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Background. Lower Clostridium difficile spore counts in feces from C difficile infection (CDI) patients treated with fidaxomicin 
versus vancomycin have been observed. We aimed to determine whether environmental contamination is lower in patients treated 
with fidaxomicin compared with those treated with vancomycin/metronidazole.

Methods. The CDI cases were recruited at 4 UK hospitals (Leeds, Bradford, and London [2 centers]). Environmental samples 
(5 room sites) were taken pretreatment and at 2–3, 4–5, 6–8, and 9–12 days of treatment, end of treatment (EOT), and post-EOT. 
Fecal samples were collected at diagnosis and as often as produced thereafter. Swabs/feces were cultured for C difficile; percentage of 
C difficile-positive samples and C difficile bioburden were compared between different treatment arms at each time point.

Results. Pre-EOT (n  =  244), there was a significant reduction in environmental contamination (≥1 site positive) around 
fidaxomicin versus vancomycin/metronidazole recipients at days 4–5 (30% vs 50% recipients, P = .04) and at days 9–12 (22% vs 
49%, P = .005). This trend was consistently seen at all other timepoints, but it was not statistically significant. No differences were 
seen between treatment groups post-EOT (n = 76). Fidaxomicin-associated fecal positivity rates and colony counts were consistently 
lower than those for vancomycin/metronidazole from days 4 to 5 of treatment (including post-EOT); however, the only significant 
difference was in positivity rate at days 9–12 (15% vs 55%, P = .03).

Conclusions. There were significant reductions in C difficile recovery from both feces and the environment around fidaxomicin 
versus vancomycin/metronidazole recipients. Therefore, fidaxomicin treatment may lower the C difficile transmission risk by re-
ducing excretion and environmental contamination.
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Clostridium (Clostridioides) difficile produces spores resistant to 
many disinfectants, which can survive for prolonged periods in 
the environment, particularly around infected patients [1–7]. 
Patients with C difficile infection (CDI) excrete between 1 × 104 
and 1 ×  107 of C difficile per gram of feces [2], and environ-
mental contamination is likely due to direct or indirect fecal 
contact and aerosolization during diarrhea [6]. Contact with 
spores in the environment is the likely source for secondary 

cases of CDI in hospital settings [8]. Given the considerable 
time during which patients may shed spores, prompt isolation 
of symptomatic cases and adequate environmental decontam-
ination are 2 central recommendations for preventing onward 
transmission [7, 9–11].

Fidaxomicin, a novel macrocyclic antibiotic, was approved 
to treat CDI in 2011/2012 12, 13, after 2 large trials showed it 
was noninferior to vancomycin for initial clinical cure [14, 15]. 
More importantly, recurrent CDI, a known complication, was 
significantly reduced with fidaxomicin (14% vs 26%) [14–16]. 
The mechanism by which fidaxomicin prevents recurrences 
of CDI is unclear. In vitro, fidaxomicin inhibits the outgrowth 
of C difficile spores, possibly due to its ability to adhere to the 
spore coat [17]. In an artificial gut model of CDI, fidaxomicin 
achieved intraluminal concentrations well above the minimum 
inhibitory concentration for C difficile; these were sustained for 
approximately 3 weeks after instillation, perhaps due to seques-
tration within biofilms [18]. In a Phase II trial, fidaxomicin-
treated patients had significantly lower mean spore counts 
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11–18 days posttreatment, compared with vancomycin recipi-
ents (3.1 log10 colony-forming units [CFU]/g of feces versus 
5.4 log10 CFU/g, respectively), and fidaxomicin was relatively 
sparing of other gut microflora [17].

Because fidaxomicin reduces spore counts in the feces of 
treated patients and inhibits spore outgrowth [17], we hypothe-
sized that there may be less contamination of the patients’ skin 
and surrounding environment with C difficile, both during 
and immediately after treatment. In this case, fidaxomicin may 
help reduce onward transmission of C difficile to other pa-
tients, amplifying its benefit in reducing recurrences. Indeed, 
a single-center study comparing environmental contamina-
tion surrounding CDI patients on days 2–4 of treatment with 
fidaxomicin or conventional therapy (metronidazole/vanco-
mycin [met/van]) found that those treated with fidaxomicin 
had significantly lower contamination rates [19]. However, the 
environment was tested at only 1 time point, so data on the 
period after treatment are lacking. We carried out a multicenter 
study to determine whether there is a difference in C difficile 
shedding and contamination of the skin and immediate envi-
ronment between CDI patients treated with fidaxomicin versus 
vancomycin/metronidazole, both during and after treatment.

METHODS

Study

This was a prospective, observational study conducted in 4 UK 
hospitals (Leeds, Bradford, London [2 centers]). All hospital in-
patients (aged ≥16 years) with CDI (defined by presence of C 
difficile toxin) between January 2015 and December 2016 were 
considered for inclusion. Local research staff assessed whether 
they met the following inclusion criteria: presence of diarrhea, 
defined as 3 or more episodes of unformed stools (Bristol stool 
type 5–7) in 24 hours within the last 7  days; and prescribed 
CDI-specific treatment (fidaxomicin, oral vancomycin, or met-
ronidazole). All eligible participants had swabs of their environ-
ment taken from 5 room sites (call bell, commode/toilet, floor, 
bed rail, bedside table) at the following timepoints: after diag-
nosis, every 2–3 days during treatment, at the end of treatment 
(EOT), and on days 7, 14, and 28 post-EOT (Figure 1). Consent 
was not required for environmental screening; however, pa-
tients were approached after diagnosis for informed consent for 
skin swabbing and fecal sampling. The original diagnostic stool 
sample was also collected, where available. Skin swabbing took 
place at the same time as the environmental sampling; stool 
samples were collected as close as possible to these time points. 
All sampling ceased after patient discharge. Swabs and samples 
were stored at 5°C at each site, with shipments to the laboratory 
in Leeds once per week for processing.

If a participant switched to fidaxomicin after receiving more 
than 24 hours of either metronidazole or vancomycin, they 
were withdrawn from the study, but data collected to that point 
was included. Participants who received any fidaxomicin before 

being switched to metronidazole/vancomycin were excluded. 
Participants who were switched between metronidazole and 
vancomycin, or simultaneously prescribed both agents, re-
mained in the study.

Patient Consent Statement

The study was approved by the HRA North West Haydock 
research ethics committee (14/NW/1398). Patient’s written 
consent was obtained including recruitment of patients that 
lacked mental capacity for informed consent, via consultee 
approval.

Environmental Swabbing

All sites used chlorine-based cleaning products for the disinfec-
tion of hard surfaces and floors, and time (hours) since cleaning 
was recorded when samples were collected. Rooms at all sites 
were cleaned at least once daily. Sponge-sticks (3M, Saint Paul, 
Minnesota), moistened with sterile water, were used to sample 
a 5 × 20-cm area of flat surface, or the entire surface of the call 
bells, or a 13.3-cm length of bed rails (representing the same 
surface area). After transport to Leeds, swabs were placed in 
50 mL neutralizing solution (0.1% [wt/vol] sodium thiosulfate, 
3% [wt/vol] Tween80, 0.3% [wt/vol] lecithin in phosphate-
buffered saline) and homogenized for 10 minutes before the 
solution was pulled through Microfil V 0.22-µM filters with 
100-mL funnel onto the integral membrane using a gantry and 
pump assembly. Membranes were placed onto Brazier’s agar 
(Oxoid, UK) supplemented with 250  mg/L cycloserine and 
8  mg/L cefoxitin (Oxoid) and 2% lysed horse blood (Oxoid) 
(CCEY agar). All plates were incubated anaerobically (A95 
workstation; Don Whitley, Bradford, UK) for 48 hours before 
enumeration of typical colonies (gray-brown, irregular edge, 
typical odor). Atypical colonies were identified using matrix-
assisted lazer desorption/ionization, time-of-flight mass spec-
trometry (MALDI-TOF; Bruker, Billerica. MA).

Skin Sampling

A 5  ×  20-cm area of each participant’s skin sites (groin, ab-
domen, entire dominant hand) was sampled using flocked 
swabs (Sterilab Services, Harrogate, UK) moistened with sterile 
water. After transport to Leeds, swabs were broken off into 
5 mL 50% (v/v) ethanol/water, mixed with a vortex for 15 sec-
onds before the solution was pulled through Microfil filters as 
described above, and membranes were placed onto CCEY agar 
and incubated as described.

Fecal Clostridium difficile Enumeration

One gram of fecal sample was placed into 1 mL 50% (v/v) eth-
anol/water, mixed with a vortex for 15 seconds, and left at room 
temperature for an additonal hour before making a 10-fold di-
lution series in 4.5 mL peptone water (Sigma, Gillingham, UK) 
(from 10–1 to 10–7). Twenty milliliters of the original “alcohol 
shocked” sample and 20 µL of each of the dilutions were each 
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inoculated onto one quarter of a CCEY plate in triplicate and 
incubated as described.

Polymerase Chain Reaction Ribotyping

All isolates of C difficile were typed by polymerase chain reac-
tion (PCR) ribotyping at the Clostridium difficile Ribotyping 
Network of England and Northern Ireland (CDRN), as previ-
ously described [20]. One individual colony was picked from 
each plate for PCR ribotyping, as well as a sweep of growth from 
each plate, to check for multiple PCR ribotypes.

Clinical Data

Data on relevant demographic factors, past medical history, 
comorbidities, drug history, information about the CDI epi-
sode, and clinical markers of severe CDI were collected from 
medical records.

Analysis

For treatment comparisons, any patient who did not receive one 
of the antibiotics (fidaxomicin or vancomycin/metronidazole) 
for at least 48 hours was excluded. The following outcomes were 
compared between fidaxomicin and combined met/van treatment 
groups over time: percentage of environmental samples that were 
positive for C difficile, percentage of skin samples that were posi-
tive for C difficile, C difficile spore counts in fecal samples. Due to 
almost complete confounding (see results), comparisons between 
drugs could not be adjusted for site; therefore, comparisons were 
repeated within Leeds only, where all 3 drugs were used.

Analyses were conducted from diagnosis to EOT (+1 day to 
allow for visit windows), and then separately from EOT on-
wards for patients with EOT 7 days after diagnosis or later and 
with 1 or more post-EOT sample. All total spore counts were 
log10 transformed for normality. For each outcome, means 

Patient has positive stool
C. di�cile toxin result

whilst
in hospital

Patient does not
meet inclusion

criteria

Informed consent or
consultee approval sought

No informed consent
or consultee approval

Every 2-3 days during
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End of  treatment+7 days
End of  treatment+14 days
End of  treatment+28 days
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discharged
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Sampling:
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Figure 1. Flow chart of study, showing participant recruitment.
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(standard error of the mean) or percentages (95% confidence 
interval) as relevant were calculated in each group at each 
nominal time point (based on observed values) and to char-
acterize the impact of time, including only the earliest sample 
per patient in each visit window (most conservative analysis). 
We used t tests (continuous) or exact tests (categorical) for 
comparisons.

RESULTS

Baseline Characteristics

There were 253 participants enrolled into the study: 202 of 
253 (80%) were from Leeds. Fidaxomicin was used for 83 par-
ticipants, 102 received vancomycin, and 70 received metro-
nidazole. There was almost complete confounding between 
hospital site and treatment because Bradford almost never used 
fidaxomicin and St Georges almost never used met/van; Leeds 
used all 3 drugs.

There was no evidence of difference in the median time 
between cleaning and swabbing between fidaxomicin and 
met/van groups (6 vs 5 hours, P  =  .5). There were small dif-
ferences (1  day) between fidaxomicin and met/van groups in 
median times from stool collection to positivity (P < .001) and 
from positivity to treatment (P =  .04) but no evidence of any 
other imbalances in baseline characteristics between groups 
(P > .05) (Table 1). There was no evidence of difference in the 
median time to resolution of diarrhea for patients treated with 
fidaxomicin compared with met/van (6 vs 5  days, P  =  .4) or 
for patients treated with metronidazole compared with vanco-
mycin (5 vs 6 days, P = .3). Resolution of diarrhea was defined 

as the first date of 2 consecutive days clear of diarrhea (defined 
as Bristol stool type 5–7).

Environmental Contamination

Between starting treatment and EOT, 3174 environmental sam-
ples were taken by approximately 244 patients (mean 13 sam-
ples/patient, range 3–30). Environmental contamination rates 
(at least 1 contaminated site) were generally lower in rooms 
housing patients treated with fidaxomicin compared with met/
van, with 65% fidaxomicin versus 75% met/van rooms contam-
inated pretreatment (P = .42), 47% vs 56% on days 2–3 (P = .37), 
30% vs 50% days 4–5 (P = .04), 36% vs 48% days 6–8 (P = .14), 
and 22% vs 49% days 9–12 (P = .005) (Figure 2A).

Individual environmental sites showed similar downward 
trends in contamination rates over the course of treatment 
and generally lower rates with fidaxomicin versus met/van 
(Supplementary Figure 1). However, with lower rates at indi-
vidual sites, almost all comparisons were nonsignificant except 
for bedrails after 6–8 days’ treatment (9% fidaxomicin vs 21% 
met/van, P = .05) and commodes after 2–3 days’ treatment (14% 
vs 39%, respectively, P = .003).

There was also a significant difference in environmental 
contamination when all samples were included (rather than 
considering any positive across all 5 sites) (Figure  3A). The 
environmental contamination rate was significantly lower for 
patients treated with fidaxomicin versus met/van on days 2–3 
(21% vs 29%, respectively, P = .04), days 6–8 (14% vs 22%, re-
spectively, P = .008) and days 9–12 (10% vs 21%, respectively, 
P  <  .001), with similar trends at days 4–5 (P  =  .20) and re-
stricting to patients from Leeds.

Table 1. Baseline Characteristics of Patients in the Studya

Factor Met/Van (N = 172) Fidaxomicin (N = 81) Total (N = 253) Pb

Site: Leeds 141 (82%) 61 (75%) 202 (80%) <.001

Bradford 26 (15%) 1 (1%) 27 (11%)  

St Georges 3 (2%) 15 (19%) 18 (7%)  

Guys and St Thomas’s 2 (1%) 4 (5%) 6 (2%)  

Age (years) 75 (62–84) 75 (61–82) 75 (62–84) .43

Male 91 (53%) 35 (43%) 126 (50%) .18

Temperature >38.5 23/168 (14%) 12/78 (15%) 35/246 (14%) .70

Clinical colitis 62/172 (36%) 34/80 (42%) 96/252 (38%) .33

Creatinine rise >50% from baseline 28/144 (19%) 13/80 (16%) 41/224 (18%) .59

Days from admission to first positive stool 3 (1–12) 6 (1–14) 4 (1–13) .33

Days from stool collection to positivity 2 (1–3) 1 (1–2) 2 (1–3) <.001

Days from stool collection to treatment 2 (1–3) 1 (1–2) 2 (1–2) .17

Maximum total white cell count (×109/L) 11.0 (8.2–14.9) 11.5 (8.3–18.2) 11.3 (8.2–15.9) .34

Serum creatinine (µmol/L) 75 (57–117) 82 (57–123) 78 (57–123) .82

EOT (days) 10 (7–14) 10 (9–11) 10 (8–13) .89

Any change in treatment, including dose 25 (15%) 13 (16%) 38 (15%) .85

Experienced recurrence 10 (6%) 9 (11%) 19 (8%) .20

Died within 30 days 14 (8%) 7 (9%) 21 (8%) 1.00

Abbreviations: EOT, end of treatment.
aMissing data shown by different denominators.
bExact test for categorical factors, rank-sum test for continuous factors.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa362#supplementary-data
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After EOT, 905 environmental samples were taken from ap-
proximately 76 patients (mean 12/patient, range 4–25). Once 
treatment was stopped, the rate of environmental contamination 
appeared relatively constant, or if anything increased, regardless 
of drug, with no evidence of differences between fidaxomicin 
or met/van patients (Figures 2B, 3B; Supplementary Figure 1).

Skin Swabs

Between starting treatment and EOT, 705 skin swabs were 
obtained from 99 of 169 (59%) participants who consented. 
There was no evidence of difference in skin contamina-
tion rates between fidaxomicin and met/van patients overall 
(Supplementary Figure 3a) or for any individual sample 
type (Supplementary Figure 2), at any time point during 

treatment with 2 exceptions: lower contamination rates with 
fidaxomicin (27%) versus met/van (57%) on days 6–8 (P = .02) 
(Supplementary Figure 2e), and higher contamination rates on 
hands with fidaxomicin (29%) vs met/van (4%) at days 9–12 
(P = .02) (Supplementary Figure 2g).

Fecal Samples

Between starting treatment and EOT, 300 stool samples were 
obtained from 129 of 169 (76%) of the consented participants. 
Immediately after initiation of treatment (fidaxomicin or met/
van), there was a considerable impact on fecal spore counts 
with an abrupt decrease from a mean of 6.0 to 4.4 log10 cfu/
mL but less than a 1.0 log10 cfu/mL further decrease over the 
following week (Figure 4A). There is a further decrease in fecal 
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spore counts from a mean of 3.7 log10 cfu/mL on days 9–12 to 
a mean of 1.2 log10 cfu/mL at the EOT (Figure 4A and B). After 
EOT, 76 stool samples were obtained from 20 participants. It is 
interesting to note that there was a clear upward trend in both 
the percentage of samples positive for C difficile (by culture) and 
the spore counts within positive samples after completing treat-
ment (Figure 4B).

Patients treated with fidaxomicin had lower fecal positivity 
rates from days 4 to 5 of treatment onwards, which reached 
statistical significance at days 9–12 (15% vs 55% in met/van, 
P = .03) (Figure 5A). However, there was no evidence of differ-
ences between colony counts in positive samples for the 2 treat-
ment groups at any time point (Figure 5A). After EOT, colony 
counts in positive samples were consistently numerically lower 

by 2–4 log10 CFU/mL for patients treated with fidaxomicin 
compared with met/van, but there was no statistical evidence of 
difference, possibly due to low numbers (Figure 5B).

Ribotyping

Overall, there were 559 pairs of ribotypes from a single colony 
and sweep from an environmental sample; 539 (96.4%) were 
identical (and one was a mixture on the sweep). Although there 
was no evidence that this varied by environmental site (P = .27) 
or treatment (P = .61), agreement was higher up to EOT (459 
of 471, 97.5% identical) versus after EOT (80 of 88, 90.9%) 
(P = .007). Pooling all environmental ribotypes across sampling 
occasions, overall 365 of 400 (91.2%) sampling occasions had 
completely identical ribotypes, again greater up to EOT (304 
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of 328, 92.7%) versus after EOT (61 of 72, 84.7%) (P  =  .04). 
Likewise, 125 (91.9%) of 136 skin samples with paired ribotypes 
from a single colony and sweep were identical (plus 1 mixture 
on the sweep), as were 257 (95.5%) of 269 paired ribotypes from 
stool samples (plus 1 mixture on the sweep).

Comparing ribotypes from the first stool sample from 166 
patients with skin/environmental samples (pretreatment in the 
vast majority, not available in all, 5 [3.0%] mixed ribotypes), 
all subsequent skin/environmental samples matched at least 1 
baseline stool ribotype in 103 (62.0%) patients. Overall, 351 of 
390 (90.0%) environmental sampling time points and 108 of 
133 (81.2%) skin sampling time points matched at least 1 base-
line stool ribotype, with again strong evidence that matching 
was lower after EOT for environmental time points (92.8% 
pre- vs 77.8% posttreatment [P =  .001] compared with 82.1% 
pre- vs 77.8% posttreatment [P  =  .59] for skin time points). 
Considering individual samples, overall, 1244 of 1371 (90.7%) 
environmental samples, 298 of 350 (85.1%) skin samples, and 
135 of 143 (94.4%) individual stool samples matched at least 1 
baseline stool ribotype. Environmental and stool samples were 
significantly less likely to match the baseline ribotype after EOT 
(93.0% pre- vs 79.6% posttreatment [P < .001] and 98.0% pre- 
vs 86.7% posttreatment [P = .006], respectively), with a similar 
direction of effect in the smaller number of skin samples (86.1% 
pre vs 80.0% post, P = .24).

DISCUSSION

In this study, we found that C difficile environmental contam-
ination of patient rooms was lower during fidaxomicin versus 
met/van treatment from approximately 4 days of treatment on-
wards, but it was similar between these agents after therapy was 
ended. There was a significant reduction in environmental con-
tamination rates (at least 1 site positive) in rooms housing pa-
tients treated with fidaxomicin compared with those receiving 
met/van at multiple times after starting antibiotics. These re-
sults confirm those seen by Biswas et al [19], where there was a 
significant difference in the environmental contamination rates 
in rooms of patients treated with fidaxomicin versus met/van 
after 2–4 days of treatment (37% vs 58%, respectively, P = .02). 
Because we collected samples at several time points, we were 
able to show a downward trend in contamination rates over 
the duration of treatment for both met/van and fidaxomicin. 
One important limitation is that 1 study site predominantly 
used met/van, another predominantly used fidaxomicin, and 
a third recruited few patients. However, results were similar at 
the Leeds site, which used all 3 antibiotics and recruited 80% of 
patients. In addition, we also combined metronidazole and van-
comycin treatment groups; time to resolution to diarrhea with 
these treatment options has been reported to be different [21, 
22], but we found no evidence of a difference in our data (5 vs 
6 days, respectively, P = .3).

The downward trend in environmental contamination rates 
during treatment was mirrored by the downward trend in fecal 
sample positivity, which again was lower in patients treated with 
fidaxomicin. However, it should be noted that although there 
was an initial large decrease in spore counts of 4–6 log10 cfu/mL 
after treatment initiation, the impact of treatment on further 
reductions in the bioload was smaller over the following week 
(<1.0 log10 cfu/mL). Because time to resolution of diarrhea was 
similar in both groups, increased environmental contamination 
in the met/van group is unlikely to be due to a prolonged period 
of diarrhea, indeed the median time to resolution was 5 days 
in this group compared with 6 days in the fidaxomicin-treated 
group (P =  .4). This supports the hypothesis that fidaxomicin 
treatment reduces the microbial load within patients, and this 
in turn contributes to decreased spore shedding into the envi-
ronment. Previous in vitro and in vivo studies have shown that 
fidaxomicin minimum inhibitory concentrations are sustained 
and that fecal colony counts are still lower than a comparator 
(vancomycin) 11–18 days after the EOT [14, 18]. However, there 
were no significant differences between spore counts in positive 
samples between 2 treatment groups at any time point, nor was 
there evidence of differences in skin contamination rates be-
tween groups. One important limitation is that the number of 
skin and stool samples collected in the study was much smaller 
than the number of environmental samples, and these compari-
sons may therefore be underpowered.

In addition, post-EOT colony counts were consistently lower 
for patients treated with fidaxomicin versus met/van, although 
the low number of samples meant that we were unable to ex-
clude this being due to chance alone. It is possible that C difficile 
spores were present in samples, but spore outgrowth was pre-
vented by fidaxomicin, as has been demonstrated in vitro [17], 
rather than there being a reduced number of spores. This re-
duced bioload did not translate to lower environmental con-
tamination rates, however, because the rate of environmental 
and skin contamination appeared to increase again once treat-
ment had been stopped, regardless of treatment, with no dif-
ference between fidaxomicin or met/van treated patients. More 
importantly, despite initial reduced bioload, patients continued 
to shed C difficile spores in their feces up to 28 days after treat-
ment regardless of treatment choice; spore counts were initially 
lower in patients after EOT, for those treated with fidaxomicin 
compared with met/van, but counts in the fidaxomicin group 
increased from EOT+7 onwards. Again, the low number of sam-
ples collected towards the end of the study should caution strong 
conclusions here. All longitudinal studies have challenges with 
participants dropping out, as time progresses. An important 
limitation is that sampling after EOT was restricted to patients 
who remained in the hospital after finishing their initial treat-
ment course, and therefore nonresponders are overpresented 
at later time points post-EOT. Thus, the increase in positivity 
post-EOT could partly reflect sampling bias towards these 
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patients. In addition, results may not reflect the situation after 
EOT in patients well enough to be discharged home. However, 
even post-EOT, more than 80% of environmental and stool 
samples matched the patient’s baseline ribotype, suggesting that 
recovery of strains different to the index strain was making a 
relatively small contribution to the increases. In addition, fecal 
samples were difficult to obtain, again reducing power.

Our results have important implications for environmental 
cleaning of the surfaces around patients with CDI. All rooms 
in our study were cleaned (during and after the patient stay) 
with sporicidal cleaning agents, which have been shown to re-
duce the risk of environmental contamination with C difficile 
[23, 24], with similar times between cleaning and swabbing 
for both groups (6 vs 5 hours, P  =  .5). Despite this, environ-
mental contamination continued in approximately one third to 
one half of all patients during and after treatment, suggesting 
that the environmental contamination seen here is due to con-
tinued shedding from patients and not residual contamination. 
This highlights the need for continued cleaning throughout a 
patient’s stay; indeed, recent focus on terminal room cleaning 
[23, 25] should be reviewed in light of this evidence. In addi-
tion, there is also evidence of environmental contamination 
from asymptomatic C difficile carriers, further emphasising the 
need for good, continued cleaning within hospital facilities, 
perhaps not only focused on those patients diagnosed with CDI 
[26].

Overall, we found that 5%–10% of samples from environ-
mental sites, skin, and stool contained more than one ribotypes 
by comparing results from a single colony pick and a sweep, con-
sistent with previously reported rates of mixed infection [27]. 
Given this, we did not attempt to restrict analyses of postbaseline 
contamination to identical ribotypes, because it is possible that 
ribotypes in the pretreatment stool could have been missed; 
moerover, baseline samples were not available for many patients. 
The fact that fewer samples post-EOT had identical ribotypes, 
both within the sampling time point and also compared with the 
baseline stool, supports ongoing contamination being a poten-
tial problem and a cause of onward transmission.

CONCLUSIONS

In summary, the results from our study suggests that environ-
mental contamination from patients with CDI is likely to be 
reduced by treatment with fidaxomicin rather than met/van, al-
though this effect may not persist after treatment has been com-
pleted. Our results underscore the need for continued optimal 
hygiene precautions even after diarrheal symptoms abate.
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