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Abstract
Aims/hypothesis Our aim was to investigate the relationship between average blood glucose levels and incident CHD in
individuals without diabetes mellitus.
Methods To investigate average blood glucose levels, we studied HbA1c as predicted by 40 variants previously shown to be
associated with both type 2 diabetes and HbA1c. Linear and non-linear Mendelian randomisation analyses were performed to
investigate associations with incident CHD risk in 324,830 European ancestry individuals from the UKBiobank without diabetes
mellitus.
Results Every one mmol/mol increase in genetically proxied HbA1c was associatedwith an 11% higher CHD risk (HR 1.11, 95%
CI 1.05, 1.18). The dose–response curve increased at all levels of HbA1c, and there was no evidence favouring a non-linear
relationship over a linear one.
Conclusions/interpretations In individuals without diabetes mellitus, lowering average blood glucose levels may reduce CHD
risk in a dose-dependent way.
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Introduction

CHD is a leading cause of mortality, accounting for approxi-
mately 9 million deaths globally in 2015 alone [1].
Epidemiological studies have supported an association
between average blood glucose levels and CHD risk, even in
individuals without diabetes mellitus [2]. However, it is diffi-
cult to infer causal effects from observational studies because
of the possibility that any identified associations may be

attributable to confounding. Mendelian randomisation can
overcome these limitations by using genetic variants as instru-
mental variables to infer the effect of modifying an exposure
such as average blood glucose levels on an outcome such as
CHD. The aim of this study was to perform linear and non-
linear Mendelian randomisation analyses to investigate the
shape of the causal relationship between average blood
glucose levels (measured by HbA1c) and CHD risk in individ-
uals without diabetes mellitus. HbA1c was considered
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preferable to blood glucose levels because it represents the
average blood glucose level over approximately 120 days,
so is less susceptible to variation related to the time of
recording.

Methods

Analyses were performed in unrelated participants of
European ancestry from the UK Biobank, a population-
based cohort study of middle-aged UK residents. Individuals
having possible diabetes mellitus (defined based on self-
reporting, hospital episode statistics and medications) or base-
line HbA1c > 47.5 mmol/mol (6.5%) were excluded. HbA1c

was measured in packed red blood cells using the Bio-Rad
Variant II Turbo analyser. International Classification of
Diseases 9th Revision (ICD-9) codes 410-414, and ICD-10
codes I20-I25 were used to identify incident CHD cases. Full
details are provided in the electronic supplementary material
(ESM).

Candidate instrumental variablesWe selected 40 uncorrelated
(r2 < 0.001) single-nucleotide polymorphisms as instrumental
variables for average blood glucose levels based on their asso-
ciation with type 2 diabetes (p < 5 × 10−8) in a genome-wide
association study of 228,499 cases and 1,178,783 controls
(79% European ancestry) that included UK Biobank partici-
pants [3], and their association with HbA1c (p < 0.001 and
concordant direction of association) in an independent study
of 100,880 European ancestry participants (no overlap with
the UK Biobank) that were free of diabetes mellitus (as

defined by physician diagnosis, medications, or fasting
glucose ≥7mmol/l) [4] (ESMTable 1).We created a weighted
allele score for each participant by multiplying each type 2
diabetes risk-increasing allele dosage with the variant’s asso-
ciation with HbA1c, and summing across all 40 variants.
Selecting variants associated with type 2 diabetes and
weighting by their association with HbA1c helps ensure that
the weighted allele score is reflective of average blood glucose
levels, rather than solely type 2 diabetes risk or HbA1c.

Statistical analysis Mendelian randomisation analyses were
performed to investigate the association between genetically
proxied average blood glucose levels (measured as HbA1c)
and incident CHD. Analyses were performed by modelling a
linear relationship between genetically proxied average blood
glucose levels and incident CHD (‘linear Mendelian
randomisation’) [5], and also using the fractional polynomial
method to test for a non-linear relationship between genetical-
ly proxied average blood glucose levels and incident CHD
(‘non-linear Mendelian randomisation’) [6]. We further
assessed associations of the allele score with lipid fractions
and other glycaemic traits, and performed multivariable non-
linear Mendelian randomisation for traits associated with the
allele score that may represent alternative causal risk factors.
As a further sensitivity analysis, we also performedMendelian
randomisation analysis that excluded variants associated with
the alternative causal risk factor at p < 0.01. Full details are
provided in the ESM. All statistical analysis was performed
using R (version 3.6.2) and only publicly available data from
studies that had obtained relevant ethical approval and partic-
ipant consent were used.
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Results

Baseline characteristics for the 324,830 participants included
in the analyses are provided in ESMTable 2. There were 6006
incident CHD events. The allele score explained 1.8% of the
variance in HbA1c, corresponding to an F-statistic of 144.5
and a low risk of substantial weak instrument bias. For UK
Biobank participants, associations of the variants incorporated
in the allele score with HbA1c were generally of greater
magnitude in men compared with women (ESM Fig. 1).

Linear Mendelian randomisation Linear Mendelian
randomisation analyses identified a positive association between
higher genetically proxied average blood glucose levels and inci-
dent CHD riskwhen consideringmen andwomen together (ESM
Fig. 2). For a one mmol/mol increase in HbA1c, the HR for

incident CHD was 1.11 (95% CI 1.05, 1.18; p= 2 × 10−4). In
sex-stratified analyses, the association was stronger in men (HR
1.12, 95% CI 1.05, 1.19; p= 4 × 10−4) than in women (HR 1.08,
95% CI 0.96, 1.20; p= 0.20) (ESM Table 3). Similar point esti-
mates were obtained in sensitivity analyses using alternative
Mendelian randomisation methods (ESM Table 4).

Non-linear Mendelian randomisation In non-linear Mendelian
randomisation, we observed no statistical evidence favouring a
non-linear relationship between genetically proxied HbA1c and
incident CHD over a linear one in any of the analyses (Fig. 1).
Subgroup analyses presenting Mendelian randomisation esti-
mates in quintiles of the population based on HbA1c levels
(corrected for genetic predisposition) are presented in ESM
Table 3.
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Fig. 1 Non-linear Mendelian randomisation investigating the relation-
ship between genetically proxied average blood glucose levels (measured
by HbA1c) and risk of incident CHD in individuals without diabetes
mellitus: (a) men and women combined; (b) men only; and (c) women
only. The x-axis depicts HbA1c levels inmmol/mol. The y-axis depicts the
hazard ratio for coronary heart disease (HR for CHD) with respect to the
reference, plotted on a log scale. Reference is set to anHbA1c of 30mmol/

mol (4.9%). The grey lines represent the 95% CIs. The fractional poly-
nomial test is a goodness-of-fit test that assesses whether any improve-
ment of fit when using a non-linear function to model the association,
compared with a linear function, is greater than would be expected due to
chance (a significant p value indicates that a non-linear model is preferred
to a linear model)
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We assessed genetic associations of the allele score and its
individual variants with other glycaemic traits and lipid fractions
(ESM Table 5 and ESM Fig. 3). The allele score was associated
with 2-h glucose (p< 0.001) and fasting glucose (p< 0.001), but
not fasting insulin (p= 0.22). The allele score was also associated
with LDL-cholesterol (LDL-cholesterol, p= 0.03), but not HDL-
cholesterol (p = 0.86) or triacylglycerols (p = 0.99). Although
multivariable non-linear Mendelian randomisation adjusting for
genetically proxied LDL-cholesterol showed some attenuation in
the coefficient for genetically proxied HbA1c, an association
persisted (HR 1.07, 95% CI 1.01, 1.14; p= 0.018), and the best-
fitting fractional polynomial was the linear model (ESM Fig. 4).
Similar results were also obtained after excluding the five variants
that associated with LDL-cholesterol at p < 0.01 (rs1260326,
rs10184004, rs11708067, rs505922 and rs174541): HR 1.10
(95% CI 1.03, 1.17; p= 0.003) (ESM Fig. 5).

Discussion

In this Mendelian randomisation study, we found genetic
evidence supporting an effect of higher average blood glucose
levels on increasing CHD risk in individuals without diabetes
mellitus. We did not find evidence favouring a non-linear
relationship between HbA1c and CHD risk over a linear one.
Our findings provide evidence that lowering average blood
glucose levels in individuals without diabetes mellitus can
reduce cardiovascular risk in a dose-dependent way.

While pre-diabetes is known to increase cardiovascular risk [7],
our work goes further to support a continuous effect of average
blood glucose levels that are within the ‘physiologically normal’
HbA1c range. Our findings build on existing epidemiological
research supporting an association between average blood glucose
levels andCVD risk in individualswithout diabetesmellitus [2].A
previousMendelian randomisation study similarly showed a posi-
tive association between genetically proxiedHbA1c andCHD risk,
although with wider CIs than in our current work, likely because
that work used fewer genetic variants as instrumental variables [8].
Clinical trials have found that intensive lowering of HbA1c levels
in high-risk patients with type 2 diabetes does not confer a bene-
ficial effect on cardiovascular risk [9, 10]. This discrepancy may
be related to the particular pharmacological treatments used to
lower HbA1c levels, including adverse effects such as weight gain,
hypoglycaemia and rapid fluctuations in glucose levels [9, 10].
Pharmacological agents for blood glucose lowering that are not
associated with weight gain or hypoglycaemia are available [11].
Clinical trials are warranted to explore whether particular blood
glucose lowering strategies can be used to reduce cardiovascular
risk in patients without diabetes mellitus.

A strength of our study is that the employed Mendelian
randomisation approach is robust to confounding from environ-
mental factors. The weights for the variants used in Mendelian
randomisation analysis were derived from their associations

with HbA1c in a dataset that did not include the UK Biobank
[4]. Furthermore, analysis was restricted to UK Biobank partic-
ipants free of type 2 diabetes, thus avoiding any influence of
winner’s curse bias. We further performed sensitivity analyses
that accounted for potential genetic confounding through LDL-
C, which also identified associations of genetically proxied
HbA1c levels with incident CHD risk. However, our study also
has limitations. The analyses were restricted to UK Biobank
participants of European ancestry, and may not apply to other
populations. Furthermore, the genetic variants employed as
instrumental variables only explained 1.8% of the variance in
HbA1c, thus limiting the statistical power of the analyses and
the precision of the results. A reason why the Mendelian
randomisation estimates were less precise in women compared
with men may be that the genetic variants had weaker associa-
tions with HbA1c in women. Finally, the genetic variants
employed as instruments in this analysis proxy lifelong average
blood glucose control, and therefore cannot be used to inform
on the quantitative effects of discrete clinical interventions that
lower blood glucose levels in the short term.

In summary, this Mendelian randomisation analysis
provides genetic evidence supporting an effect of average
blood glucose levels on CHD risk in individuals without
diabetes mellitus. Further work is required to investigate
whether strategies that lower blood glucose levels can reduce
cardiovascular risk in individuals without diabetes mellitus.

Supplementary Information The online version of this article (https://doi.
org/10.1007/s00125-020-05377-0) contains peer-reviewed but unedited
supplementary material.
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