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TO THE EDITOR 

Microbial invasion of the skin and underlying soft tissues, known as skin and soft tissue 

infections (SSTIs), contribute to considerable burden of disease worldwide (Kaye et al. 2019; 

Lozano et al. 2012). Knowledge about host factors contributing to SSTI risk is important to 

prevent the SSTIs. The genetics of SSTI susceptibility remain largely unknown, and the only 

previously published genome-wide study on SSTIs is a small family-based linkage study that 

did not identify significant linkage to any genes for erysipelas or cellulitis susceptibility 

(Hannula-Jouppi et al. 2013).  

 

A range of cardiometabolic risk factors have been associated with SSTIs (Butler-Laporte et al. 

2020; Kaye et al. 2019; Winter-Jensen et al. 2020). Few studies have used genetic variants as 

instrumental variables (Mendelian randomization [MR]), to assess causality, which may 

reduce bias due to reverse causation and confounding (Davies et al. 2018). Increasing body 

mass index (BMI) has been found to increase the risk of SSTIs in such a framework (Butler-

Laporte et al. 2020; Winter-Jensen et al. 2020), but other cardiometabolic risk factors have to 

our knowledge not been explored.  

 

The aims of this study were to conduct a genome-wide association study (GWAS) on 

susceptibility to SSTIs, explore possible biological pathways through transcriptome-wide 

association analyses, and perform MR analyses to investigate potential causal relationships of 

cardiometabolic risk factors on SSTIs.  

 

We used two independent cohorts, where the UK Biobank served as the discovery cohort in 

the genome-wide association analyses, and the Trøndelag Health Study (the HUNT Study) 

served as the replication cohort. Subjects who had been hospitalized with a primary diagnosis 
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of SSTI served as cases, while those who had not been hospitalized with a primary or 

secondary diagnosis of SSTI were considered controls (Supplementary Material and 

Methods).  

 

Genome-wide association analyses were conducted using SAIGE, with age, sex, genotype 

chip, and ancestry-informative principal components as covariates (Zhou et al. 2018), and 

meta-analyses were carried out using METAL (Supplementary Materials and Methods). 

Associations with p-value <1e-6 and p-value <5e-8 were considered genome-wide suggestive 

and significant, respectively.  

 

We used FUSION to performed transcriptome-wide association analyses by combining 

summary statistics from the genome-wide meta-analysis with linkage disequilibrium 

(European ancestry in 1000 Genomes Project) and reference gene expression panels (GTEx 

v7) to estimate gene expression patterns associated with SSTIs (Gusev et al. 2016). Sun-

exposed skin (lower legs) was the tissue of interest for the transcriptome-wide analyses (8,609 

genes tested), while all 48 general tissues from GTEx v7 were analyzed for the chromosome 

with genome-wide significant hits (10,518 tests). Bonferroni-corrected threshold for genome-

wide significance was p-value <2.6e-6. 

 

Two-sample MR analyses were conducted separately for results from the meta-analysis, UK 

Biobank and HUNT. Genetic instruments for BMI, type 2 diabetes mellitus, low-density 

lipoprotein cholesterol, systolic blood pressure, lifetime smoking, and sedentary lifestyle were 

extracted from relevant published GWASs (Supplementary Table 1). The TwoSampleMR R 

package (version 0.5.0) (Hemani et al. 2018) was used to carry out inverse-variance weighted 
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MR analyses (main analyses), along with statistical test for heterogeneity, simple median, 

weighted median and MR Egger (sensitivity analyses).  

 

In both UK Biobank and HUNT, cases, compared with controls, were at baseline older, had 

higher BMI and systolic blood pressure, and were more likely to be male, ever-smoker and 

self-reported diabetic (Supplementary Table 2).  

 

The genome-wide association analysis included 6,107 cases and 399,239 controls from UK 

Biobank, and 1,657 cases and 67,522 controls from HUNT. UK Biobank yielded seven 

suggestive loci (Supplementary Table 3 and Supplementary Figure 1), of which one was 

replicated in HUNT: rs3749748 in the LINC01184/SLC12A2-gene region on chromosome 5 

(Supplementary Figures 2 and 3). In the meta-analysis of 7,764 cases and 466,761 controls, 

only the locus in LINC01184/SLC12A2 reached genome-wide significance (Figure 1), while 

two additional loci were close to genome-wide significance: PSMA1 on chromosome 11 and 

GAN on chromosome 16 (Supplementary Table 3). There was no indication of genomic 

inflation (Figure 1 and Supplementary Figures 1 and 2).  

 

LINC01184 is part of the lincRNA class of genes that does not encode for proteins, but have 

still been found to modulate inflammation and infection risk (Atianand et al. 2016; Carpenter 

et al. 2013). SLC12A2 encodes for the protein NKCC1 which regulates transport of chloride, 

potassium and sodium across cell membranes, and is key in modulating ion movement across 

the epithelium, volume of cells, and anti-microbial activity (Matthay and Su 2007; Yang et al. 

2020).  
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In the transcriptome-wide association analysis of skin on the lower legs, the only gene that 

was statistically significantly associated with SSTIs was LINC01184 (Supplementary Figure 

4). A reduced expression of LINC01184 was associated with increased risk of SSTIs. The 

same association was observed in all tissues, but less pronounced in the brain (Supplementary 

Figure 4). 

 

Increase in genetically predicted BMI, systolic blood pressure and smoking increased the risk 

of SSTIs, while increasing low-density lipoprotein cholesterol was associated with a reduced 

risk of SSTIs (Figure 2). Sensitivity analyses supported the findings from the inverse-variance 

weighted analyses (Supplementary Table 4). 

 

This is to our knowledge the first GWAS published on SSTIs to date, with a large number of 

cases and controls. We were able to identify a locus – LINC01184/SLC12A2 – robustly 

associated with SSTIs in the discovery cohort and the independent replication cohort. A 

limitation of our study is that we did not have the power to identify more than one genome-

wide significant locus, which in part may be due to non-differential misclassification of the 

outcome, and we thus encourage replication with meta-analysis in independent cohorts. Of 

note, while the minor allele frequency of rs3749748 in North-Western European populations 

is around 23%, it is only 4% in African-American populations (Karczewski et al. 2020). It is 

therefore important to evaluate populations of different ancestries than the one currently 

considered.  

 

In conclusion, we have identified genetic variation in LINC01184/SLC12A2 to be strongly 

associated with risk of SSTIs. Interventions to reduce smoking, hypertension, overweight and 

obesity in the population will likely reduce the disease burden of SSTIs.   
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FIGURE TITLES AND LEGENDS 

Figure 1. Manhattan plot of results for the meta-analysis. 

Legend: Axes display the -log10 transformed p-value by chromosomal position. The blue line 

indicates genome-wide suggestive associations (p-value <1e-6) and the red line genome-wide 

significant associations (p-value <5e-8). Genome-wide significant loci (+/- 500kb of lead 

variant) are highlighted in green. Top right corner: Quantile-quantile plot. Axes display the 

observed (y-axis) and expected (x-axis) -log10 transformed p-value. The black dots represent 

observed p-values while the red line represents expected p-values under the null distribution. 

Genomic inflation factor (λ) = 1.01. 

 

Figure 2. Mendelian randomization analyses of cardiometabolic risk factors on risk of skin 

and soft tissue infection. 

Legend: Forest plot of the two-sample inverse-variance weighted Mendelian randomization 

analyses of cardiometabolic risk factors identified as genetically correlated with skin and soft 

tissue infection. Each risk factor was evaluated separately using results from the meta-

analysis, UK Biobank and HUNT, and the corresponding risk factors were grouped by color. 

The x-axis represents the increased odds ratio per standard deviation increase of the 

genetically predicted risk factor (per unit increase in log odds ratio for genetically proxied 

type 2 diabetes mellitus liability). BMI, body mass index; LDL, low-density lipoprotein. 
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DESCRIPTION OF SUPPLEMENTAL DATA 

Supplemental Data include four figures, four tables, and additional information on material 

and methods. 

 

SUPPLEMENTARY MATERIAL LEGENDS 

Supplementary Figure 1. Manhattan plot of results for the discovery stage (UK Biobank). 

Legend: Axes display the -log10 transformed p-value by chromosomal position. The blue line 

indicates genome-wide suggestive associations (p-value <1e-6) and the red line genome-wide 

significant associations (p-value <5e-8). Genome-wide suggestive loci (+/- 500kb of lead 

variant) are highlighted in green. Top right corner: Quantile-quantile plot. Axes display the 

observed (y-axis) and expected (x-axis) -log10 transformed p-value. The black dots represent 

observed p-values while the red line represents expected p-values under the null distribution. 

Genomic inflation factor (λ) = 1.02.  

 

Supplementary Figure 2. Manhattan plot of results for the replication stage (HUNT). 

Legend: Axes display the -log10 transformed p-value by chromosomal position. The blue line 

indicates genome-wide suggestive associations (p-value <1e-6) and the red line genome-wide 

significant associations (p-value <5e-8). Genome-wide suggestive loci from the discovery 

stage (+/- 500kb of lead variant) are highlighted in green. Top right corner: Quantile-quantile 

plot. Axes display the observed (y-axis) and expected (x-axis) -log10 transformed p-value. The 

black dots represent observed p-values while the red line represents expected p-values under 

the null distribution. Genomic inflation factor (λ) = 1.00. 

 

Supplementary Figure 3. Regional plot of association results of the discovery stage genome-

wide significant locus that was replicated. 
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Legend: Associations between genetic variants and skin and soft tissue infection from the 

meta-analysis are plotted by position (x-axis) and -log10 transformed p-values (left y-axis). 

rs3749748 served as sentinel variant, while the remaining variants are color coded in terms of 

the linkage disequilibrium (r2) to the sentinel variant. Estimated recombination rates are 

plotted as light blue lines (right y-axis). The European population from 1000 Genomes 

Project, November 2014 release, was used as reference, on genome build hg19. 

 

Supplementary Figure 4. Manhattan plot of transcriptome-wide association analysis. 

Legend: Each dot represents the association between predicted gene expression in skin on 

lower legs with risk of SSTIs. The red line indicate statistically significant associations (p-

value <2.6e-6). Top right corner: The transcriptome association statistic for LINC01184 in all 

48 tissues from GTEx v7. 
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SUPPLEMENTARY MATERIAL AND METHODS 
Material 
UK Biobank 
Details about the UK Biobank have previously been described (Bycroft et al. 2018). In brief, the cohort consists 
of 503,325 subjects enrolled between 2006 and 2010 throughout the United Kingdom. Age at baseline was 
between 38 and 73 years, and 94% were of self-reported European ancestry. At baseline, genome-wide 
genotyping was done on 488,377 individuals, including 84% of self-reported white-British ancestry with 
European genetic ethnicity. Information on self-reported health and lifestyle was collected, along with 
measurements such as height and weight. Inpatient hospital data on all participants was available through 
electronic record linkage. 
 
HUNT 
The HUNT Study is a series of surveys conducted in the Nord-Trøndelag region in Norway (~130,000 
inhabitants) between 1984 and 2019 on subjects 20 years and older (Krokstad et al. 2013). We used data from 
HUNT2 (1995-1997) and HUNT3 (2006-2008), in which 78,973 subjects representative of the adult Norwegian 
population participated (Krokstad et al. 2013). Baseline characteristics were collected at study enrollment, and 
selected measurements were made including height and weight. Information on all hospitalizations in the county 
and to the regional tertiary care hospital were linked to the study subjects. Through linkage with the Norwegian 
population registry, we retrieved data on date of emigration out of the study region and date of death.  
 
Phenotype 
Cases and controls were defined the same way in UK Biobank and HUNT. The following International 
Classification of Diseases (ICD)-9 and ICD-10 codes were considered as SSTI codes: 035 (erysipelas; ICD-9), 
729.4 (fasciitis, unspecified; ICD-9), A46 (erysipelas; ICD-10), L03 (cellulitis and acute lymphangitis; ICD-10), 
and M72.6 (necrotizing fasciitis; ICD-10). These codes are used primarily for bacterial infections, and non-
bacterial infections of the skin have other specific codes not considered. In our main definition of SSTI, a case 
had been hospitalized with an SSTI as primary diagnosis. In sensitivity analysis, we included secondary 
diagnoses in the definition of SSTI (i.e. SSTIs not primary cause of hospitalization).  
 
Those who had not been hospitalized with an SSTI (primary or secondary diagnosis) served as controls. 
 
Genotyping 
UK Biobank 
The Affymetrix UK BiLEVE Axiom array was used to genotype the initial 50,000 participants and the 
Affymetrix UK Biobank Axiom® array was used to genotype the rest of the subjects. Directly genotyped 
variants were pre-phased using SHAPEIT3 (O’Connell et al. 2016) and imputed using Impute4 and the UK10K 
(Walter et al. 2015), Haplotype Reference Consortium (Walter et al. 2015), and 1000 Genomes Phase 3 (Auton 
et al. 2015) reference panels (version 3 of the imputed data). Exclusions were made for variants with imputation 
score R2 <0.3. More detail is contained in a previous publication (Bycroft et al. 2018). 
 
HUNT 
As previously described, three different Illumina HumanCoreExome arrays were used to genotype the study 
participants (HumanCoreExome12 v1.0, HumanCoreExome12 v1.1, and UM HUNT Biobank v1.0) (Ferreira et 
al. 2017). Samples with a call rate <99%, with large chromosomal copy number variants, contamination >2.5% 
as estimated with BAF Regress (Jun et al. 2012), with genotypic and phenotypic sex discordance, and not of 
European ancestry were excluded, leaving 69,422 genotyped subjects. Genetic variants out of Hardy-Weinberg 
equilibrium (p-value <0.0001) or with a call rate <99% were excluded. Imputation was done using Minimac3 of 
2,201 whole-genome reference sequences from HUNT and HRC v1.1, resulting in 24.9 million SNPs (R2>0.3). 
Principal components were calculated by use of TRACE (version 1.03), with 938 individuals from the Human 
Genome Diversity Project serving as reference (Wang et al. 2015; Wang et al. 2014). 
 
Genome-wide association analyses 
UK Biobank 
Genome-wide association analysis was performed in SAIGE (version 0.35.8.3) using a linear mixed model 
which accounts for cryptic relatedness and imbalance in the proportion of cases and controls (Zhou et al. 2018). 
We included birthyear, sex, genotype chip, and the first six ancestry-informative principal components as 
covariates. We used SAIGE with same settings to analyze the X chromosome, coding males as diploid. Variants 
with MAF >0.5% were included in the analyses, and dosages were used for imputed variants. 
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Genome-wide association tests were carried out by use of SAIGE (version 0.29.4) on autosomal chromosomes 
(Zhou et al. 2018), while BOLT-LMM (version 2.3.4) was used in the analysis of the X chromosome, coding 
males as diploid (Loh et al. 2015). The beta-coefficients from BOLT-LMM were transformed using the formula: 
log OR = β / (μ * (1 - μ)), where μ = case fraction. The standard errors from BOLT-LMM were transformed by: 
SEtransformed = SEoriginal / (μ * (1 - μ)). Age, sex, genotype batch, and the five first ancestry-informative principal 
components were included as covariates. Variants with MAF >0.5% were included in the analyses, and dosages 
were used for imputed variants. 
 
Meta-analysis 
We carried out meta-analysis using METAL (version 2011-03-25), with the use of effect size estimates and 
standard errors as weights, and adjusting for residual population stratification and relatedness through genomic 
control correction (Willer et al. 2010). A total of 9,211,777 SNPs that were present in both cohorts were included 
in the meta-analysis. 
 
Ethical approval 
The Regional Committee for Medical Research, Health Region IV, in Norway (REK) has approved the HUNT 
study, and this project is regulated in conjunction with The Norwegian Social Science Data Services (NSD). The 
UK Biobank study has ethical approval from the North West Multi-centre Research Ethics Committee (MREC). 
Approval for individual projects is covered by the Research Tissue Bank (RTB). 
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Supplementary Table 1. Genetic instruments for cardiometabolic exposures. 

Trait Sample size 
Population 

ancestry 
Number of 

variants 
Variance explained 

(%) Reference 

Body mass index 681,275 European 595 6.0 
(Yengo et al. 

2018) 

Type-2 diabetes mellitus 
74,124 cases and 824,006 

controls 
European 202 16.3 

(Mahajan et al. 
2018) 

Low-density lipoprotein 
cholesterol 

188,577 European 80 7.9 
(Willer et al. 

2013) 

Systolic blood pressure 318,417 European 192 2.9 
(Carter et al. 

2019) 

Lifetime smoking index 462,690 European 126 0.4 
(Wootton et al. 

2019) 

Sedentary lifestyle 91,105 European 4 0.08 
(Doherty et al. 

2018) 

Only independent SNPs (R2<0.001) with p-value <5e-8 in these genome-wide association studies were included. 
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Supplementary Table 2. Background characteristics at entry in the UK Biobank and the HUNT Study. 

UK Biobank 
 

HUNT 

  

Cases  

(n = 6,107) 

Controls 

(n = 399,239) 

All 

(n = 405,346) 
  

Cases 

(n = 1,657) 

Controls 

(n = 67,522) 

All 

(n = 69,179) 

Female sex 2,535 (41.5) 216,956 (54.3) 219,491 (54.1) 
 

825 (49.8) 35,829 (53.1) 36,654 (53.0) 

Age, years 60 (53 - 65) 58 (51 - 63) 58 (51 - 63) 
 

55 (43 - 68) 46 (34 - 60) 46 (34 - 60) 

Ever-smoker 3,895 (63.8) 240,412 (60.2) 244,307 (60.3) 
 

923 (57.4) 37,518 (56.6) 38,441 (56.6) 

Sedentary lifestyle* - - (7.1) 
 

192 (13.4) 4,180 (7.0) 4,372 (7.1) 

Diabetes (self-reported) 115 (1.9) 2,860 (0.7) 2,975 (0.7) 
 

102 (6.2) 2,003 (3.0) 2,105 (3.1) 

Body mass index, kg/m2 30.6 (6.6) 27.3 (4,7) 27.4 (4,7) 
 

28.8 (5.2) 26.3 (4.1) 26.4 (4.2) 

LDL cholesterol, mmol/L 3.4 (0.9) 3.6 (0.9) 3.6 (0.9) 
 

3.8 (1.1) 3.6 (1.1) 3.6 (1.1) 

Systolic blood pressure, mmHg 141.1  (19.1) 138.2 (18.6) 138.2 (18.6)   142.1 (22.7) 134.9 (20.9) 135.0 (21.0) 

Data are presented a mean (standard deviation), median (25th and 75th centile), or number (%). LDL, low-density lipoprotein. *Sedentary lifestyle: The 

proportion with sedentary lifestyle among all subjects in UK Biobank was estimated from "None of the above" from data field 6164 (Types of physical activity 

in the last 4 weeks), as individual level data was unavailable; in HUNT, sedentary lifestyle was defined as self-reported average of zero hours of low or 

vigorous physical activity per week in the last year. 
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Supplementary Table 3. Genetic variants with p-value <1e-6 in the discovery cohort or <1e-7 in the meta-analysis on risk of skin and soft tissue infections 

Discovery (UK Biobank) Replication (HUNT) Meta-analysis 

Variant name Chr Pos (hg19) Closest gene EA/OA EAF OR (95% CI) p-value   EAF OR (95% CI) p-value   OR (95% CI) p-value 

rs72989928 2 210,196,618 MAP2 G/T 0.017 0.69 (0.60 - 0.79) 3.5e-7 0.014 0.95 (0.68 - 1.33) 7.7e-1 0.72 (0.63 - 0.83) 2.0e-6 

rs62267025 3 87,726,132 AC108749.1 C/T 0.012 1.60 (1.33 - 1.92) 6.0e-7 0.010 0.92 (0.63 - 1.35) 6.6e-1 1.44 (1.22 - 1.70) 2.0e-5 

rs150468829 5 7,081,850 LINC02196 A/G 0.009 1.67 (1.36 - 2.05) 9.7e-7 0.009 0.98 (0.67 - 1.42) 9.0e-1 1.47 (1.23 - 1.77) 2.7e-5 

rs3749748 5 127,350,549 LINC01184 T/C 0.248 1.19 (1.14 - 1.24) 7.6e-16 0.231 1.15 (1.06 - 1.25) 6.3e-4 1.18 (1.14 - 1.23) 4.4e-18 

rs115740542 6 26,123,502 H2BC4 C/T 0.075 1.23 (1.14 - 1.31) 7.8e-9 0.091 1.01 (0.90 - 1.14) 8.4e-1 1.17 (1.10 - 1.24) 4.2e-7 

rs2007361 11 14,662,722 PSMA1 G/A 0.342 0.93 (0.90 - 0.97) 4.0e-4  0.365 0.83 (0.77 - 0.89) 4.7e-7  0.91 (0.88 - 0.94) 5.1e-8 

rs78625038 16 81,402,279 GAN CT/C 0.006 1.98 (1.53 - 2.56) 2.2e-7 0.006 1.56 (1.00 - 2.41) 4.9e-2 1.86 (1.48 - 2.32) 5.9e-8 

rs5910356 X 117,606,177 WDR44 T/C 0.058 0.84 (0.79 - 0.90) 5.6e-7   0.055 1.04 (0.91 - 1.17) 5.9e-1   0.88 (0.83 - 0.94) 8.1e-5 

Suggestive variants (p-value <1e-6) in the discovery cohort that replicate in the HUNT cohort (p-value < 7.1e-3 and beta coefficient in the same direction) are presented in bold. Chr, chromosome; 

CI, confidence interval; EA, effect allele; EAF, effect allele frequency; OA, other allele; OR, odds ratio; Pos, chromosome position.  

 

 

Jo
urn

al 
Pre-

pro
of



Supplementary Table 4. Mendelian randomization sensitivity analyses of cardiometabolic risk factors on risk of skin and soft tissue infection. 

UK Biobank HUNT 
 

Meta-analysis 

OR (95% CI) or Q p-value 
Number  
of SNPs   OR (95% CI) or Q p-value 

Number  
of SNPs 

 

OR (95% CI) or Q p-value 
Number  
of SNPs 

Lifetime smoking     

     IVW 2.51 (1.75 - 3.61) 6.38e-7 126  2.61 (1.31 - 5.17) 6.11e-3 125  2.53 (1.79 - 3.56) 1.16e-7 125 

     Heterogeneity IVW 135.53 2.45e-1 126  125.35 4.49e-1 125  148.49 6.62e-2 125 

     Simple median 2.45 (1.46 - 4.12) 7.31e-4 126  2.92 (1.03 - 8.28) 4.44e-2 125  2.67 (1.67 - 4.28) 4.03e-5 125 

     Weighted median 2.36 (1.38 - 4.03) 1.69e-3 126  3.16 (1.18 - 8.42) 2.17e-2 125  2.17 (1.34 - 3.52) 1.71e-3 125 

     MR Egger 1.52 (0.36 - 6.44) 5.71e-1 126 7.17 (0.45 - 113.72) 1.65e-1 125  2.06 (0.52 - 8.06) 3.04e-1 125 

     MR Egger intercept 1.01 (0.99 - 1.02) 4.81e-1 126  0.99 (0.97 - 1.02) 4.60e-1 125  1.00 (0.99 - 1.02) 7.61e-1 125 

Sedentary lifestyle     

     IVW 0.98 (0.31 - 3.11) 9.75e-1 4  1.02 (0.20 - 5.13) 9.82e-1 4  1.09 (0.33 - 2.96) 9.83e-1 4 

     Heterogeneity IVW 9.30 2.55e-2 4  4.89 1.80e-1 4    4 

     Simple median 0.67 (0.29 - 1.52) 3.34e-1 4  1.00 (0.21 - 4.81) 9.99e-1 4  0.86 (0.41 - 1.80) 6.93e-1 4 

     Weighted median 0.65 (0.27 - 1.54) 3.29e-1 4  1.01 (0.22 - 4.66) 9.89e-1 4  0.85 (0.41 - 1.78) 6.72e-1 4 

     MR Egger N/A N/A N/A N/A N/A N/A  N/A N/A N/A 

     MR Egger intercept N/A N/A N/A  N/A N/A N/A  N/A N/A N/A 

Systolic blood pressure     

     IVW 1.23 (1.06 - 1.43) 5.84e-3 192  1.25 (0.91 - 1.72) 1.68e-1 187  1.24 (1.08 - 1.42) 2.05e-3 187 

     Heterogeneity IVW 182.96 6.49e-1 192  217.98 5.42e-2 187  185.37 4.99e-1 187 

     Simple median 1.43 (1.14 - 1.79) 1.70e-3 192  1.14 (0.74 - 1.76) 5.61e-1 187  1.21 (1.00 - 1.47) 4.78e-2 187 

     Weighted median 1.27 (1.01 - 1.60) 3.82e-2 192  1.31 (0.82 - 2.09) 2.60e-1 187  1.10 (0.90 - 1.35) 3.34e-1 187 

     MR Egger 0.76 (0.47 - 1.21) 2.45e-1 192 2.52 (0.93 - 6.87) 7.19e-2 187  0.99 (0.65 - 1.52) 9.77e-1 187 

     MR Egger intercept 1.01 (1.00 - 1.02) 3.23e-2 192  0.99 (0.97 - 1.01) 1.50e-1 187  1.00 (1.00 - 1.01) 2.87e-1 187 

Continued on next page 
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Supplementary Table 4. Continued 

Low-density lipoprotein cholesterol        
    

     IVW 0.92 (0.84 - 1.01) 9.05e-2 80  0.90 (0.78 - 1.05) 2.00e-1 78  0.92 (0.85 - 0.99) 2.14e-2 78 

     Heterogeneity IVW 112.71 7.65e-3 80  48.79 9.95e-1 78  83.58 2.85e-1 78 

     Simple median 0.89 (0.77 - 1.03) 1.17e-1 80  0.99 (0.77 - 1.28) 9.46e-1 78  0.87 (0.77 - 0.99) 3.05e-2 78 

     Weighted median 0.90 (0.79 - 1.01) 7.64e-2 80  0.98 (0.78 - 1.25) 8.95e-1 78  0.91 (0.82 - 1.01) 8.14e-2 78 

     MR Egger 0.89 (0.78 - 1.02) 1.01e-1 80  0.89 (0.71 - 1.12) 3.13e-1 78  0.89 (0.80 - 0.99) 3.81e.2 78 

     MR Egger intercept 1.00 (0.99 - 1.01) 4.88e-1 80  1.00 (0.99 - 1.02) 8.38e-1 78  1.00 (1.00 - 1.01) 4.58e-1 78 

Type 2 diabetes mellitus     

     IVW 1.03 (0.98 - 1.09) 1.81e-1 199  1.05 (0.96 - 1.16) 2.88e-1 195  1.04 (0.99 - 1.09) 1.56e-1 195 

     Heterogeneity IVW 243.51 1.93e-2 199  216.12 1.32e-1 195  263.37 6.75e-4 195 

     Simple median 1.05 (0.97 - 1.14) 1.99e-1 199  1.07 (0.92 - 1.23) 3.85e-1 195  1.09 (1.02 - 1.17) 1.47e-2 195 

     Weighted median 0.96 (0.89 - 1.04) 3.43e-1 199  0.97 (0.81 - 1.16) 7.39e-1 195  0.97 (0.90 - 1.04) 3.35e-1 195 

     MR Egger 0.90 (0.81 - 1.00) 4.85e-2 199 1.05 (0.85 - 1.29) 6.54e-1 195  0.92 (0.83 - 1.02) 1.26e-1 195 

     MR Egger intercept 1.01 (1.00 - 1.02) 3.61e-3 199  1.00 (0.99 - 1.01) 9.64e-1 195  1.01 (1.00 - 1.02) 1.38e-2 195 

Body mass index     

     IVW 1.86 (1.62 - 2.15) 1.06e-17 594  1.68 (1.29 - 2.19) 1.36e-4 580  1.86 (1.64 - 2.12) 3.22e-21 580 

     Heterogeneity IVW 658.06 3.26e-2 594  532.31 9.18e-1 580  641.16 3.72e-2 580 

     Simple median 1.91 (1.56 - 2.34) 6.17e-10 594  1.62 (1.11 - 2.37) 1.28e-2 580  1.92 (1.60 - 2.31) 2.29e-12 580 

     Weighted median 1.63 (1.33 - 2.00) 2.06e-6 594  1.53 (1.02 - 2.30) 4.03e-2 580  1.83 (1.51 - 2.21) 7.05e-10 580 

     MR Egger 1.70 (0.95 - 3.04) 7.38e-2 594   1.02 (0.34 - 3.05) 9.78e-1 580  1.41 (0.83 - 2.41) 2.03e-1 580 

     MR Egger intercept 1.00 (0.99 - 1.01) 7.50e-1 594  1.01 (0.99 - 1.02) 3.55e-1 580  1.00 (1.00 - 1.01) 2.96e-1 580 

The effect estimates are presented as odds ratio per standard deviation increase of the genetically predicted risk factor (per unit increase in log 
odds ratio for genetically proxied type 2 diabetes mellitus liability). For the heterogeneity test of the IVW analysis, the Q-statistic along with its p-
value are presented. IVW, inverse-variance weighted. 
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