243		≥ 262	376.0	7.32	2.18	24.60	
				QT prolor	ngation					
		57	428		0.1–9	2.8	1	(referent)		
Chen et al.	·	63	432	water (ug/L)	9.5–57	30.0	1.10	0.74	1.63	
[85] (2013)	ır	49	423	water (µg/L)	58-144	95.1	0.87	0.57	1.31	
		68	421		145-790	254.5	1.31	0.87	1.96	
Mumford at al		4	103		< 21	10.7	1	(referent)		
[68] (2007)	сс	12	108	water (µg/L)	100-350	199.9	3.83	1.13	12.99	
[00] (2007)		21	102		430-690	568.3	8.85	2.72	28.75	

Table 1. Cont.

CVD: cardiovascular disease; CHD: coronary heart disease. RR: Relative risk or approximation of the relative risk (rate ratio, risk ratio, odds ratio). ir: Risks estimated in the studies as rate ratio (incidence-rate data); ci: Risks estimated in the studies as risk ratio (cumulative incidence data); cc: Risks estimated in the studies as an odds ratio (see details reported by Orsini et al. [65]).

			Comb	CVD Markers						
	CHD (7(25)) ^a	CVD (8(31)) ^a	Stroke (7(25)) ^a	CHD (4(14)) ^a	CVD (2(7)) ^a	Stroke (4(16)) ^a	Carotid Atherosclerosis Disease (3(9)) ^a	Hypertension (8(30)) ^a	Pulse Blood Pressure (2(9)) ^a	QT Prolongation (2(7)) ^a
Log-linear dose-response association model										
1 μg/L ^b	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2 /7	1.213	1.079	1.061	1.176	1.178	1.051	1.370	1.104	1.187	1.363
3 µg/L	(1.070, 1.374)	(1.023, 1.139)	(0.891, 1.262)	(1.083, 1.276)	(1.108, 1.252)	(0.992, 1.114)	(1.175, 1.598)	(1.020, 1.195)	(0.848, 1.662)	(0.770, 2.414)
г /т	1.327	1.118	1.090	1.268	1.272	1.076	1.587	1.156	1.286	1.574
5 µg/L	(1.105, 1.593)	(1.034, 1.210)	(0.844, 1.407)	(1.125, 1.429)	(1.163, 1.391)	(0.989, 1.172)	(1.267, 1.987)	(1.030, 1.298)	(0.785, 2.105)	(0.682, 3.636)
10 /7	1.498	1.174	1.131	1.405	1.411	1.111	1.936	1.231	1.433	1.914
10 µg/L	(1.153, 1.948)	(1.049, 1.313)	(0.784, 1.630)	(1.183, 1.667)	(1.242, 1.603)	(0.984, 1.254)	(1.403, 2.671)	(1.043, 1.452)	(0.707, 2.901)	(0.578, 6.339)
20/I	1.693	1.232	1.173	1.556	1.566	1.146	2.362	1.310	1.597	2.327
20 µg/L	(1.203, 2.380)	(1.064, 1.426)	(0.729, 1.889)	(1.245, 1.944)	(1.325, 1.848)	(0.979, 1.343)	(1.553, 3.590)	(1.057, 1.625)	(0.637, 3.998)	(0.490, 11.052)
F0 /T	1.988	1.313	1.233	1.781	1.796	1.195	3.071	1.423	1.842	3.012
50 µg/L	(1.274, 3.103)	(1.085, 1.589)	(0.662, 2.295)	(1.331, 2.383)	(1.445, 2.230)	(0.973, 1.469)	(1.777, 5.308)	(1.074, 1.885)	(0.555, 6.109)	(0.394, 23.045)
coefficient	0.175	0.070	0.054	0.148	0.150	0.046	0.287	0.090	0.156	0.282
<i>p</i> -value for trend ^c	0.003	0.005	0.510	< 0.001	< 0.001	0.090	< 0.001	0.014	0.320	0.290
I ^{2 d}	79.7%	77.9%	89.0%	6.6%	17.4%	0.0%	17.5%	62.3%	80.4%	91.5%
Cochran's O-statistic	29.54	31.70	54.78	3.21	1.21	2.88	2.43	18.56	5.10	11.7
P-heterogeneity ^e	< 0.001	< 0.001	< 0.001	0.360	0.271	0.409	0.297	0.097	0.024	0.006
0			Non-l	inear dose-respon	se association mo	odel (restricted cubi	c splines)			
1 ug/L ^b	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
- 1-0/	1.163	0.999	1.092	0.985	0.954	1.026	1.225	1.012	1.578	1.070
3 μg/L	(1.060, 1.276)	(0.983, 1.014)	(0.862, 1.382)	(0.811, 1.197)	(0.647, 1.406)	(0.854, 1.232)	(0.783, 1.917)	(0.944, 1.085)	(0.707, 3.523)	(0.772, 1.483)
	1.250	1.001	1.136	0.978	0.933	1.044	1.347	1.018	1.951	1.105
5 µg/L	(1.090, 1.433)	(0.980, 1.023)	(0.807, 1.596)	(0.735, 1.302)	(0.528, 1.648)	(0.815, 1.338)	(0.699, 2.594)	(0.920, 1.128)	(0.601, 6.326)	(0.685, 1.781)
10 /	1.387	1.015	1.192	0.986	0.915	1.081	1.537	1.027	2.601	1.155
10 µg/L	(1.135, 1.695)	(0.986, 1.043)	(0.746, 1.902)	(0.663, 1.468)	(0.410, 2.040)	(0.798, 1.464)	(0.612, 3.863)	(0.888, 1.187)	(0.483, 14.001)	(0.583, 2.288)
20 /	1.557	1.045	1.241	1.124	0.963	1.133	1.800	1.041	3.449	1.229
20 µg/L	(1.182, 2.052)	(1.012, 1.080)	(0.701, 2.195)	(0.720, 1.754)	(0.371, 2.499)	(0.816, 1.574)	(0.605, 5.353)	(0.868, 1.249)	(0.389, 30.605)	(0.504, 2.996)
F0 /T	1.846	1.125	1.295	1.795	1.199	1.220	2.394	1.082	4.642	1.433
50 µg/L	(1.231, 2.769)	(1.077, 1.176)	(0.659, 2.542)	(1.029, 3.131)	(0.439, 3.273)	(0.848, 1.753)	(0.852, 6.728)	(0.877, 1.334)	(0.298, 72.343)	(0.440, 4.667)
<i>p</i> -value for trend ^f	0.006	< 0.001	0.750	0.047	0.078	0.390	< 0.001	0.200	0.150	0.270
I ^{2 d}	69.8%	35.3%	80.0%	41.0%	53.7%	0.0%	0.0%	46.3%	73.1%	72.5%
Cochran's	20 75	01.45	(0.02	10.17	4.22	E / E	0.50	06.07	F 42	7.07
Q-statistic	39.75	21.65	60.02	10.16	4.32	5.65	2.58	26.07	7.43	1.27
P-heterogeneity e	< 0.001	0.086	< 0.001	0.117	0.115	0.460	0.629	0.025	0.024	0.026

Table 2. Pooled relative risks (95% CIs) for different types of cardiovascular disease (CVD) and clinic markers in relation to water arsenic concentrations.

CVD: cardiovascular disease; CHD: coronary heart disease. a: Sum of studies included; the total number of relative risks in each model. b: treat 1 µg/L water arsenic concentration as the referent. c: *p*-value for linear trend from a Wald test of the coefficient for drinking water arsenic concentrations. d: Proportion of total variance due to between-study heterogeneity. e: *p*-value for heterogeneity is chi-square *p*-value of the Q-statistic. f: Non-linear trend *p*-value for the non-linear spline coefficient in a model with arsenic concentrations entered as a restricted cubic spline with knots at 10th, 50th and 90th percentiles of water arsenic concentration.

	N	Iortality Ri	sk			Combined	CVD Markers			
Studies	CHD	CVD	Stroke	CHD	CVD Stroke		Carotid Atherosclerosis Disease	Hypertension	Pulse Blood Pressure	QT Prolongation
Log-linear dose-response association model										
Deviance ^a	19.40	22.58	15.98	13.04	7.06	18.53	2.99	20.27	14.02	4.97
Degrees of freedom ^b	17	22	17	9	4	11	5	21	6	4
<i>p</i> -value ^c	0.306	0.426	0.526	0.161	0.133	0.070	0.702	0.504	0.029	0.291
R ²	0.320	0.258	0.027	0.537	0.798	0.134	0.844	0.230	0.066	0.185
Adjusted R ²	0.280	0.225	-0.031	0.486	0.748	0.056	0.813	0.193	-0.089	-0.019
AIC	0.17	-6.77	6.58	-0.56	1.26	-2.22	3.38	-4.36	4.55	5.58
			Noi	n-linear dose	e-response a	ssociation m	odel (restricted cubic splines)			
Deviance ^a	17.28	22.81	15.39	5.83	3.94	17.61	1.71	12.94	9.16	3.44
Degrees of freedom ^b	16	21	16	8	3	10	4	20	5	3
<i>p</i> -value ^c	0.367	0.354	0.496	0.666	0.267	0.062	0.789	0.880	0.103	0.328
R ²	0.373	0.620	0.035	0.512	0.564	0.097	0.892	0.199	0.292	0.435
Adjusted R ²	0.297	0.584	-0.085	0.390	0.273	-0.084	0.838	0.118	0.008	0.058
AIC	29.95	5.89	23.86	12.34	10.37	16.07	13.75	23.55	12.16	11.43

 Table 3. Goodness-of-fit assessment.

CVD: cardiovascular disease; CHD: coronary heart disease. a: Measure of the total absolute deviation between reported and predicted log-relative risk taking into account the covariance structure of the residuals. b: Degrees of freedom from the deviance statistic. c: *p*-value from test for model specification. AIC: Akaike's information criterion.

We also made the required corrections in Figures 1 and 2 and Supplementary Figure S2, although these are almost identical to the original figures.

Figure 1. Individual study dose-response characteristics for various CVD subtypes or biomarkers. Arsenic concentrations refer to the observed or estimated median arsenic concentrations for the given concentration category. Lines connect the dose-response data for each study and are for illustrative purposes only (CVD: cardiovascular disease; CHD: coronary heart disease).

Figure 2. Pooled log-linear and non-linear relative risks and 95% confidence intervals (CIs) of different CVD endpoints in relation to the estimated drinking water arsenic concentration. Pooled log-linear and non-linear relative risks of CVD endpoints were estimated for drinking water arsenic concentrations with reference to an arsenic concentration of 1 μ g/L. Solid lines (red) correspond to pooled relative risks of non-linear models with their 95% CIs represented as shaded regions (red). Pooled relative risks of non-linear models were represented by long-dash lines (blue) and their 95% CIs were plotted as shaded areas (blue). Log-linear models were estimated with log-transformed estimated drinking water arsenic concentration and non-linear associations were estimated from models with restricted cubic splines of log-transformed water arsenic concentration with knots at the 10th, 50th and 90th percentiles of log-transformed water arsenic (CVD: cardiovascular disease; CHD: coronary heart disease).

Lastly, we note that the corrections to the linear and non-linear dose-response models for combined fatal and non-fatal risks of strokes as a function of drinking water arsenic concentration show the same trends as in the original publication and, in particular, over the relatively low concentration range in the scope of the study, there remains no significant association in the data collated between drinking water As concentration and the combined fatal and non-fatal risks of stroke.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/23/8947/s1, Figure S1: Flow diagram of study selection procedure, Figure S2: Association of CVD endpoints with drinking water arsenic concentrations, Figure S3: Funnel Plots for the analysis of publication bias, Table S1: Epidemiological studies of arsenic (As) exposure and cardiovascular disease (CVD) included in the systematic review, Table S2: Egger's regression test of funnel plot asymmetry, Table S3: Pooled relative risks (95% confidence intervals) for

different CVD types and clinical markers in relation to drinking water arsenic concentrations with the exclusion of studies which do provide drinking water As concentrations directly, Table S4: Pooled relative risks (95% confidence intervals) for different CVD types and CVD markers in relation to drinking water arsenic concentrations lower than 100 ppb.

Funding: LX was funded by the University of Manchester.

Acknowledgments: We would like to express our thanks to Matt Gribbins (Emory University) for drawing this error to our attention.

Conflicts of Interest: The authors declare no conflict of interest

References

- Tsinovoi, C.L.; Xun, P.C.; McClure, L.A.; Carioni, V.M.O.; Brockman, J.D.; Cai, J.W.; Guallar, E.; Cushman, M.; Unverzagt, F.W.; Howard, V.J.; et al. Arsenic exposure in relation to ischemic stroke the reasons for geographic and racial differences in stroke study. *Stroke* 2018, *49*, 19–26. [CrossRef] [PubMed]
- 2. Xu, L.; Mondal, D.; Polya, D.A. Positive association of cardiovascular disease (CVD) with chronic exposure to drinking water Arsenic (As) at concentrations below the WHO provisional guideline value: A systematic review and meta-analysis. *Int. J. Environ Res. Public Health* **2020**, *17*, 2536. [CrossRef]

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).