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#Appendix 1.

Gamma-aminobutyric acid (GABA) and glutamate are the most abundant amino acid neurotransmitters in the brain. GABA, an in-

hibitory neurotransmitter, is synthesized by glutamic acid decarboxylase (GAD). Its predominant isoform GAD67, contributes up

to �90% of base-level GABA in the CNS, and is encoded by the GAD1 gene. Disruption of GAD1 results in an imbalance of in-

hibitory and excitatory neurotransmitters, and as Gad1–/– mice die neonatally of severe cleft palate, it has not been possible to de-

termine any potential neurological dysfunction. Furthermore, little is known about the consequence of GAD1 disruption in

humans. Here we present six affected individuals from six unrelated families, carrying bi-allelic GAD1 variants, presenting with de-

velopmental and epileptic encephalopathy, characterized by early-infantile onset epilepsy and hypotonia with additional variable

non-CNS manifestations such as skeletal abnormalities, dysmorphic features and cleft palate. Our findings highlight an important

role for GAD1 in seizure induction, neuronal and extraneuronal development, and introduce GAD1 as a new gene associated with

developmental and epileptic encephalopathy.
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Introduction
The neurotransmitter c-aminobutyric acid (GABA) is one of

the main inhibitory neurotransmitters deriving from glutam-

ate (Cooper et al., 1996). It plays a critical signalling role in

the nervous system and also in a number of non-neuronal

cell types. The enzyme responsible for the conversion of glu-

tamate into GABA is glutamate decarboxylase (GAD), and

occurs in two isoforms GAD65 and GAD67, depending on

its molecular weight (Kaufman et al., 1991). These isoforms

are products of two different genes, GAD1 (encoding a 67

kDa molecular weight protein, GAD67) and GAD2 (encod-

ing a 65 kDa molecular weight protein, GAD65). GAD67 is

constitutively active and produces 490% of the base level

GABA in the CNS, whilst GAD65 is transiently activated

(Asada et al., 1997).

Animal studies have also shown a distinct role for

GAD65 and GAD67. Gd65–/– mice are viable but show a

higher susceptibility to seizure induction despite normal

GABA levels (Asada et al., 1996), whereas Gad67–/– mice

are characterized by neonatal death, severe cleft plate and

respiratory failure. GAD activity and GABA concentration

are also drastically reduced in Gad67–/– mice (Asada

et al., 1997).

The severity of the Gad67–/– phenotype in animal models

might suggest severe phenotypical manifestions in humans,

yet there have been few reported families with GAD1 muta-

tions (Lynex et al., 2004; Saito et al., 2010; Curley et al.,

2011; Ruzicka et al., 2015; Magri et al., 2018). Previous

reports have described seemingly unparalleled phenotypes,

which include schizophrenia, autism spectrum disease and

cerebral palsy, and functional studies are missing to confirm

the pathogenicity of these reported mutations.

Here we report a series of six affected individuals with dis-

tinct phenotypical features from six unrelated families with

bi-allelic mutations in the GAD1 gene (three carrying

homozygous missense mutations, one carrying a homozy-

gous frameshift variant, two compound heterozygous var-

iants, and one harbouring a homozygus stop gain variant).

All affected individuals presented with seizures, strongly

impaired neurocognitive development, and reduced muscle

tone of variable severity. Interestingly only one presented

with cleft palate, which has been suggested to be one of the

key features in the GAD1 animal models.

Material and methods

Patients and genetic analysis

Six patients from six unrelated families of Persian (Family

A), Pakistani (Family B), African American (Family C),

Sudanese (Family D), Egyptian (Family E) and Turkish an-

cestry (Family F) were identified through GeneMatcher

(Sobreira et al., 2015) and enrolled in this study. The study

was conducted according to the Declaration of Helsinki and

with the approval of the institutional review boards of

University College of London and participating centres.

Genetic testing through whole exome sequencing (WES) was

carried out in different research centres after informed con-

sent was obtained from the parents or legal guardians of the

studied subjects. Genomic DNA was extracted from periph-

eral blood obtained from the probands, parents, and un-

affected siblings (when available). Exome sequencing and

data analysis was performed as follows: Families A, B and D

in the according centres as previously described (Monies

et al., 2019; Dias et al., 2019), Family C through GeneDx

(Retterer et al., 2016), and Families E and F at Centogene

(Bauer et al., 2018). Potential candidate causal variants were

subsequently confirmed by independent bi-directional Sanger

sequencing. Detailed information is provided in the

Supplementary material.
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Data availability

The data that support the findings of this report are avail-

able from the corresponding author, upon reasonable

request.

Results

Clinical manifestation

Four of the affected individuals were born from consanguin-

eous parents (first or second cousins), and all were born at

term following a normal pregnancy. A key clinical feature

common to all affected individuals was early onset seizures

(from 2 to 6 months), predominantly focal motor seizures

with and without impaired awareness (two with additional

epileptic spasms, four with focal non-motor seizures, and

five with bilateral motor seizures). Seizures were pharmaco-

logically controlled in three of six affected individuals, with

three reported as drug-resistant. Drug regimens differed

across the individuals. EEG at seizure onset showed a burst

suppression pattern in two individuals, diffuse slowing with

multifocal as well as generalized sharp waves in two, and

hypsarrhythmia in two. Follow-up EEGs showed diffuse

slowing of background activity or persistent epileptic activity

(two of six). Cranial MRI was normal in all but two individ-

uals, one showing slight ventricular enlargement and one

moderate global atrophy.

The second common clinical feature was severe develop-

mental delay. Most patients did not achieve any speech or

non-verbal communication, only one was reported to have

developed simple speech and basic perceptive language skills.

This individual has remained seizure-free under medication.

Of the more severely affected individuals, despite remaining

seizure-free following pharmacological intervention, they still

failed to accelerate in their intellectual development.

The third key feature we observed was a reduced muscle

strength (five of six individuals) of varying severity ranging

from slight muscle tone (one of five) to limited head control,

inability to sit or crawl (four of six) and nasogastric tube de-

pendence, due to dysphagia (two of six). While slight dys-

morphic facial features were seen in four of six individuals

(Table 1), only one presented with a cleft palate.

Other features that were observed without clear common

elements included hirsutism, kidney stones, urogenital mal-

formations, diastasis recti, reduced head circumference, cli-

nodactyly, short arms, arthrogryposis of the lower limbs and

congenital hip dislocation. Metabolic workups did not show

any abnormalities. A detailed clinical summary of all

affected individuals can be found in Table 1 along with

images of key features and family pedigrees in Fig. 1.

Genetic findings

Variants were prioritized in each family based on allele fre-

quency 50.01%, predicted impact on protein function, and

biological consistency. Potentially causal bi-allelic variants in

GAD1 were identified in all affected individuals. The segre-

gation of the variants with the clinical phenotype was con-

firmed by Sanger sequencing, which showed a recessive

mode of inheritance. Detailed genetic results are provided in

Table 2. All affected individuals carried ultrarare GAD1 var-

iants, which were predicted to result in impaired protein

function. Homozygous variants were identified in five fami-

lies (Families A, B, D, E and F), whereas compound hetero-

zygous variants were found in Family C (Table 2).

The affected proband from Family A carried a homozy-

gous c.1691A4G, p.(Asn564Ser) variant, which is reported

only once in the heterozygous state in gnomAD. This variant

has a combined annotation dependent depletion (CADD)

score of 26.1 and is predicted to be pathogenic by several

bioinformatic prediction tools, including SIFT (score

0.9125), MutationTaster, and PolyPhen-2 (score 1)

(Table 2). The proband from Family B harboured a homozy-

gous c.971T4G, p.(Phe324Cys) variant, which causes the

substitution of a phenylalanine residue at position 324 with

cysteine. This position is not strictly conserved in other spe-

cies, where leucine is found in place of phenylalanine.

However, both phenylalanine and leucine belong to the class

of the amino acids with long hydrophobic chains (Fig. 2A)

and share several chemical features. This variant has been

seen in the heterozygous state in gnomAD with a minor al-

lele frequency of 0.00000796. It has a CADD score of 28

and is predicted damaging by all the prediction tools used

(scores of 0.9125 and 0.978 for SIFT and PolyPhen-2, re-

spectively). The proband from Family D carried a homozy-

gous c.1040C4T, p.(Thr347Met) variant, which was

reported twice in the heterozygous state in the gnomAD

database. It was predicted damaging by both SIFT and

PolyPhen-2 with high scores (0.9125 and 1, respectively).

The CADD score for this variant was 29.1. Further in silico
analysis predicted a reduction in protein stability for

p.(Phe324Cys) and p.(Asn564Ser), in association with a

break in H-bonds in the pyridoxal 50-phosphate (PLP) bind-

ing domain for p.(Thr347Met). Both these changes might re-

sult in an impairment of the protein function due to the

abnormal degradation or the decreased binding activity to-

wards PLP, leading to a likely loss-of-function effect (Fig. 2B

and Supplementary Table 1). In Family E, a homozygous

stop gain variant c.87C4G, p.(Tyr29Ter) was identified.

This variant is absent in all the queried population datasets.

It is predicted damaging by SIFT (score not available) and

disease-causing by Mutation Taster, with a CADD score of

35. This null variant likely causes a nonsense-mediated

mRNA decay (NMD), leading to a complete loss-of-func-

tion. The proband from Family F carries a homozygous

c.568delC p.(Gln190SerfsTer11) variant, which is absent in

gnomAD and other population datasets queried. It is pre-

dicted damaging by MutationTaster (score 1) and classified

as pathogenic according to the ACMG guidelines. Family C

was the only family in which heterozygous variants were

found: c.1591C4T, p.(Arg531*) and c.670delC,

p.(Leu224Serfs*5). This individual’s mother was a carrier

for c.670delC; however, the individual’s father was not
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available for genetic testing. The c.1591C4T, p.(Arg531*)

variant results in a stop gain with a very high likely impact

on protein function, as highlighted by a CADD score of 43.

This is only reported in heterozygous state in the gnomAD

database. Similarly, the frameshift variant c.670delC,

p.(Leu224Serfs*5) is predicted to be disease-causing by

MutationTaster and affects a very conserved residue, with a

GERP score of 6.17. The null variants identified in Families

B, E, and F may cause a premature termination of the tran-

script leading to a truncated protein or, alternatively,

affected transcripts might be target of NMD.

Discussion
In humans, GAD1 encodes a 67-kDa protein, GAD67,

which is the major contributor to GABA production in the

CNS. As the major embryonic GAD isoform, it also plays a

pivotal role in synaptogenesis and neuronal development

(Asada et al., 1997; Soghomonian and Martin, 1998; Sgadò

et al., 2011).

The 594 amino acid protein GAD67 is composed of a N-

terminal domain involved in the generation of GAD65–

GAD67 heterodimers and subcellular targeting, a C-terminal

domain containing the catalytic site, and a central conserved

domain binding PLP (Bosma et al., 1999; Martin et al.,

2000; Lynex et al., 2004). This pyridoxal-dependent decarb-

oxylase domain is essential for GAD67 function as GAD

requires PLP as a cofactor to catalyze the generation of

GABA from glutamate (Lernmark, 1996). Four of the seven

variants identified in our families affect conserved residues in

the PLP-binding domain, likely leading to loss-of-function

(Fig. 1A). In particular, the two missense variants

c.971T4G, p.(Phe324Cys) and c.1040C4T,

p.(Thr347Met) probably cause impaired PLP binding,

whereas the null variants c.568delC, p.(Gln190SerfsTer11)

Figure 1 Pedigrees of the reported families and clinical pictures of GAD1 patients. (A) The female patient from Family A (Patient II-

2) carries the homozygous c.1691A4G p.(Asn564Ser) variant and shows dysmorphic features with thick eyebrows, protruding ears, scoliosis,

and long fingers with clinodactyly. (B) Patient from Family B (Patient III-4) harbours the c.971T4G p.(Phe324Cys) variant. He has slight dys-

morphic features (wide mouth, thin upper lips, bitemporal narrowing and retrognathia). (C) Pedigree showing the segregation of the compound

heterozygous variants c.1591C4T, c.1591C4T p.(Arg531*) and c.670delC p.(Leu224Serfs*5) in Family C. (D) Pedigree of Family D shows the

segregation of the c.1040C4T p.(Thr347Met) variant. Patient II-4 carries the variant in homozygous state. He is severely hypotonic and shows

severe dysmorphic features (infra-orbital creases, severely depressed nasal bridge, anteverted nares, prominent nasolabial folds). In addition, sig-

nificant diastasis recti can be observed. His sister (Patient II-2) is heterozygous for the same variant and suffers from a different neurodevelop-

mental condition without seizures. (E) Patient III-2 from Family E harbours the c.87C4G (Tyr29*) variant, severely affected with dysmorphic

facial features and global atrophy on cardiovascular MRI, one similarly affected sibling passed away without any genetic testing being performed,

another sibling passed away only a few hours after birth, no phenotypical or genetic assessment could be carried out, and one sibling is alive with

a different phenotype (sensoneural hearing loss, Hirschsprung disease). (F) Patient II-1 from Family F harbours the c.568del (Gln190Serfs*11)

variant. His parents are both heterozygous carriers of the same variant. Empty and full symbols represent healthy and affected individuals, re-

spectively. The symbol with diagonal lines indicates carrier status/different phenotype. The double line indicates consanguinity.
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and c.670delC p.(Leu224Serfs*5) might result in a truncated

protein or NMD. Similarly, the c.87C4G, p.(Tyr29Ter)

variant localized to the N-terminal domain results in a pre-

mature stop codon, likely leading to NMD. The remaining

two variants, c.1591C4T, p.(Arg531*) and c.1691A4G,

p.(Asn564Ser), are localized to the C-terminal domain of the

protein and are predicted to result in a complete and partial

loss-of-function of the catalytic activity, respectively

(Fig. 2B). According to gnomAD, GAD1 shows a moderate

intolerance to missense variants (Z-score = 2.32; observed

217 and expected 336.5) and predicted loss-of-function var-

iants (expected 33.1, observed 9). The likely negative impact

of the missense variants on PLP-binding and C-terminal

catalytic domains, together with the finding of four null

pathogenic variants in our case series, supports the idea that

the clinical phenotypes observed are likely due to a loss-of-

function mechanism.

With regard to the possible genotype-phenotype correl-

ation, there have been few clinical case reports of GAD1

mutations, with little overlap in clinical features (Lynex

et al., 2004; Ruzicka et al., 2015; Magri et al., 2018). The

six patients reported here, however, do show a clear pheno-

typical manifestation.

One of the main common features we observed was the

occurrence of seizures at a young age (between 2 and 6

months of age). Since GAD1 is centrally involved in the pro-

duction of GABA, GAD1 mutations likely lead to an imbal-

ance of GABA in the brain. Previous studies have shown

that abnormalities in GABAergic function play an important

role in seizure induction (Olsen and Avoli, 1997).

Dysfunction of the GABAergic system can be caused

through either abnormal GABA synthesis (e.g. GAD dys-

function) or abnormal signalling (e.g. GABA receptor mal-

function). Animal studies have shown that mutant mice

lacking GAD or certain subunits of GABA-A receptors are

prone to spontaneous epileptic seizures (Asada et al., 1996;

Kash et al., 1997; DeLorey et al., 1998). It has also been

shown that there is a reduction of GABAergic neurons in the

epileptic brain, independent of the seizure’s aetiology sup-

porting a conclusion that seizures themselves further de-

crease GABA release within the brain, causing further

imbalance (Wang et al., 2011). This evidence suggests that

there is a clear correlation between abnormalities within the

GABAergic system and seizure occurrence. The occurrence

of seizures early in life of our patients is therefore not a sur-

prising phenotypical finding. However, previous data sug-

gest that the intellectual development of newborns with

epileptic encephalopathies is strongly dependent on seizure

control, and seizure freedom usually leads to acceleration of

intellectual development (Bombardieri et al., 2010).

However, despite seizure control (seizure freedom achieved

in three of six individuals), all patients described here still

showed severe intellectual disability. This has been observed

previously in other genetic conditions (Weckhuysen et al.,
2012; Berecki et al., 2019), leading to the assumption that

genetic defects themselves are influencing development and

cognition, independently from seizure control. This is

reflected in the ILAE’s terminology of ‘developmental and

epileptic encephalopathies’, though a clear distinction be-

tween epileptic and developmental encephalopathy has been

advised (Scheffer et al., 2017; Scheffer and Liao, 2020).

Furthermore, some EEG abnormalities continued to be

prominent after achieving seizure freedom. We therefore hy-

pothesize that GAD1 mutations may also play an important

role in intellectual development.

The reduced muscle tone and weakness, causing severe

disability in four of six affected individuals was a surprising

finding. There is a single case described in the literature of

an individual with cerebral palsy and a GAD1 variant

(Lynex et al., 2004). However, identification of the variant

was based on autozygosity mapping, in which they identified

a recessive locus of 5 cM located at 2q24-31.1. The investi-

gators subsequently investigated the most interesting candi-

date in that region by sequencing the exons of GAD1 and

Table 2 Frequency and predicted effect of the reported GAD1 variants

GAD1 variant

[NM_000817.2]

c.87C4G

(p.Tyr29Ter)

(Family E)

c.568delC

(p.Gln190Serfs

Ter11) (Family F)

c.670delC

p.(Leu224Serfs*5)

(Family C)

c.971T4G

p.(Phe324Cys)

(Family B)

c.1040C4T

p.(Thr347Met)

(Family D)

c.1591C4T

p.(Arg531*)

(Family C)

c.1691A4G

p.(Asn564Ser)

(Family A)

g. (hg19) g.171678601C4G g.171693323delC g.171700586delC g.171702542T4G g.171704223C4T g.171715383C4T g.171716298A4G

Internal database – – – – – – –

ExAC/GnomAD – – – 0.00000796 (2 het) 0.00000795 (2 het) 0.00000398 (1 het) 0.00000398 (1 het)

GME – – – – – – –

Iranome – – – – – – –

Ensembl – – – – – – –

SIFT D- N/A N/A N/A D (0.9125) D (0.9125) N/A D (0.9125)

MutationTaster DC (1) DC (1) DC (1) DC (0.9768) DC (1) DC (1) DC (1)

PolyPhen-2 N/A N/A N/A PD (0.978) PD (1) N/A PD (1)

GERP score 4.97 5.55 6.17 5.91 5.67 4.67 5.48

CADD score 35 N/A N/A 28 29.1 43 26.1

ACMG class 5 (PVS1, PM2, PP4) 5 (PVS1, PM2, PP3) 5 (PVS1, PM2, PP3) 3 (PM2, PP3) 3 (PM2, PP3) 5 (PVS1, PM2, PP3) 3 (PM2, PP3)

GeneDx 0 0 0/135 084 0 1/130 874 0/135 084 1/130 874

CADD = Combined Annotation Dependent Depletion; D = damaging; DC = disease causing; GeneDx = variant frequencies from the GeneDx database; GERP = Genomic

Evolutionary Rate Profiling; GnomAD = Genome Aggregation Database; GME = Greater Middle East (GME) Variome Project; het = heterozygous; N/A = not applicable; PD =

probably damaging; PM2 = Pathogenic Moderate 2; PP3 = Pathogenic Supporting 3; PVS1 = Pathogenic Very Strong 1; SIFT = Sorting Intolerant From Tolerant.
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identified a homozygous missense variant c.35C4G

(p.Ser12Cys) (NM_013445.3) in the N-terminal domain of

the protein (Lynex et al., 2004). This variant is rare in

gnomAD (exomes allele frequency of 0.0000239) and absent

in the homozygous state. However, the predictions on its

pathogenicity are conflicting as it is predicted benign by

Figure 2 Schematic and cartoon representation of GAD1. (A) Schematic representation of the GAD1 isoform GAD67 (NP_000808.2)

with the pathogenic variants identified in this study. Of the six variants, four fall within the PLP-binding domain, a conserved region that is essen-

tial for the binding of the crucial cofactor pyridoxal 50-phosphate (PLP). The remaining variants affect the C-terminal domain, which contains the

catalytic site of the enzyme. Conservation status among different species is shown for the missense variants. (B) Cartoon representation of

human GAD1 dimer (PDB: 2okj) with the two subunits in blue and yellow. Sites of the three missense mutations in this study are shown as red

spheres, and close-up views of their nearby atomic environment are shown as insets. The PLP cofactor is shown in green.
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MutationAssessor, DEOGEN2, and MetaLR. Furthermore,

the 2q24-31.1 locus encompasses several other possible

genes of interest (e.g. DYNC1I2, responsible for a neurode-

velopmental disorder characterized by intellectual disability,

spasticity, and neuroradiological anomalies), which were not

investigated. The N-terminal domain of GAD67 is involved

in the generation of GAD65–GAD67 heterodimers and sub-

cellular targeting, and whilst we cannot rule out a possible

impairment of the interaction of GAD67 with GAD65 or an

alteration in GAD67 subcellular targeting as a result of this

variant, we suggest that variants affecting the PLP-binding

and C-terminal domain cause a more severe deficiency in

GAD67 activity.

In addition, we also identified four null variants likely

resulting in a loss-of-function. According to these observa-

tions and the consistency of the phenotype in our case series,

we emphasize that GAD1 pathogenic variants should be

considered the cause of a distinctive neurodevelopmental dis-

order instead of spastic cerebral palsy (Lynex et al., 2004).

The clinical observation of muscle weakness is particularly

interesting as it has not been described previously. Other

GAD1-related diseases, such as antibody-mediated syn-

dromes, have been associated with motor symptoms (Dayalu

and Teener, 2012). However, these motor phenomena are

usually linked to a hyperexcitability (increased muscle tone

leading to rigidity, muscle spasms, and stiff person syn-

drome), as well as other neurological symptoms (e.g. Miller

Fisher syndrome, eye movement disorders, cerebellar ataxia,

epilepsy, limbic encephalitis, etc.) (Moersch and Woltman,

1956; Dalakas et al., 2000; Saiz et al., 2008; Tohid, 2016).

Of note, in no case has muscle weakness been linked to

GAD1 deficiency.

While Gad67–/– mice have been reported to die within the

first hours of life due to a cleft palate (Asada et al., 1997;

Condie et al., 1997), only one of our patients (Family E,

Patient III-3) was born with a cleft palate (the same patient

also showed congenital bilateral hip dislocation with shallow

acetabulum, talipes equinovarus and hearing impairment.)

Several studies have hypothesized that the development of a

cleft palate is linked to reduced tongue movement during

embryonic development and therefore secondary to CNS

dysfunction (Iseki et al., 2007; Oh et al., 2010; Saito et al.,

2010). Gad1 expression has also been shown in different

non-neural tissues, such as the tail bud, limb mesenchyme,

vibrissal placodes, and pharyngeal arches in various stages

of embryonic development (Maddox and Condie, 2001).

This observation has suggested a broader influence of

GAD1 and GABA function on non-neural development

(Maddox and Condie, 2001), supporting a possible primary

role of GAD1 impaired function in the pathogenesis of non-

neural defects. However, further studies are required to con-

firm this in humans.

In conclusion, this case series reports distinct phenotypical

features caused by GAD1 variants, including early-infantile

onset epilepsy, severe developmental delay and muscle weak-

ness. Less consistent features include skeletal abnormalities and

dysmorphic facial features, including cleft palate. Functional

studies and larger clinical series will be necessary to further as-

sess genotype-phenotype correlations for GAD1 variants.
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