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ABSTRACT 

Genome-wide association studies have identified breast cancer risk variants in over 150 

genomic regions, but the mechanisms underlying risk remain largely unknown. These 

regions were explored by combining association analysis with in silico genomic feature 
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annotations. We defined 205 independent risk-associated signals with the set of credible 

causal variants (CCVs) in each one. In parallel, we used a Bayesian approach (PAINTOR) that 

combines genetic association, linkage disequilibrium, and enriched genomic features to 

determine variants with high posterior probabilities of being causal. Potentially causal 

variants were significantly over-represented in active gene regulatory regions and 

transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as 

targets of those potentially causal variants, using gene expression (eQTL), chromatin 

interaction and functional annotations. Known cancer drivers, transcription factors and 

genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene 

ontology pathways, were over-represented among the highest confidence target genes. 
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INTRODUCTION 

Genome-wide association studies (GWAS) have identified genetic variants associated with 

breast cancer risk in more than 150 genomic regions 1,2. However, the variants and genes 

driving these associations are mostly unknown, with fewer than 20 regions studied in detail 

3-20. Here, we aimed to fine-map all known breast cancer susceptibility regions using dense 

genotype data on > 217K subjects participating in the Breast Cancer Association Consortium 

(BCAC) and the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). All samples 

were genotyped using the OncoArrayTM 1,2,21 or the iCOGS chip 22,23. Stepwise multinomial 

logistic regression was used to identify independent association signals in each region and 

define credible causal variants (CCVs) within each signal. We found genomic features 

significantly overlapping the CCVs. We then used a Bayesian approach, integrating genomic 

features and genetic associations, to refine the set of likely causal variants and calculate 

their posterior probabilities. Finally, we integrated genetic and in silico epigenetic, 

expression and chromatin conformation data to infer the likely target genes of each signal. 

 

RESULTS 

Most breast cancer genomic regions contain multiple independent risk-associated signals 

We included 109,900 breast cancer cases and 88,937 controls, all of European ancestry, 

from 75 studies in the BCAC. Genotypes (directly observed or imputed) were available for 

639,118 single nucleotide polymorphisms (SNPs), deletion/insertions, and copy number 

variants (CNVs) with minor allele frequency (MAF) ≥ 0.1% within 152, previously defined, 

risk-associated regions (Supplementary Table 1; Figure 1). Multivariate logistic regression 

confirmed associations for 150/152 regions at a p-value < 10-4 significance threshold 
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(Supplementary Table 2A). To determine the number of independent risk signals within 

each region we applied stepwise multinomial logistic regression, deriving the association of 

each variant, conditional on the more significant ones, in order of statistical significance. 

Finally, we defined CCVs in each signal as variants with conditional p-values within two 

orders of magnitude of the index variant 24. We classified the evidence for each 

independent signal, and its CCVs, as either strong (conditional p-values <10-6) or moderate 

(10-6 < conditional p-values <10-4). 

 

From the 150 genomic regions we identified 352 independent risk signals containing 13,367 

CCVs, 7,394 of these were within the 196 strong-evidence signals across 129 regions 

(Figures 2A-B). The number of signals per region ranged from 1 to 11, with 79 (53%) 

containing multiple signals. We noted a wide range of CCVs per signal, but in 42 signals 

there was only a single CCV: for these signals, the simplest hypothesis is that the CCV is 

causal (Figures 2C-D, Table 1). Furthermore, within signals with few CCVs (<10), the mean 

scaled CADD score was higher than in signals with more CCVs (13.1 Vs 6.7 for CCVs in exons; 

Pttest = 2.7x10-4) suggesting that these are more likely to be functional. 

 

The majority of breast tumors express the estrogen receptor (ER-positive), but ~20% do not 

(ER-negative); these two tumor types have distinct biological and clinical characteristics 25. 

Using a case-only analysis for the 196 strong-evidence signals, we found 66 signals (34%; 

containing 1,238 CCVs) where the lead variant conferred a greater relative-risk of 

developing ER-positive tumors (false discovery rate, FDR 5%), and 29 (15%; 646 CCVs) where 

the lead variant conferred a greater risk of ER-negative cancer tumors (FDR 5%) 
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(Supplementary Table 2B, Figure 2E). The remaining 101 signals (51%, 5,510 CCVs) showed 

no difference by ER status (referred to as ER-neutral). 

 

Patients with BRCA1 mutations are more likely to develop ER-negative tumors 26. Hence, to 

increase our power to identify ER-negative signals, we performed a fixed-effects meta-

analysis, combining association results from BRCA1 mutation carriers in CIMBA with the 

BCAC ER-negative association results. This meta-analysis identified ten additional signals, 

seven ER-negative and three ER-neutral, making 206 strong-evidence signals (17% ER-

negative) containing 7,652 CCVs in total (Figure 2F). More than one quarter of the CCVs 

(2,277) were accounted for by one signal, resulting from strong linkage disequilibrium with a 

copy number variant. The remaining analyses focused on the other 205 strong signals across 

128 regions (Supplementary Table 2C). 

The proportion of the familial relative risk of breast cancer (FRR) explained by all 206 strong 

signals was 20.6%, compared with 17.6% when only the lead SNP for each region was 

considered. The proportion of the FRR explained increased by a further 3% (to 23.6%) when 

all 352 signals were considered (Supplementary Table 2D). 

CCVs are over-represented in active gene-regulatory regions and transcription factor 

binding sites. 

We constructed a database of mapped genomic-features in seven primary cells derived 

from normal breast and 19 breast cell lines using publicly available data, resulting in 811 

annotation tracks in total. These ranged from general features, such as whether a variant 

was in an exon or in open chromatin, to more specific features, such a cell-specific TF 

binding or histone mark (determined through ChIP-Seq experiments) in breast-derived cells 
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or cell lines. Using logistic regression, we examined the overlap of these genomic-features 

with the positions of 5,117 CCVs in the 195 strong-evidence BCAC signals versus the 

positions of 622,903 variants excluded as credible candidates in the same regions 

(Supplementary Figure 1A, Supplementary Table 3). We found significant enrichment of 

CCVs (FDR 5%) in the following genomic-features: 

 

(i) Open chromatin (determined by DNase-seq and FAIRE-seq) in ER-positive breast cancer 

cell-lines and normal breast (Figure 3A). Conversely, we found depletion of CCVs within 

heterochromatin (determined by the H3K9me3 mark in normal breast, and by chromatin-

state in ER-positive cells 27). 

 

(ii) Actively transcribed genes in normal breast and ER-positive cell lines (defined by 

H3K36me3 or H3K79me2 histone marks, Figure 3A). Enrichment was larger for ER-neutral 

CCVs than for those affecting either ER-positive or ER-negative tumors. 

 

(iii) Gene regulatory regions. CCVs overlapped distal gene regulatory elements in ER-positive 

breast cancer cells lines (defined by H3K4me1 or H3K27ac marks, Figure 3B). This was 

confirmed using the ENCODE definition of active enhancers in MCF-7 cells (enhancer-like 

regions defined by combining DNase and H3K27ac marks), as well as the definition of 28 and 

27 (Supplementary Table 3). Under these more stringent definitions, enrichment among ER-

positive CCVs was significantly larger than ER-negative or ER-neutral CCVs. Data from 27, 

showed that 73% of active enhancer regions overlapped by ER-positive CCVs in ER-positive 

cells (MCF-7), are inactive in the normal HMEC breast cell line; thus, these enhancers appear 

to be MCF-7-specific. 
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We also detected significant enrichment of CCVs in active promoters in ER-positive cells 

(defined by H3K4me3 marks in T-47D), although the evidence for this effect was weaker 

than for distal regulatory elements (defined by H3K27ac marks in MCF-7, Figure 3B). Only 

ER-positive CCVs were significantly enriched in T-47D active promoters. Conversely, CCVs 

were depleted among repressed gene-regulatory elements (defined by H3K27me3 marks) in 

normal breast (Figure 3B). As a control, we performed similar analyses with autoimmune 

disease CCVs 29 (Methods) and relevant B and T cells (Figures 3B-E). The strongest evidence 

of enrichment of breast cancer CCVs was found at regulatory regions active in ER-positive 

cells (Figure 3B), whereas enrichment of autoimmune CCVs was in regulatory regions active 

in B and T cells (Figure 3E). We also compared the enrichment of our CCVs in enhancer-like 

and promoter-like regions (defined by ENCODE; Supplementary Figure 1B). The strongest 

evidence of enrichment of ER-positive CCVs in enhancer-like regions was found in MCF-7 

cells, the only ER-positive cell line in ENCODE (Supplementary Figure 1B). These results 

highlight both the tissue- and disease-specificity of these histone marked gene regulatory 

regions. 

 

(iv) We observed significant enrichment of CCVs in the binding sites for 40 transcription 

factor binding sites(TFBS) determined by ChIP-Seq (Figures 3F-H). The majority of the 

experiments were performed in ER-positive cell lines (90 TFBSs, 20 with data in ER-negative 

cell lines, 76 in ER-positive cell lines, and 16 in normal breast). These TFBSs overlap each 

other and histone marks of active regulatory regions (Supplementary Figure 2). Enrichment 

in five TFBSs (ESR1, FOXA1, GATA3, TCF7L2, E2F1) has been previously reported 2,30. All 40 

TFBSs were significantly enriched in ER-positive CCVs (Figure 3F), seven were also enriched 
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in ER-negative CCVs and nine in ER-neutral CCVs (Figures 3G-H). ESR1, FOXA1, GATA3 and 

EP300 TFBSs were enriched in all CCV ER-subtypes. However, the enrichment for ESR1, 

FOXA1 or GATA3 was stronger for ER-positive CCVs than for ER-negative or ER-neutral. 

 

CCVs significantly overlap consensus transcription factor binding motifs 

We investigated whether CCVs were also enriched within consensus transcription factor 

binding motifs by conducting a motif-search within active regulatory regions (ER-positive 

CCVs at H3K4me1 marks in MCF-7). We identified 30 motifs, from eight transcription factor 

families, with enrichment in ER-positive CCVs (FDR 10%, Supplementary Table 4A) and a 

further five motifs depleted among ER-positive CCVs. To assess whether the motifs 

appeared more frequently than by chance at active regulatory regions overlapped by our 

ER-positive CCVs, we compared motif-presence in a set of randomized control sequences 

(Methods). Thirteen of 30 motifs were more frequent at active regulatory regions with ER-

positive CCV enrichment; these included seven homeodomain motifs and two fork head 

factors (Supplementary Table 4B). 

 

When we looked at the change in predicted binding affinity, 57 ER-positive signals (86%) 

included at least one CCV predicted to modify the binding affinity of the enriched TFBSs (≥2-

fold, Supplementary Table 4C). Forty-eight ER-positive signals (73%) had at least one CCV 

predicted to modify the binding affinity >10-fold. This analysis validates previous reports of 

breast cancer causal variants that alter DNA binding affinity for FOXA1 3,30 

 

Bayesian fine -mapping incorporating functional annotations and linkage disequilibrium 
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As an alternative statistical approach for inferring likely causal variants, we applied PAINTOR 

31 to the same 128 regions (Figure 1). In brief, PAINTOR integrates genetic association 

results, linkage disequilibrium (LD) structure, and enriched genomic features in an empirical 

Bayes framework and derives the posterior probability of each variant being causal, 

conditional on available data. To eliminate artifacts due to differences in genotyping and 

imputation across platforms, we restricted PAINTOR analyses to cases and controls typed 

using the OncoArray (61% of the total). We identified seven variants with high posterior 

probability (HPP ≥ 80%) of being causal for overall breast cancer and ten for the ER-positive 

subtype (Table 1); two of these had HPP > 80% for both ER-positive and overall breast 

cancer. These 15 HPP variants (HPPVs; ≥ 80%) were distributed across 13 regions. We also 

identified an additional 35 variants in 25 regions with HPP (≥ 50% and < 80%) for ER-

positive, ER-negative, or overall breast cancer (Figure 2G).  

 

Consistent with the CCV analysis, we found evidence that most regions contained multiple 

HPPVs; the sum of posterior probabilities across all variants in a region (an estimate of the 

number of distinct causal variants in the region) was > 2.0 for 84/86 regions analyzed for 

overall breast cancer, with a maximum of 16.1 and a mean of 6.4. For ER-positive cancer, 

46/47 regions had total posterior probability > 2.0 (maximum 18.3, mean 6.5) and for ER-

negative, 17/23 regions had total posterior probability > 2.0 (maximum 9.1, mean 3.2). 

 

Although for many regions we were not able to identify HPP variants, we were able to 

reduce the proportion of variants needed to account for 80% of the total posterior 

probability in a region to under 5% for 65 regions for overall, 43 for ER-positive, and 18 for 

ER-negative breast cancer (Supplementary Figure 3A-C). PAINTOR analyses were also able 
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to reduce the set of likely causal variants in many cases. After summing the posterior 

probabilities for CCVs in each of the overall breast cancer signals, 39/100 strong-evidence 

signals had a total posterior probability > 1.0. The number of CCVs in these signals ranged 

from 1 to 375 (median 24), but the number of variants needed to capture 95% of the total 

PP in each signal ranged from 1 to 115 (median 12), representing an average reduction of 

43% in the number of variants needed to capture the signal. 

 

PAINTOR and CCV analyses were generally consistent, yet complementary. Only 3.3% of 

variants outside of the set of strong-signal CCVs for overall breast cancer had posterior 

probability > 1%, and only 48 (0.013%) of these had posterior probability > 30% 

(Supplementary Figure 3D). At ER-positive and ER-negative signals respectively, 3.1% and 

1.6% of the non-CCVs at strong signals had posterior probability > 1%, and 40 (0.019%) and 

3 (0.003%) of these had posterior probability > 30% (Figures S3E-F). For the non-CCVs at 

strong-evidence signals with posterior probability > 30%, the relatively high posterior 

probability may be driven by the addition of functional annotation. Indeed, the 

incorporation of functional annotations more than doubled the posterior probability for 

64/88 variants when compared to a PAINTOR model with no functional annotations.  

 

CCVs co-localize with variants controlling local gene expression 

We used four breast-specific expression quantitative trait loci (eQTL) data sets to identify a 

credible set of variants associated with differences in gene expression (eVariants): tumor 

tissue from the Nurses’ Health Study (NHS) 32 and The Cancer Genome Atlas (TCGA) 33, and 

normal breast tissue from the NHS and the Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC) 34. We then examined the overlap of eVariants (for 
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each gene eVariants were defined as those variants that had a p-value within two orders of 

magnitude of the variant most significantly associated with that gene’s expression) with 

CCVs (Methods). There was significant overlap of CCVs with eVariants from both the NHS 

normal and breast cancer tissue studies (normal breast OR = 2.70, p-value = 1.7×10-5; tumor 

tissue OR = 2.34, p-value = 2.6×10-4; Supplementary Table 3). ER-neutral CCVs overlapped 

with eVariants in normal tissue more frequently than did ER-positive and ER-negative CCVs 

(ORER-neutral = 3.51, p-value = 1.3×10-5). Cancer risk CCVs overlapped credible eVariants in 

128/205 (62%) signals in at least one of the datasets (Supplementary Table 5A-B). Sixteen 

additional variants with PP ≥ 30%, not included among the CCVs, also overlapped with a 

credible eVariant (Supplementary Table 5A-B). 

 

Transcription factors and known somatic breast cancer drivers are overrepresented 

among prioritized target genes  

We assumed that causal variants function by affecting the behavior of a local target gene. 

However, it is challenging to define target genes or to determine how they may be affected 

by the causal variant. Few potentially causal variants directly affect protein coding: we 

observed 67/5,375 CCVs, and 19/137 HPPVs (≥ 30%) in protein-coding regions. Of these, 33 

(0.61%) were predicted to create a missense change, one a frameshift, and another a stop-

gain, while 30 were synonymous (0.59%, Supplementary Table 5C). Four hundred and 

ninety-nine CCVs at 94 signals, and four additional HPPV (≥ 30%), are predicted to create 

new splice sites or activate cryptic splice sites in 126 genes (Supplementary Table 5D). 

These results are consistent with previous observations that majority of common 

susceptibility variants are regulatory. 
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We applied an updated version of our pipeline INQUISIT - integrated expression quantitative 

trait and in-silico prediction of GWAS targets) 2 to prioritize potential target genes from 

5,375 CCVs in strong signals and all 138 HPPVs (≥ 30%; Supplementary Table 2C). The 

pipeline predicted 1,204 target genes from 124/128 genomic regions examined. As a 

validation we examined the overlap between INQUISIT predictions and 278 established 

breast cancer driver genes 35-39. Cancer driver genes were over-represented among high 

confidence (Level 1) targets; a 5-fold increase over expected from CCVs and 15-fold from 

HPPVs; p-value= 1×10-6; Supplementary Figure 4A). Notably, thirteen cancer driver genes 

(ATAD2, CASP8, CCND1, CHEK2, ESR1, FGFR2, GATA3, MAP3K1, MYC, SETBP1, TBX3, XBP1 

and ZFP36L1) were predicted from the HPPVs derived from PAINTOR. Cancer driver gene 

status was consequently included as an additional weighting factor in the INQUISIT pipeline. 

TF genes 40 were also enriched amongst high-confidence targets predicted from both CCVs 

(2-fold, p-value = 4.6×10-4) and HPPVs (2.5-fold, p-value = 1.8×10-2, Supplementary Figure 

4A). 

 

In total INQUISIT identified 191 target genes supported by strong evidence (Supplementary 

Table 6). Significantly more genes were targeted by multiple independent signals (N = 165) 

than expected by chance (p-value = 4.3×10-8, Supplementary Figure 4B, Figure 4). Six high-

confidence predictions came only from HPPVs, although three of these (IGFBP5, POMGNT1 

and WDYHV1) had been predicted at lower confidence from CCVs. Target genes included 20 

that were prioritized via potential coding/splicing changes (Supplementary Table 7), ten via 

promoter variants (Supplementary Table 8), and 180 via distal regulatory variants 

(Supplementary Table 9). We illustrate genes prioritized via multiple lines of evidence in 

Figure 4A. 



 36 

 

Three examples of INQUISIT using genomic features to identify predict target genes. Based 

on capture Hi-C and ChIA-PET chromatin interaction data, NRIP1 is a predicted target of 

intergenic CCVs and HPPVs at chr21q21 (Supplementary Figure 5A). Multiple target genes 

were predicted at chr22q12, including the driver genes CHEK2 and XBP1 (Supplementary 

Figure 5B). A third example at chr12q24.31 is a more complicated scenario with two Level 1 

targets: RPLP0 41 and a modulator of mammary progenitor cell expansion, MSI1 42 

(Supplementary Figure 5C). 

 

Target gene pathways include DNA integrity-checkpoint, apoptosis, developmental 

processes and the immune system 

We performed pathway analysis to identify common processes using INQUSIT high 

confidence target protein-coding genes (Figure 5A) and identified 488 Gene Ontology terms 

and 307 pathways at an FDR of 5% (Supplementary Table 10). These were grouped into 98 

themes by common ancestor Gene Ontology terms, pathways, or transcription factor 

classes (Figure 5B). We found that 23% (14/60) of the ER-positive target genes were 

classified within developmental process pathways (including mammary development), 18% 

in immune system and a further 17% in nuclear receptors pathways. Of genes targeted by 

ER-neutral signals, 21% (18/87) were classified in developmental process pathways, 19% in 

in immune system pathways, and a further 18% in apoptotic process. The top themes of 

genes targeted by ER-negative signals were DNA integrity checkpoint and immune system, 

each containing 19% (7/37) genes, and apoptotic processes (16%). 
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Novel pathways revealed by this study include TNF-related apoptosis-inducing ligand (TRAIL) 

signaling, the AP-2 transcription factors pathway, and regulation of IB kinase/NF-B 

signaling. Of note, the latter of these is specifically overrepresented among ER-negative 

target genes. We also found significant overrepresentation of additional carcinogenesis-

linked pathways including cAMP, NOTCH, PI3K, RAS, WNT/Beta-catenin, and of receptor 

tyrosine kinases signaling, including FGFR, EGFR, or TGFBR 43-47. Finally, our target genes are 

also significantly overrepresented in DNA damage checkpoint, DNA repair pathways, as well 

as programmed cell death pathways, such as apoptotic process, regulated necrosis, and 

death receptor signaling-related pathways. 

 

DISCUSSION 

We have performed multiple, complementary analyses on 150 breast cancer associated 

regions, originally found by GWAS, and identified 362 independent risk signals, 205 of these 

with high confidence (p-value < 10-6). The inclusion of these new variants increases the 

explained proportion of familial risk by 6% when compared to that explained by the lead 

signals alone.  

We observed most regions contain multiple independent signals, the greatest number 

(nine) in the region surrounding ESR1 and its co-regulated genes, and on 2q35, where 

IGFBP5 appears to be a key target. We have used two complementary approaches to 

identify likely causal variants within each region: a Bayesian approach, PAINTOR, which 

integrated genetic associations, LD and informative genomic features, providing 

complementary evidence supporting most associations found by the more traditional, 

multinomial regression approach, and also identified additional variants. Specifically, the 
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Bayesian method highlighted 15 variants that are highly likely to be causal (HPP ≥ 80%). 

From these approaches we have identified a single variant, likely to be causal, at each of 34 

signals (Table 1). Of these, only rs16991615 (MCM8 NP_115874.3:p.E341K) and rs7153397 

(CCDC88C NM_001080414.2:c.5058+1342G>A, a cryptic splice-donor site) were predicted to 

affect protein-coding sequences. However, in other signals we also identified four coding 

changes previously recognized as deleterious, including the stop-gain rs11571833 (BRCA2 

NP_000050.2:p.K3326*, Meeks et al., 2016)48 and two CHEK2 coding variants; the frameshift 

rs555607708 49,50, and a missense variant, rs17879961 51,52. In addition, a splicing variant, 

rs10069690, in TERT results in the truncated protein INS1b 19, decreased telomerase 

activity, telomere shortening, and increased DNA damage response 53  

 

Having identified potential causal variants within each signal, we aimed to uncover their 

functions at the DNA level and as well as trying to predict their target gene(s). Looking 

across all 150 regions, a notable feature is that many likely causal variants implicated in ER-

positive cancer risk, lie in gene-regulatory regions marked as open and active in ER-positive 

breast cells, but not in other cell types. Moreover, a significant proportion of potential 

causal variants overlap the binding sites for transcription factor proteins (n=40 from ChIP-

Seq) and co-regulators (n=64 with addition of computationally derived motifs). 

Furthermore, nine proteins also appear in the list of high-confidence target genes, hence 

the following genes and their products have been implicated by two different approaches: 

CREBBP, EP300, ESR1, FOXI1, GATA3, MEF2B, MYC, NRIP1 and TCF7L2. Most proteins 

encoded by these genes already have established roles in estrogen signaling. CREBBP, 

EP300, ESR1, GATA3, and MYC are also known cancer driver genes that are frequently 

somatically mutated in breast tumors. 
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In contrast to ER-positive signals, we identified fewer genomic features enriched in ER-

negative signals. This may reflect the common molecular mechanisms underlying their 

development, but the power of this study was limited, despite including as many patients 

with ER-negative tumors as possible, from the BCAC and CIMBA consortia. Less than 20% of 

genomic signals confer a greater risk of ER-negative cancer and there is little publicly 

available ChIP-Seq data on ER-negative breast cancer cell lines. The heterogeneity of ER-

negative tumors may also have limited our power. Nevertheless, we have identified 35 

target genes for ER-negative likely causal variants. Some of these already had functional 

evidence supporting their role: including CASP8 54 and MDM4 55. Most targets, however, 

currently have no reported function in ER-negative breast cancer development. 

 

Finally, we examined the gene-ontology pathways in which target genes most often lie. Of 

note, 14% (25/180) of all high-confidence target genes and 19% of ER-negative target 

predictions are in immune system pathways. Among the significantly enriched pathways 

were T cell activation, interleukin signaling, Toll-like receptor cascades, and I-B kinase/NF-

B signaling, as well as processes leading to activation and perpetuation of the innate 

immune system. The link between immunity, inflammation and tumorigenesis has been 

extensively studied 56, although not primarily in the context of susceptibility. Five ER-

negative high confidence target genes (ALK, CASP8, CFLAR, ESR1, TNFSF10) lie in the I-B 

kinase/NF-B signaling pathway. Interestingly, ER-negative cells have high levels of NF-kB 

activity when compared to ER-positive 57. A recent expression–methylation analysis on 

breast cancer tumor tissue also identified clusters of genes correlated with DNA methylation 

levels, one enriched in ER signaling genes, and a second in immune pathway genes 58. 
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These analyses provide strong evidence for more than 200 independent breast cancer risk 

signals, identify the plausible cancer variants and define likely target genes for the majority 

of these. However, notwithstanding the enrichment of certain pathways and transcription 

factors, the biological basis underlying most of these signals remains poorly understood. 

Our analyses provide a rational basis for such future studies into the biology underlying 

breast cancer susceptibility. 

 

ACKNOWLEDGMENTS 

We thank all the individuals who took part in these studies and all the researchers, 

clinicians, technicians and administrative staff who have enabled this work to be carried out. 

This work was supported by the European Union’s Horizon 2020 research and innovation 

programme under the Marie Sklodowska-Curie grant agreement No 656144. Genotyping of 

the OncoArray was principally funded from three sources: the PERSPECTIVE project, funded 

by the Government of Canada through Genome Canada and the Canadian Institutes of 

Health Research, the ‘Ministère de l’Économie, de la Science et de l’Innovation du Québec’ 

through Genome Québec, and the Quebec Breast Cancer Foundation; the NCI Genetic 

Associations and Mechanisms in Oncology (GAME-ON) initiative and Discovery, Biology and 

Risk of Inherited Variants in Breast Cancer (DRIVE) project (NIH Grants U19 CA148065 and 

X01HG007492); and Cancer Research UK (C1287/A10118 and C1287/A16563). BCAC is 

funded by Cancer Research UK (C1287/A16563), by the European Community’s Seventh 

Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS) 

and by the European Union’s Horizon 2020 Research and Innovation Programme under 

grant agreements 633784 (B-CAST) and 634935 (BRIDGES). Genotyping of the iCOGS array 



 41 

was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK 

(C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial 

Risks of Breast Cancer’ program, and the Ministry of Economic Development, Innovation 

and Export Trade of Quebec, grant PSR-SIIRI-701. Combining of the GWAS data was 

supported in part by The National Institute of Health (NIH) Cancer Post-Cancer GWAS 

initiative grant U19 CA 148065 (DRIVE, part of the GAME-ON initiative). For a full description 

of funding and acknowledgments, see Supplementary Note. 

 

AUTHOR CONTRIBUTIONS 

Conceptualization: L.Fa., H.As., J.Be., D.R.B., J.Al., S.Ka., K.A.P., K.Mi., P.So., A.Le., M.Gh., 

P.D.P.P., J.C.C., M.G.C., M.K.S., R.L.M., V.N.K., J.D.E., S.L.E., A.C.A., G.C.T., J.Si., D.F.E., P.K., 

A.M.D. Methodology: L.Fa., H.As., J.Be., D.R.B., J.Al., J.D.E., S.L.E., A.C.A., G.C.T., J.Si., D.F.E., 

P.K., A.M.D. Software: J.Be., J.P.T., M.L. Formal analysis: L.Fa., H.As., J.Be., D.R.B., J.Al., S.Ka., 

C.Tu., M.Mor., X.J. Resources: S.A., K.A., M.R.A., I.L.A., H.A.C., N.N.A., A.A., V.A., K.J.A., 

B.K.A., B.A., P.L.A., J.Az., J.Ba., R.B.B., D.B., A.B.F., J.Ben., M.B., K.B., A.M.B., C.B., W.B., 

N.V.B., S.E.B., B.Bo., A.B., H.Bra., H.Bre., I.B., I.W.B., A.B.W., T.B., B.Bu., S.S.B., Q.C., T.C., 

M.A.C., N.J.C., I.C., F.C., J.S.C., B.D.C., J.E.C., J.C., H.C., W.K.C., K.B.M., C.L.C., J.M.C., S.C., 

F.J.C., A.C., S.S.C., C.C., K.C., M.B.D., M.D.H., P.D., O.D., Y.C.D., G.S.D., S.M.D., T.D., I.D.S., 

A.D., S.D., M.Dum., M.Dur., L.D., M.Dw., D.M.E., C.E., M.E., D.G.E., P.A.F., U.F., O.F., G.F., 

H.F., L.Fo., W.D.F., E.F., L.Fr., D.F., M.Ga., M.G.D., G.Ga., P.A.G., S.M.G., J.Ga., J.A.G., M.M.G., 

V.G., G.G.G., G.Gl., A.K.G., M.S.G., D.E.G., A.G.N., M.H.G., M.Gr., J.Gr., A.G., P.G., E.H., C.A.H., 

N.H., P.Ha., U.H., P.A.H., J.M.H., M.H., W.H., C.S.H., B.A.M., J.H., P.Hi., F.B.L., A.H., M.J.H., 

J.L.H., A.Ho., G.H., P.J.H., E.N.I., C.I., M.I., A.Jag., M.J., A.Jak., P.J., R.J., R.C.J., E.M.J., N.J., 

M.E.J., A.Juk., A.Jun., R.Ka., D.K., B.Pes., R.Ke., M.J.K., E.K., J.I.K., J.K., C.M.K., Y.K., I.K., V.K., 



 42 

S.Ko., K.K.S., T.K., A.K., K.K., Y.L., D.L., E.L., G.L., J.Le., F.L., A.Li., W.L., J.Lo., A.Lo., J.T.L., J.Lu., 

R.J.M., T.M., E.M., A.Ma., M.Ma., S.Man., S.Mag., M.E.M., K.Ma., D.M., R.M., L.M., C.M., 

N.Me., A.Me., P.M., A.Mi., N.Mi., M.Mo., F.M., A.M.M., V.M.M., T.A., S.A.N., R.N., K.L.N., 

N.Z.N., H.N., P.N., F.C.N., L.N.Z., A.N., K.O., E.O., O.I.O., H.O., N.O., A.O., V.S.P., J.Pa., S.K.P., 

T.W.P.S., M.T.P., J.Pau., I.S.P., B.Pei., B.Y.K., P.P., J.Pe., D.P.K., K.Pr., R.P., N.P., D.P., M.A.P., 

K.Py., P.R., S.J.R., J.R., R.R.M., G.R., H.A.R., M.R., A.R., C.M.R., E.S., E.S.H., D.P.S., M.Sa., C.Sa., 

E.J.S., M.T.S., D.F.S., R.K.S., A.S., M.J.S., B.S., P.Sc., C.Sc., R.J.S., L.S., C.M.D., M.Sh., P.Sh., 

C.Y.S., X.S., C.F.S., T.P.S., S.S., M.C.S., J.J.S., A.B.S., J.St., D.S.L., C.Su., A.J.S., R.M.T., Y.Y.T., 

W.J.T., J.A.T., M.R.T., M.Te., S.H., M.B.T., A.T., M.Th., D.L.T., M.G.T., M.Ti., A.E.T., R.A.E., I.T., 

D.T., G.T.M., M.A.T., N.T., M.Tz., H.U.U., C.M.V., C.J.A., L.E.K., E.J.R., A.Ve., A.Vi., J.V., M.J.V., 

Q.W., B.W., C.R.W., J.N.W., C.W., H.W., R.W., A.W., A.H.W., D.Y., Y.Z., W.Z. Data 

management and curation: K.Mi., J.D., M.K.B., Q.W., R.Ke., J.C.C. and M.K.S. Writing original 

draft: L.Fa., H.As., J.Be., G.C.T., D.F.E., P.K., A.M.D. Writing review and editing: D.R.B., J.Al., 

P.So., A.Le., V.N.K., J.D.E., S.L.E., A.C.A., J.Si. Visualization: L.Fa., H.As., J.Be., C.Tu. 

Supervision: A.C.A., G.C.T., J.Si., D.F.E., P.K., A.M.D. Funding acquisition: L.Fa., P.D.P.P., 

J.C.C., M.G.C., M.K.S., R.L.M., V.N.K., J.D.E., S.L.E., A.C.A., G.C.T., J.Si., D.F.E., P.K., A.M.D. All 

authors read and approved the final version of the manuscript. 

 

COMPETING INTERESTS STATEMENT 

The authors declare no competing interests. 

 

References 

 



 43 

1. Milne, R.L. et al. Identification of ten variants associated with risk of estrogen-

receptor-negative breast cancer. Nat Genet 49, 1767-1778 (2017). 

2. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. 

Nature 551, 92-+ (2017). 

3. Ghoussaini, M. et al. Evidence that breast cancer risk at the 2q35 locus is mediated 

through IGFBP5 regulation. Nat Commun 4, 4999 (2014). 

4. Wyszynski, A. et al. An intergenic risk locus containing an enhancer deletion in 2q35 

modulates breast cancer risk by deregulating IGFBP5 expression. Hum Mol Genet 25, 

3863-3876 (2016). 

5. Guo, X. et al. Fine-scale mapping of the 4q24 locus identifies two independent loci 

associated with breast cancer risk. Cancer Epidemiol Biomarkers Prev 24, 1680-91 

(2015). 

6. Glubb, D.M. et al. Fine-scale mapping of the 5q11.2 breast cancer locus reveals at 

least three independent risk variants regulating MAP3K1. Am J Hum Genet 96, 5-20 

(2015). 

7. Dunning, A.M. et al. Breast cancer risk variants at 6q25 display different phenotype 

associations and regulate ESR1, RMND1 and CCDC170. Nat Genet 48, 374-86 (2016). 

8. Shi, J. et al. Fine-scale mapping of 8q24 locus identifies multiple independent risk 

variants for breast cancer. Int J Cancer 139, 1303-1317 (2016). 

9. Orr, N. et al. Fine-mapping identifies two additional breast cancer susceptibility loci 

at 9q31.2. Hum Mol Genet 24, 2966-84 (2015). 

10. Darabi, H. et al. Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer 

Risk Locus Regulate NRBF2 Expression. Am J Hum Genet 97, 22-34 (2015). 



 44 

11. Darabi, H. et al. Fine scale mapping of the 17q22 breast cancer locus using dense 

SNPs, genotyped within the Collaborative Oncological Gene-Environment Study 

(COGs). Sci Rep 6, 32512 (2016). 

12. Meyer, K.B. et al. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative 

functional variants differentially bind FOXA1 and E2F1. Am J Hum Genet 93, 1046-60 

(2013). 

13. Betts, J.A. et al. Long Noncoding RNAs CUPID1 and CUPID2 Mediate Breast Cancer 

Risk at 11q13 by Modulating the Response to DNA Damage. Am J Hum Genet 101, 

255-266 (2017). 

14. French, J.D. et al. Functional variants at the 11q13 risk locus for breast cancer 

regulate cyclin D1 expression through long-range enhancers. Am J Hum Genet 92, 

489-503 (2013). 

15. Ghoussaini, M. et al. Evidence that the 5p12 Variant rs10941679 Confers 

Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and 

MRPS30 Regulation. Am J Hum Genet 99, 903-911 (2016). 

16. Horne, H.N. et al. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. 

PLoS One 11, e0160316 (2016). 

17. Zeng, C. et al. Identification of independent association signals and putative 

functional variants for breast cancer risk through fine-scale mapping of the 12p11 

locus. Breast Cancer Res 18, 64 (2016). 

18. Lin, W.Y. et al. Identification and characterization of novel associations in the 

CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Hum Mol Genet 

24, 285-98 (2015). 



 45 

19. Bojesen, S.E. et al. Multiple independent variants at the TERT locus are associated 

with telomere length and risks of breast and ovarian cancer. Nat Genet 45, 371-84, 

384e1-2 (2013). 

20. Lawrenson, K. et al. Functional mechanisms underlying pleiotropic risk alleles at the 

19p13.1 breast-ovarian cancer susceptibility locus. Nat Commun 7, 12675 (2016). 

21. Amos, C.I. et al. The OncoArray Consortium: A Network for Understanding the 

Genetic Architecture of Common Cancers. Cancer Epidemiol Biomarkers Prev 26, 

126-135 (2017). 

22. Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with 

breast cancer risk. Nat Genet 45, 353-61, 361e1-2 (2013). 

23. Michailidou, K. et al. Genome-wide association analysis of more than 120,000 

individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics 47, 

373-U127 (2015). 

24. Udler, M.S., Tyrer, J. & Easton, D.F. Evaluating the power to discriminate between 

highly correlated SNPs in genetic association studies. Genet Epidemiol 34, 463-8 

(2010). 

25. Mavaddat, N., Antoniou, A.C., Easton, D.F. & Garcia-Closas, M. Genetic susceptibility 

to breast cancer. Mol Oncol 4, 174-91 (2010). 

26. Lakhani, S.R. et al. Prediction of BRCA1 status in patients with breast cancer using 

estrogen receptor and basal phenotype. Clin Cancer Res 11, 5175-80 (2005). 

27. Taberlay, P.C., Statham, A.L., Kelly, T.K., Clark, S.J. & Jones, P.A. Reconfiguration of 

nucleosome-depleted regions at distal regulatory elements accompanies DNA 

methylation of enhancers and insulators in cancer. Genome Res 24, 1421-32 (2014). 



 46 

28. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 

934-47 (2013). 

29. Farh, K.K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease 

variants. Nature 518, 337-43 (2015). 

30. Cowper-Sal lari, R. et al. Breast cancer risk-associated SNPs modulate the affinity of 

chromatin for FOXA1 and alter gene expression. Nat Genet 44, 1191-8 (2012). 

31. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical 

fine-mapping studies. PLoS Genet 10, e1004722 (2014). 

32. Quiroz-Zarate, A. et al. Expression Quantitative Trait loci (QTL) in tumor adjacent 

normal breast tissue and breast tumor tissue. PLoS One 12, e0170181 (2017). 

33. Cancer Genome Atlas Research, N. et al. The Cancer Genome Atlas Pan-Cancer 

analysis project. Nat Genet 45, 1113-20 (2013). 

34. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours 

reveals novel subgroups. Nature 486, 346-52 (2012). 

35. Ciriello, G. et al. Comprehensive Molecular Portraits of Invasive Lobular Breast 

Cancer. Cell 163, 506-19 (2015). 

36. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-

genome sequences. Nature 534, 47-54 (2016). 

37. Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their 

genomic and transcriptomic landscapes. Nat Commun 7, 11479 (2016). 

38. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast 

tumours. Nature 490, 61-70 (2012). 

39. Bailey, M.H. et al. Comprehensive Characterization of Cancer Driver Genes and 

Mutations. Cell 173, 371-385 e18 (2018). 



 47 

40. Lambert, S.A. et al. The Human Transcription Factors. Cell 172, 650-665 (2018). 

41. Artero-Castro, A. et al. Disruption of the ribosomal P complex leads to stress-induced 

autophagy. Autophagy 11, 1499-519 (2015). 

42. Wang, X.Y. et al. Musashi1 modulates mammary progenitor cell expansion through 

proliferin-mediated activation of the Wnt and Notch pathways. Mol Cell Biol 28, 

3589-99 (2008). 

43. Vijayan, D., Young, A., Teng, M.W.L. & Smyth, M.J. Targeting immunosuppressive 

adenosine in cancer. Nat Rev Cancer 17, 709-724 (2017). 

44. Takebe, N. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: 

clinical update. Nat Rev Clin Oncol 12, 445-64 (2015). 

45. Thorpe, L.M., Yuzugullu, H. & Zhao, J.J. PI3K in cancer: divergent roles of isoforms, 

modes of activation and therapeutic targeting. Nat Rev Cancer 15, 7-24 (2015). 

46. Nusse, R. & Clevers, H. Wnt/beta-Catenin Signaling, Disease, and Emerging 

Therapeutic Modalities. Cell 169, 985-999 (2017). 

47. Massague, J. TGFbeta signalling in context. Nat Rev Mol Cell Biol 13, 616-30 (2012). 

48. Meeks, H.D. et al. BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, 

Prostate, and Ovarian Cancers. J Natl Cancer Inst 108(2016). 

49. CHEK2 Breast Cancer Case-Control Consortium. CHEK2*1100delC and susceptibility 

to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 

9,065 controls from 10 studies. Am J Hum Genet 74, 1175-82 (2004). 

50. Schmidt, M.K. et al. Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates 

for CHEK2*1100delC Carriers. J Clin Oncol 34, 2750-60 (2016). 

51. Kilpivaara, O. et al. CHEK2 variant I157T may be associated with increased breast 

cancer risk. Int J Cancer 111, 543-7 (2004). 



 48 

52. Muranen, T.A. et al. Patient survival and tumor characteristics associated with 

CHEK2:p.I157T - findings from the Breast Cancer Association Consortium. Breast 

Cancer Res 18, 98 (2016). 

53. Killedar, A. et al. A Common Cancer Risk-Associated Allele in the hTERT Locus 

Encodes a Dominant Negative Inhibitor of Telomerase. PLoS Genet 11, e1005286 

(2015). 

54. De Blasio, A. et al. Unusual roles of caspase-8 in triple-negative breast cancer cell line 

MDA-MB-231. Int J Oncol 48, 2339-48 (2016). 

55. Haupt, S. et al. Targeting Mdmx to treat breast cancers with wild-type p53. Cell 

Death Dis 6, e1821 (2015). 

56. Pandya, P.H., Murray, M.E., Pollok, K.E. & Renbarger, J.L. The Immune System in 

Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res 2016, 

4273943 (2016). 

57. Gionet, N., Jansson, D., Mader, S. & Pratt, M.A. NF-kappaB and estrogen receptor 

alpha interactions: Differential function in estrogen receptor-negative and -positive 

hormone-independent breast cancer cells. J Cell Biochem 107, 448-59 (2009). 

58. Fleischer, T. et al. DNA methylation at enhancers identifies distinct breast cancer 

lineages. Nat Commun 8, 1379 (2017). 

 



 49 

 
METHODS 

Study samples 

Epidemiological data for European women were obtained from 75 breast cancer case-control studies 

participating in the Breast Cancer Association Consortium (BCAC) (cases: 40,285 iCOGS, 69,615 

OncoArray; cases with ER status available: 29,561 iCOGS, 55,081 OncoArray); controls: 38,058 iCOGS, 

50,879 OncoArray). Details of the participating studies, genotyping calling and quality control are 

given in 2,22,23, respectively. Epidemiological data for BRCA1 mutation carriers were obtained from 60 

studies providing data to the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) 

(affected 1,591 iCOGS, 7,772 OncoArray; unaffected 1,665 iCOGS, 7,780 OncoArray). This dataset has 

been described in detail previously 1,59,60. All studies provided samples of European ancestry. Any non-

European samples were excluded from analyses. 

 

Variant selection and genotyping  

Similar approaches were used to select variants for inclusion on the iCOGS and OncoArray, which are 

described in detail elsewhere 2,21. Both arrays including a dense coverage of variants across known 

susceptibility regions (at the time of their design), with sparser coverage of the rest of the genome.  

Twenty-one known susceptibility regions were selected for dense genotyping using iCOGS and 73 

regions using the Oncoarray: the regions were 1Mb intervals centred on the published lead GWAS hit 

(combined into larger intervals where these overlapped). For iCOGS: all known variants from the 

March 2010 release of the 1000 Genomes Project with MAF > 0.02 in Europeans were identified, and 

all those correlated with the published GWAS variants at r2 > 0.1 together with a set of variants 

designed to tag all remaining variants at r2 > 0.9 were selected to be included in the array. 
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(http://ccge.medschl.cam.ac.uk/files/2014/03/iCOGS_detailed_lists_ALL1.pdf). For Oncoarray, all 

designable variants correlated with the known hits at r2 > 0.6, plus all variants from lists of potentially 

functional variants on RegulomeDB, and a set of variants designed to tag all remaining variants at r2 > 

0.9 were selected. In total, across the 152 regions considered here, 26,978 iCOGS and 58,339 

OncoArray genotyped variants passed QC criteria.  

We imputed genotypes for all remaining variants using IMPUTE2 61 and the October 2014 release of 

the 1000 Genomes Project as a reference. Imputation was conducted independently in the iCOGS and 

OncoArray subsets. To improve accuracy at low frequency variants, we used the standard IMPUTE2 

MCMC algorithm for follow-up imputation, which includes no pre-phasing of the genotypes and 

increasing both the buffer regions and the number of haplotypes to use as templates (more detailed 

description of the parameters used can be found in 21).  We thus genotyped or successfully imputed 

639,118 variants (all with imputation info score ≥ 0.3 and minor allele frequency (MAF) ≥ 0.001 in 

both iCOGS and OncoArray datasets). Imputation summaries, and coverage for each of the analyzed 

regions stratified by allele frequency can be found in Supplementary Table 1B. 

 

BCAC Statistical analyses 

Per-allele odds ratios (OR) and standard errors (SE) were estimated for each variant using logistic 

regression. We ran this analysis separately for iCOGS and OncoArray, and for overall, ER-positive and 

ER-negative breast cancer. The association between each variant and breast cancer risk was adjusted 

by study (iCOGS) or country (OncoArray), and eight (iCOGS) or ten (OncoArray) ancestry-informative 

principal components. The statistical significance for each variant was derived using a Wald test. 

 

Defining appropriate significance thresholds for association signals 
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To establish an appropriate significance threshold for independent signals, all variants evaluated in 

the meta-analysis were included in logistic forward selection regression analyses for overall breast 

cancer risk in iCOGS, run independently for each region. We evaluated five p-value thresholds for 

inclusion: < 1×10−4, < 1×10-5, < 1×10-6, < 1×10-7, and < 1×10-8. The most parsimonious iCOGS models 

were tested in OncoArray, and the false discovery rate (FDR) at 1% level for each threshold estimated 

using the Benjamini-Hochberg procedure. At a 1% FDR threshold: 72% of associations, significant at 

p<10-4, were replicated on iCOGS and 94% of associations, significant at p<10-6, were replicated on 

OncoArray. Based on these results, two categories were defined: strong-evidence signals (conditional 

p-values <10-6 in the final model), and moderate-evidence signals (conditional p-values <10-4 and ≥10-6 

in the final model) 

 

Identification of independent signals  

To identify independent signals, we ran multinomial stepwise regression analyses, separately in iCOGS 

and OncoArray, for all variants displaying evidence of association (Nvariants = 202,749). We selected two 

sets of well imputed variants (imputation info score ≥ 0.3 in both iCOGS and OncoArray): (a) common 

and low frequency variants (MAF ≥ 0.01) with logistic regression p-value inclusion threshold ≤0.05 in 

either the iCOGS or OncoArray datasets for at least one of the three phenotypes: overall, ER-positive 

and ER-negative breast cancer; and (b) rarer variants (MAF ≥ 0.001 and < 0.01), with logistic 

regression inclusion p-value ≤ 0.0001. The same parameters used for adjustment in logistic regression 

were used in the multinomial regression analysis (R function multinom). The multinomial regression 

estimates were combined using a fixed-effects meta-analysis weighted by the inverse variance. 

Variants with the lowest conditional p-value from the meta-analysis of both European cohorts at each 

step were included into the multinomial regression model. However, if the new variant to be included 
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in the model caused collinearity problems due to high correlation with an already selected variant, or 

showed high heterogeneity (p-value < 10-4) between iCOGS and OncoArray after being conditioned by 

the variant(s) in the model; we dropped the new variant and repeated this process.  

 

At 105 of 152 evaluated regions the main signal demonstrated genome-wide significance, while 44 

were marginally significant (9.89×10-5 ≥ p-value > 5×10-8). For two regions there were no variants 

significant at p<10-4 (chr14:104712261-105712261; rs10623258 multinomial regression p-value = 

2.32×10-4; chr19:10923703-11923703, rs322144, multinomial regression p-value = 3.90×10-3). Four 

main differences in the datasets used here and in the previous paper may account for this: (i) our 

previous paper 2 included data from 11 additional GWAS (14,910 cases and 17,588 controls) that have 

not been included in the present analysis in order to minimize differences in array coverage, and 

because ER-status data were substantially incomplete and individual level data were not available for 

all GWAS; (ii) the present analysis was based on estimating separate risks for ER-positive and ER-

negative disease, whereas in our previous paper the outcome was overall breast cancer risk. ER status 

was available for only 73% of the iCOGS and 79% of the OncoArray breast cancer cases (iii) for the set 

of samples genotyped with both arrays, 2 used the iCOGS genotypes, while this study includes 

OncoArray genotypes to maximize the number of samples genotyped with a larger coverage; and (iv) 

the imputation procedure was modified (in particular using one-step imputation without pre-phasing) 

to improve the imputation accuracy of less frequent variants.  

We used a forward stepwise approach to define the number of independent signals within each 

associated genomic region. We first we identified the index variant of the main signal in the region, 

and then ran multinomial logistic regression for all other variants, adjusted by the index variant, to 

identify additional variants that remained independently significant within the model. We repeated 
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this process, adjusting for identified index variants, until no more additional variants could be added.  

In this way we found from 1-11 independent signals within the 150 regions that containing a genome-

wide significant main signal.  

 

Selection of a set of credible causal variants (CCVs) 

For each independently associated signal, we first defined credible candidate variants (CCVs), likely to 

drive its association, as those variants with p-values within two orders of magnitude of the most 

significant variant for that signal, after adjusting for the index variant of other signals within that 

region (as identified in the forward stepwise regression above, Supplementary Figure 6A)24. For each 

region, we then attempted to obtain the best fitting model by successively fitting models in which the 

index variant for each signal was replaced by other CCVs for that signal, adjusting for the index 

variants for the other signals (Supplementary Figure 6B). Where a model with a higher chi-square was 

obtained, the index variant was replaced by the CCV in the best model (Supplementary Figure 6C-D). 

This process was repeated until the model (i.e. the set of index variants) did not change further 

(Supplementary Figure 6G). This procedure was performed first for the set of strong signals (i.e. 

considering models including only the strong signals). Once a final model had been obtained for the 

strong signals, the index variants for the strong signals were considered fixed and the process was 

repeated for all signals, the index variants for the weak signals (but not the strong signals) to vary. 

Using this procedure we could define the best model for 140/150 regions, but for ten regions this 

approach did not converge (chr4:175328036-176346426, chr5:55531884-56587883, chr6:151418856-

152937016, chr8:75730301-76917937, chr10:80341148-81387721, chr10:122593901-123849324, 

chr12:115336522-116336522, chr14:36632769-37635752, chr16:3606788-4606788, chr22:38068833-

39859355). For these 10 regions, we defined the best model, from among all possible combinations of 
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credible variants, as that with the largest chi-square value. Finally, redefined the set of CCVs for each 

signal using the conditional p-values, after adjusting for the revised set of index variants. Again, for 

the strong signals we conditioned on the index variants for the other strong signals, while for the 

weak signals we conditioned on the index variants for all other signals. 

 

Case-only analysis 

Differences in the effect size between ER-positive and ER-negative disease for each index 

independent variant were assessed using a case-only analysis. We performed logistic regression with 

ER status as the dependent variable, and the lead variant at each strong signal in the fine mapping 

region as the independent variables. We use FDR (5%) to adjust for multiple testing. 

 

OncoArray-only stepwise analysis 

To evaluate whether the lower coverage in iCOGS could affect the identification of independent 

signals, we ran stepwise multinomial regression using only the OncoArray dataset. We identified 249 

independent signals. Ninety-two signals, in 67 fine mapping regions, achieved a genome-wide 

significance level (conditional p-value < 5×10-8). Two hundred and five of these signals were also 

identified in the meta-analysis with iCOGS. Nine independent variants across ten regions were not 

evaluated in the combined analysis due to their low imputation info score in iCOGS. Out of these nine 

signals, two signals would be classified as main primary signals, rs114709821 at region 

chr1:145144984-146144984 (OncoArray imputation info score = 0.72), and rs540848673 at region 

chr1:149406413-150420734 (OncoArray imputation info score = 0.33). Given the low number of 

additional signals identified in the OncoArray dataset alone, all analyses were based on the combined 

iCOGS/OncoArray dataset. 
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CIMBA statistical analysis 

CIMBA provided data from 60 retrospective cohort studies consisting of 9,445 unaffected and 9,363 

affected female BRCA1 mutation carriers of European ancestry. Unconditional (i.e. single variant) 

analyses were performed using a score test based on the retrospective likelihood of observing the 

genotype conditional on the disease phenotype 62,63. Conditional analyses, where more than one 

variant is analyzed simultaneously, cannot be performed in this score test framework. Therefore, 

conditional analyses were performed by Cox regression, allowing for adjustment of the conditionally 

independent variants identified by the BCAC/DRIVE analyses. All models were stratified by country 

and birth cohort, and adjusted for relatedness (unconditional models used kinship adjusted standard 

errors based on the estimated kinship matrix; conditional models used cluster robust standard errors 

based on phenotypic family data). 

 

Data from the iCOGS array and the OncoArray were analyzed separately and combined to give an 

overall BRCA1 association by fixed-effects meta-analysis. Variants were excluded from further 

analyses if they exhibited evidence of heterogeneity (Heterogeneity p-value < 1×10-4) between iCOGS 

and OncoArray, had MAF < 0.005, were poorly imputed (imputation info score < 0.3) or were imputed 

to iCOGS only (i.e. must have been imputed to OncoArray or iCOGS and OncoArray). 

 

Meta-analysis of ER-negative cases in BCAC with BRCA1 mutation carriers from CIMBA 

BRCA1 mutation carrier association results were combined with the BCAC multinomial regression ER-

negative association results in a fixed-effects meta-analysis. Variants considered for analysis must 

have passed all prior QC steps and have had MAF≥0.005. All meta-analyses were performed using the 
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METAL software 64.Instances where spurious associations might occur were investigated by assessing 

the LD between a possible spurious association and the conditionally independent variants. High LD 

between a variant and a conditionally independent variant within its region causes model instability 

through collinearity and the convergence of the model likelihood maximization may not reliable. 

Where the association appeared to be driven by collinearity, the signals were excluded. 

 

Heritability Estimation 

To estimate the frailty-scale heritability due to all fine-mapping signals, we used the formula: 

ℎ2 = 2(𝛾′
𝑇
𝑅𝛾′ − 𝜏′

𝑇
𝐼𝜏′) 

here γ′ = γ√p(1 − p), τ′
T
= τ√p(1 − p), where p is a vector of allele frequencies, γ are the 

estimated per-allele odds ratios and τ the corresponding standard errors, and 𝑅 is the correlation 

matrix of genotype frequencies. 

To adjust for the overestimation resulting from only including signals passing a given significance 

threshold, we adapted the approach of 65, based on maximizing the likelihood conditional on the test 

statistic passing the relevant threshold. Since our analyses were based on estimating ER-negative and 

ER-positive odds ratios simultaneously, the method needed to be adapted to maximise a conditional 

bivariate normal likelihood. Following 65 we then estimated mean square error estimates based on a 

weighted mean of the maximum likelihood estimates and the naïve estimates, which they show to be 

close to be unbiased in the 1df case. The estimated effect sizes for overall breast cancer were 

computed as a weighted mean of the ER-negative and ER-positive estimates, based on the 

proportions of each subtype in the whole study (weights 0.21 and 0.79). The results were then 

expressed in terms of the proportion of the familial breast cancer risk (FRR) to first degree relatives of 
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affected women, using the formula  

ℎ2/(2𝑙𝑜𝑔𝜆) where the FRR 𝜆 was assumed to be 2 2. 

 

eQTL analysis 

Total RNA was extracted from normal breast tissue in formalin-fixed paraffin embedded breast cancer 

tissue blocks from 264 Nurses’ Health Study (NHS) participants 32. Transcript expression levels were 

measured using the Glue Grant Human Transcriptome Array version 3.0 at the Molecular Biology Core 

Facilities, Dana-Farber Cancer Institute. Gene expression was normalized and summarized into Log2 

values using RMA (Affymetrix Power Tools v1.18.012); quality control was performed using GlueQC 

and arrayQualityMetrics v3.24.014. Genome-wide data on variants were generated using the Illumina 

HumanHap 550 BeadChip as part of the Cancer Genetic Markers of Susceptibility initiative 66. 

Imputation to the 1000KGP Phase 3 v5 ALL reference panel was performed using MACH to pre-phase 

measured genotypes and minimac to impute. 

 

Expression analyses were performed using data from The Cancer Genome Atlas (TCGA) and Molecular 

Taxonomy of Breast Cancer International Consortium (METABRIC) projects 34,38. The TCGA eQTL 

analysis was based on 458 breast tumors that had matched gene expression, copy number and 

methylation profiles together with the corresponding germline genotypes available. All 458 

individuals were of European ancestry as ascertained using the genotype data and the Local Ancestry 

in admixed Populations (LAMP) software package (LAMP estimate cut-off >95% European)67. Germline 

genotypes were imputed into the 1000 Genomes Project reference panel (October 2014 release) 

using IMPUTE version 2 68,69. Gene expression had been measured on the Illumina HiSeq 2000 RNA-

Seq platform (gene-level RSEM normalized counts 70), copy-number estimates were derived from the 
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Affymetrix SNP 6.0 (somatic copy-number alteration minus germline copy-number variation called 

using the GISTIC2 algorithm 71), and methylation beta values measured on the Illumina Infinium 

HumanMethylation450. Expression QTL analysis focused on all variants within each of the 152 

genomic intervals that had been subjected to fine-mapping for their association with breast cancer 

susceptibility. Each of these variants was evaluated for its association with the expression of every 

gene within 2 Mb that had been profiled for each of the three data types. The effects of tumor copy 

number and methylation on gene expression were first regressed out using a method described 

previously 72. eQTL analysis was performed by linear regression, with residual gene expression as 

outcome, germline SNP genotype dosage as the covariate of interest and ESR1 expression and age as 

additional covariates, using the R package Matrix eQTL 73. 

 

The METABRIC eQTL analysis was based on 138 normal breast tissue samples resected from breast 

cancer patients of European ancestry. Germline genotyping for the METABRIC study was also done on 

the Affymetrix SNP 6.0 array, and gene expression in the METABRIC study was measured using the 

Illumina HT12 microarray platform (probe-level estimates). No adjustment was implemented for 

somatic copy number and methylation status since we were evaluating eQTLs in normal breast tissue. 

All other steps were identical to the TCGA eQTL analysis described above. 

 

Genomic feature enrichment  

We explored the overlap of CCVs and excluded variants with 90 transcription factors, 10 histone 

marks, and DNase hypersensitivity sites in in 15 breast cell lines, and eight normal human breast 

tissues. We analysed data from the Encyclopedia of DNA Elements (ENCODE) Project 74,75, Roadmap 

Epigenomics Projects 76, the International Human Epigenome Consortium 77, 27 , Pellacani et al. 78, The 
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Cancer Genome Atlas (TCGA) 33, the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC) 34, ReMap database (We included 241 TF annotations from ReMap (of 2825 total) which 

showed at least 2% overlap for any of the phenotype SNP sets) 79, and other data obtained through 

the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO). 

Promoters were defined following the procedure defined in 78, that is +/- 2Kb from a gene 

transcription start site, using an updated version of the RefSeq genes (refGene, version updated 2017-

04-11)80. Transcribed regions were defined using the same version of refSeq genes. lncRNA 

annotation was obtained from Gencode (v19)81 

 

To include eQTL results in the enrichment analysis we (i) identified all the genes for which summary 

statistics were available; (ii) defined the most significant eQTL variant for each gene (index eQTL 

variant, p-value threshold ≤ 5×10-4); (iii) classified variants with p-values within two orders of 

magnitude of the index eVariant as the credible set of eQTL variants; ie. the best candidates to drive 

expression of the gene. Variants within at least one eQTL credible set were defined as eVariants. We 

evaluated the overlap between eQTL credible sets and CCVs (risk variants credible set). We evaluated 

the enrichment of CCVs for genomic feature using logistic regression, with CCV (vs non-CCV variants) 

being the outcome. To adjust for the correlation among variants in the same fine mapping region, we 

used robust variance estimation for clustered observations (R function multiwaycov). The associated 

variants at FDR 5% were included into a stepwise forward logistic regression procedure to select the 

most parsimonious model. A likelihood ratio test was used to compare multinomial logistic regression 

models with and without equality effect constraints to evaluate whether there was heterogeneity 

among the effect sizes for ER-positive, ER-negative or signals equally associated with both phenotypes 

(ER-neutral). 
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To validate the disease specificity of the regulatory regions identified through this analysis we follow 

the same approach for the autoimmune related CCVs from 29 (N = 4,192). Variants excluded as 

candidate causal variants, and within 500 kb upstream and downstream of the index variant for each 

signal were classified as excluded variants (N = 1,686,484). We then tested the enrichment for both 

the breast cancer and autoimmune CCVs with breast and T and B cell enhancers. We also evaluated 

the overlap of our CCVs with ENCODE enhancer-like and promoter-like regions for 111 tissues, 

primary cells, immortalized cell line, and in vitro differentiated cells. Of these, 73 had available data 

for both enhancer- and promoter-like regions. 

 

Transcription binding site motif analysis 

We conducted a search to find motif occurrences for the transcription factors significantly enriched in 

the genomic featured. For this we used two publicly available databases, Factorbook 82 and JASPAR 

2016 83. For the search using Factorbook we included the motifs for the transcription factors 

discovered in the cell lines where a significant enrichment was found in our genomic features analysis. 

We also searched for all the available motifs for Homo sapiens at the JASPAR database (JASPAR CORE 

2016, TFBSTools 84)Using as reference the USCS sequence (BSgenome.Hsapiens.USCS.hg19) we 

created fasta sequences with the reference and alternative alleles for all the variants included in our 

analysis plus 20 bp flanking each variant. We used FIMO (version 4.11.2, Grant et al., 2011)85 to scan 

all the fasta sequences searching for the JASPAR and Factorbook motifs to identify any overlap of any 

of the alleles for each of the variants (setting the p-value threshold to 10-3). We subsequently 

determined whether our CCVs were more frequency overlapping a particular TF binding motif when 

compared with the excluded variants. We ran these analyses for all the strong signals, but also strong 
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signals stratified by ER status. Also, we subset this analysis to the variants located at regulatory 

regions in an ER-positive cell line (MCF-7 marked by H3K4me1, ENCODE id: ENCFF674BKS) and 

evaluated whether the ER-positive CCVs overlap any of the motifs more frequently that the excluded 

variants. We also evaluated the change in total binding affinity caused by the ER-positive CCCR 

alternative allele for all but one (2:217955891:T:<CN0>:0) of the ER-positive CCVs (MatrixRider 86). 

 

Subsequently, we evaluated whether the MCF-7 regions demarked by H3K4me1 (ENCODE id: 

ENCFF674BKS), and overlapped by ER-positive CCVs, were enriched in known TFBS motifs. We first 

subset the ENCODE bed file ENCFF674BKS to identify MCF-7 H3K4me1 peaks overlapped by the ER-

positive CCVs (N = 107), as well as peaks only overlapped by excluded variants (N = 11,099), using 

BEDTools 87. We created fasta format sequences using genomic coordinate data from the intersected 

bed files. In order to create a control sequence set, we used the script included with the MEME Suite 

(fasta-shuffle-letters) to created 10 shuffled copies of each sequence overlapped by ER-positive CCVs 

(N = 1,070). We then used AME 88 to interrogate whether the 107 MCF-7 H3K4me1 genomic regions 

overlapped by ER-positive CCVs were enriched in know TFBS consensus motifs when compared to the 

shuffled control sequences, or to the MCF-7 H3K4me1 genomic regions overlapped only by excluded 

variants. We used the command line version of AME (version 4.12.0) selecting as scoring method the 

total number of positions in the sequence whose motif score p-value is less than 10-3, and using a 

one-tailed Fisher’s Exact test as the association test. 

 

PAINTOR analysis 

To further refine the set of CCVs, we performed empirical Bayes fine-mapping using PAINTOR to 

integrate marginal genetic association summary statistics, linkage disequilibrium patterns, and 



 62 

biological features 31,89. PAINTOR derives jointly the posterior probability for causality of all variants 

along the respective contribution of genomic features, in order to maximize the log Likelihood of the 

data across all regions. PAINTOR does not assume a fixed number of causal variants in each region, 

although it implicitly penalizes non-parsimonious causal models. We applied PAINTOR separately to 

association results for overall breast cancer (in 85 regions determined to have at least one ER-neutral 

association or ER-positive and ER-negative association), ER-positive breast cancer (in 48 regions 

determined to have at least one ER-positive-specific association), and ER-negative breast cancer (in 22 

regions determined to have at least one ER-negative-specific association). To avoid artifacts due to 

mis-matches between the LD in study samples and the LD matrix supplied to PAINTOR, we used 

association logistic regression summary statistics from OncoArray data only and estimated the LD 

structure in the OncoArray sample. For each endpoint we fit four models with increasing numbers of 

genomic features selected from the stepwise enrichment analyses described above: Model 0 (with no 

genomic features—assumes each variant is equally likely to be causal a priori), Model 1 (with those 

genomic features selected with stopping rule p<0.001); Model 2 (with those genomic features 

selected with stopping rule p<0.01); and Model 3 (with those genomic features selected with stopping 

rule p<0.05).  

 

We used the Bayesian Information Criterion (BIC) to choose the best-fitting model for each outcome. 

As PAINTOR estimates the marginal log likelihood of the observed Z scores using Gibbs sampling, we 

used a shrunk mean BIC across multiple Gibbs chains to account for the stochasticity in the log-

likelihood estimates. We ran PAINTOR four times to generate four independent Gibbs chains and 

estimated the BIC difference between model i and model j as 𝛥𝑖𝑗 = (
100

𝑉+100
) (𝐵𝐼𝐶𝑖´ − 𝐵𝐼𝐶𝑗´ ). This 

assumes a N(0,100) prior on the difference, or roughly a 16% chance that model i would be decisively 
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better than model j (i.e. |BICi-BICj|>10). We then proceeded to choose the best-fitting model in a 

stepwise fashion: starting with a model with no annotations, we selected a model with more 

annotations in favor a model with fewer if the larger model was a considerably better fit—i.e. 𝛥𝑖𝑗  > 2. 

Model 1 was the best fit according to this process for overall and ER-positive breast cancer; Model 0 

was the best fit for ER-negative breast cancer.  

 

Differences between the PAINTOR and CCV outputs may be due to several factors. By considering 

functional enrichment and joint LD among all SNPs, PAINTOR may refine the set of likely causal 

variants; rather than imposing a hard threshold, PAINTOR allows for a gradient of evidence supporting 

causality; and the two sets of calculations are based on different summary statistics, CCV analyses 

used both iCOGS and OncoArray genotypes, while PAINTOR used only OncoArray data (Figure 1, 

Methods). 

 

Variant annotation 

Variants genome coordinates were converted to assembly GRCh38 with liftOver and uploaded to 

Variant Effect Predictor 90 to determine their effect on genes, transcripts, and protein sequence. The 

commercial software Alamut® Batch v1.6 batch was also used to annotate coding and splicing 

variants. PolyPhen-2 91, SIFT 92, MAPP 93 were used to predict the consequence of missense coding 

variants. MaxEntScan 94, Splice-Site Finder, and Human Splicing Finder 95 were used to predict splicing 

effects. 

 

INQUISIT analysis 

Logic underlying INQUISIT predictions 
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Briefly, genes were considered to potential targets of candidate causal variants through effects on: (1) 

distal gene regulation, (2) proximal regulation, or (3) a gene's coding sequence. We intersected CCV 

positions with multiple sources of genomic information including chromatin interactions from capture 

Hi-C experiments performed in a panel of six breast cell lines 96, chromatin interaction analysis by 

paired-end tag sequencing (ChIA-PET; 97) and genome-wide chromosome conformation capture from 

HMECs (Hi-C, (Rao et al., 2014)). We used computational enhancer–promoter correlations (PreSTIGE 

98, IM-PET (He et al., 2014), FANTOM5 99 and super-enhancers 28), results for breast tissue-specific 

expression variants (eVariants) from multiple independent studies (TCGA, METABRIC, NHS, Methods), 

allele-specific imbalance in gene expression 100, transcription factor and histone modification 

chromatin immunoprecipitation followed by sequencing (ChIP-Seq) from the ENCODE and Roadmap 

Epigenomics Projects together with the genomic features found to be significantly enriched as 

described above, gene expression RNA-seq from several breast cancer lines and normal samples and 

topologically associated domain (TAD) boundaries from T47D cells (ENCODE, 101, Methods and Key 

Resources Table ). To assess the impact of intragenic variants, we evaluated their potential to alter 

splicing using Alamut® Batch to identify new and cryptic donors and acceptors, and several tools to 

predict effects of coding sequence changes (see Variant Annotation section). Variants potentially 

affecting post-translational modifications were downloaded from the "A Website Exhibits SNP On 

Modification Event" database (http://www.awesome-hust.com/) 102.  The output from each tool was 

converted to a binary measure to indicate deleterious or tolerated predictions. 

 

Scoring hierarchy 

Each target gene prediction category (distal, promoter or coding) was scored according to different 

criteria. Genes predicted to be distally-regulated targets of CCVs were awarded points based on 

http://www.awesome-hust.com/
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physical links (eg CHi-C), computational prediction methods, allele-specific expression, or eVariant 

associations. All CCV and HPPVs were considered as potentially involved in distal regulation. 

Intersection of a putative distal enhancer with genomic features found to be significantly enriched 

(see ‘Genomic features enrichment’ for details) were further upweighted. Multiple independent 

interactions were awarded an additional point. CCVs and HPPVs in gene proximal regulatory regions 

were intersected with histone ChIP-Seq peaks characteristic of promoters and assigned to the 

overlapping transcription start sites (defined as -1.0 kb - +0.1 kb). Further points were awarded to 

such genes if there was evidence for eVariant association or allele-specific expression, while a lack of 

expression resulted in down-weighting as potential targets. Potential coding changes including 

missense, nonsense and predicted splicing alterations resulted in addition of one point to the 

encoded gene for each type of change, while lack of expression reduced the score. We added an 

additional point for predicted target genes that were also breast cancer drivers. For each category, 

scores ranged from 0-7 (distal); 0-3 (promoter) or 0-2 (coding). We converted these scores into 

'confidence levels': Level 1 (highest confidence) when distal score > 4, promoter score >= 3 or coding 

score > 1; Level 2 when distal score <=  4 and >=1, promoter score = 1 or = 2, coding score = 1; and 

Level 3 when distal score < 1 and > 0, promoter score < 1 and > 0, and coding < 1 and > 0. For genes 

with multiple scores (for example, predicted as targets from multiple independent risk signals or 

predicted to be impacted in several categories), we recorded the highest score. Driver and 

transcription factor gene enrichment analysis was carried out using INQUISIT scores prior to adding a 

point for driver gene status. Modifications to the pipeline since original publication 2 include: 

 TAD boundary definitions from ENCODE T47D Hi-C analysis. Previously, we used regions from Rao, 

Cell 2013; 

 eQTL: Addition of NHS normal and tumor samples 
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 allele-specific imbalance using TCGA and GTEx RNA-seq data 100 

 Capture Hi-C data from six breast cell lines 103 

 Additional biofeatures derived from global enrichment in this study 

 Variants affecting sites of post-translational modification 102 

 

Multi-signal targets 

To test if more genes were targeted by multiple signals than expected by chance, we modelled the 

number of signals per gene by negative binomial regression (R function glm.nb, package MASS) and 

Poisson regression (R function glm, package stats) with ChIA-PET interactions as a covariate and 

adjusted by fine mapping region. Likelihood ratio tests were used to compare goodness of fit. 

Rootograms were created using the R function rootogram (package vcd).  

 

Pathway analysis 

The pathway gene set database, dated 1 September 2018 was used 104 

(http://download.baderlab.org/EM_Genesets/current_release/Human/symbol/). This database 

contains pathways from Reactome 105, NCI Pathway Interaction Database 106, GO (Gene Ontology) 107, 

HumanCyc 108, MSigdb 109, NetPath 110, and Panther 111. All duplicated pathways, defined in two or 

more databases, were included. To provide more biologically meaningful results, only pathways that 

contained ≤ 200 genes were used.  

We interrogated the pathway annotation sets with the list of high-confidence (Level 1) INQUISIT gene 

list. The significance of over-representation of the INQUISIT genes within each pathway was assessed 

with a hypergeometric test using the R function phyper as follows: 
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𝑃(𝑥|𝑛,𝑚,𝑁) = 1 −∑
(𝑚
𝑖
)(𝑁−𝑚

𝑛−𝑖
)

(𝑁
𝑛
)

𝑥−1

𝑖=0

 

where x is the number of Level 1 genes that overlap with any of the genes in the pathway, n is the 

number of genes in the pathway, m is the number of Level1 genes that overlap with any of the genes 

in the pathway data set (mstrong GO = 145, mER-positive GO = 50, mER-negative GO = 27, mER-neutral GO = 73; mstrong 

Pathways = 121, mER-positive Pathways = 38, mER-negative Pathways = 21, mER-neutral Pathways = 68), and N is the number 

of genes in the pathway data set (NGenes GO = 14,252, NGenes Pathways = 10,915). We only included 

pathways that overlapped with at least two Level 1 genes. We used the Benjamini-Hochberg false 

discovery rate (FDR) 112 at 5% level.  

 

DATA AVAILABLITY 

The credible set of causal variants (determined by either multinomial stepwise regression and 

PAINTOR) is provided in Supplementary Table S2C. Further information and requests for resources 

should be directed to Manjeet Bolla (bcac@medschl.cam.ac.uk) 
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FIGURE LEGENDS 

Figure 1. Flowchart summarizing the study design. 

Logistic regression summary statistics were used to select the final set of variants to run 

stepwise multinomial regression. These results were meta-analysed with CIMBA to provide the 

final set of strong independent signals and their CCVs. Through a case-only analysis we 

identified significant differences in effect sizes between ER-positive and ER-negative breast 

cancer and used this to classify the phenotype for each independent signal. With these strong 

CCVs, we ran the bio-features enrichment analysis, which identified the features to be included 

in the PAINTOR models, together with the OncoArray logistic regression summary statistics, and 

the OncoArray LD. Both multinomial regression CCVs and PAINTOR high Posterior Probability 

variants were analyzed with INQUISIT to determine high confidence target genes. Finally, we 

used the set of high confidence target genes to identify enriched pathways. 

a  conditional on the index variants from BCAC strong signals. 

 

Figure 2. Determining independent risk signals and credible candidate variants (CCVs). 

(a) Number of independent signals per region identified through multinomial stepwise logistic 

regression. (b) Signal classification according to their confidence into strong and moderate 

confidence signals. (c) Number of CCVs per signal at strong confidence signals identified 

through multinomial stepwise logistic regression. (d) Number of CCVs per signal at moderate 

confidence signals identified through multinomial stepwise regression. (e) Subtype classification 

of strong signals into ER-positive, ER-negative and signals equally associated with both 
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phenotypes (ER-neutral) from BCAC analysis. (f) Subtype classification from the meta-analysis of 

BCAC and CIMBA. Between brackets, number of CCVs from the meta-analysis of BCAC and 

CIMBA. (g) Number of variants at different posterior probability thresholds. 15 variants reach a 

PP ≥ 80% by at least one of the three models (ER-all, ER-positive, ER-negative). 

 

Figure 3. Overlap of CCVs with gene regulatory regions gene bodies and transcription factor 

binding sites. 

(a) Breast cancer CCVs overlap with chromatin states and broad breast cells epigenetic marks. 

(b) Breast cancer CCVs overlap with breast cells epigenetic marks. (c) Autoimmune CCVs 

overlap with breast cells epigenetic marks. (d) Breast cancer CCVs overlap with autoimmune-

related epigenetic marks. (e) Autoimmune CCVs overlap with autoimmune-related epigenetic 

marks. (f) Significant ER-positive CCVs overlap with transcription factors binding sites. TFBSs 

found significant for ER-positive CCVs are highlighted in red (x axis labels). (g) Significant ER-

negative CCVs overlap with transcription factors binding sites. (h) Significant ER-neutral CCVs 

overlap with transcription factors binding sites. Strong column: analysis with all CCVs at strong 

signals. ER-positive, ER-negative, ER-neutral: analysis of CCVs at strong signals stratified by 

phenotype. Logistic regression robust variance estimation for clustered observations, Wald test 

2 p-values estimated using 67,136 ER-positive and 17,506 ER-negative cases, together with 

88,937 controls. 
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Non-significant p-values are noted as dark grey. Significance defined as FDR 5%, which 

corresponds to the following P-value thresholds: Strong signals P-value = 1.66x10-2, ER-positive 

P-value = 2.42x10-2; ER-negative P-value 3.02x10-3; ER-neutral P-value = 1.76x10-3.  

 

Figure 4. Predicted target genes are enriched in known breast cancer driver genes and 

transcription factors. 

79 target genes that fulfil at least one of the following criteria: are targeted by more than one 

independent signal, are known driver genes, transcription factor genes, or their binding sites 

(ChIP-Seq BS) or consensus motif (TF Motif) are significantly overlapped by CCVs. *Genes with 

published functional follow up.  

 

Figure 5. Predicted target genes by phenotype and significantly enriched pathways. 

(a) Venn diagram showing the associated phenotype (ER-positive, ER-negative, ER-neutral) for 

the Level 1 target genes, predicted by the CCVs and HPPVs. * ER-positive or ER-negative target 

genes also targeted by ER-neutral signals. (b) Heatmap showing clustering of pathway themes 

over-represented by INQUISIT Level 1 target genes. Color represents the relative number of 

genes per phenotype within enriched pathways, grouped by common themes. ER-positive, ER-

negative, ER-neutral, and all phenotypes together (strong).
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Table 1. Signals with single CCVs and variants with PP > 80%  

                ER-negative  ER-positive       
 

Fine-mapping 
regiona Variant b Ref/Alt c EAFd PPe Modelf Signalg N 

CCVh ORi (95%CI) ORi (95%CI) P-valuei FPj Predicted 
target gene(s)k Confidencel 

chr1:120723447 
-121780613 

rs11249433 A/G 0.42 0.57 ERALL Signal 1 1 1.02 (0.99-1.04) 1.13 (1.11-1.15) 8.11x10-60 na na  

chr1:200937832 
-201937832 

rs35383942 C/T 0.06 0.96 ERALL Signal 1 2 1.10 (1.05-1.16) 1.09 (1.06-1.13) 1.14x10-7 D TNNI1 Level 1 

chr2:201681247 
-202681247 

rs3769821 C/T 0.66 0.40 ERALL Signal 1 1 0.94 (0.92-0.97) 0.95 (0.93-0.96) 1.46x10-12 D ALS2CR12 Level 1 

chr2:217405832 
-218796508 

rs4442975 n G/T 0.48 0.84 ERALL Signal 1 1 0.94 (0.92-0.97) 0.86 (0.85-0.87) 2.50x10-90 D IGFBP5m Level 2 

chr4:105569013 
-106856761 

esv3601665 -/Alu 0.07 0.95 ERPOS 
  

1.01 (0.95-1.08) 1.10 (1.06-1.14) 3.27x10-6 D ARHGEF38, AC004066.3 Level 1 

chr5:779790 
-1797488 

rs10069690 C/T 0.27 0.58 ERNEG Signal 1 1 1.18 (1.15-1.21) 1.03 (1.01-1.05) 1.20x10-34 D SLC6A18, TERTm Level 2 

chr5:44013304 
-45206498 

rs10941679 A/G 0.26 0.00 ERPOS Signal 1 1 1.04 (1.02-1.07) 1.17 (1.15-1.19) 1.50x10-77 D MRPS30 Level 2 

 
rs5867671 A/- 0.77 0.01 ERPOS Signal 2 1 0.91 (0.89-0.94) 0.99 (0.97-1.01) 2.25x10-9 na na  

chr5:44013304 
-45206498 

rs190443933 T/C 0.01 0.00 ERALL Signal 4 1 1.30 (1.14-1.48) 1.26 (1.16-1.37) 2.32x10-8 na na  

chr5:55531884 
-56587883 

rs984113 G/C 0.61 0.81 ERPOS Signal 2 1 0.96 (0.93-0.98) 0.96 (0.94-0.97) 3.51x10-8 D MAP3K1m Level 2 

 
 

rs889310 C/T 0.56 0.84 ERPOS (Signal 6) 15 1.03 (1.00-1.05) 1.05 (1.03-1.06) 1.75x10-7 D MAP3K1m Level 1 

chr6:15899557 
-16899557 

rs3819405 C/T 0.32 0.96 ERALL Signal 1 1 0.97 (0.95-1.00) 0.95 (0.94-0.97) 1.14x10-7 D 
ATXN1, RP1-151F17.1, 
RP1-151F17.2 

Level 2 

chr6:151418856 
-152937016 

rs12173562 C/T 0.08 0.10 ERNEG Signal 1 1 1.30 (1.25-1.36) 1.14 (1.11-1.18) 3.98x10-40 D ESR1m Level 1 

 
rs34133739 -/C 0.53 0.25 ERALL Signal 2 1 1.11 (1.09-1.14) 1.05 (1.04-1.07) 2.36x10-22 D ESR1m Level 1 

 
rs851984 G/A 0.40 0.73 ERALL Signal 3 1 1.07 (1.04-1.09) 1.05 (1.04-1.07) 3.69x10-13 D ESR1m Level 1 

chr7:130167121 
-131167121 

rs68056147 G/A 0.30 0.84 ERALL 
  

1.04 (1.01-1.07) 1.05 (1.03-1.06) 3.07x10-7 D MKLN1 Level 2 

chr8:127424659 
-130041931 

rs35961416 -/A 0.41 0.68 ERALL Signal 3 1 0.97 (0.94-0.99) 0.95 (0.93-0.96) 9.97x10-11 D MYCm Level 1 

chr9:21247803 
-22624477 

rs539723051 AAAA/- 0.33 0.43 ERALL Signal 1 1 1.08 (1.05-1.11) 1.06 (1.04-1.08) 1.81x10-15 na na  
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chr9:109803808 
-111395353 

rs10816625 A/G 0.07 0.95 ERPOS Signal 3 1 1.06 (1.01-1.11) 1.13 (1.10-1.16) 3.62x10-15 D KLF4m Level 2 

 
rs13294895 C/T 0.18 0.93 ERPOS Signal 4 1 1.01 (0.98-1.05) 1.09 (1.07-1.11) 4.00x10-17 D KLF4m Level 1 

chr9:109803808 
-111395353 

rs60037937 AA/- 0.22 0.68 ERPOS Signal 2 1 1.02 (0.99-1.06) 1.11 (1.09-1.13) 3.17x10-26 D KLF4m, RAD23B Level 2 

chr10:63758684 
-65063702 

rs10995201 A/G 0.15 0.31 ERALL Signal 1 1 0.91 (0.88-0.94) 0.87 (0.85-0.89) 1.40x10-37 na na  

chr10:122593901 
-123849324 

rs35054928 C/- 0.56 0.60 ERALL Signal 1 1 0.96 (0.94-0.98) 0.74 (0.73-0.76) 6.55x10-342 D FGFR2m Level 1 

 
rs45631563 n A/T 0.04 0.93 ERPOS Signal 3 1 0.97 (0.92-1.03) 0.76 (0.73-0.79) 4.84x10-44 C FGFR2m Level 2 

 
rs7899765 T/C 0.06 0.02 ERALL Signal 5 1 1.01 (0.97-1.06) 0.87 (0.84-0.90) 2.21x10-18 D FGFR2m Level 1 

chr11:68831418 
-69879161 

rs78540526 C/T 0.09 0.91 ERPOS Signal 1 1 1.01 (0.97-1.06) 1.40 (1.36-1.44) 2.77x10-145 D CCND1m, MYEOV Level 1 

chr12:27639846 
-29034415 

rs7297051 C/T 0.23 0.23 ERALL Signal 1 1 0.87 (0.85-0.90) 0.89 (0.88-0.91) 3.12x10-43 D 
CCDC91m, PTHLHm, 
RP11-967K21.1 

Level 2 

chr12:115336522 
-116336522 

rs35422 G/A 0.57 0.58 ERPOS Signal 2 1 0.98 (0.96-1.01) 1.05 (1.03-1.07) 4.85x10-10 D TBX3 Level 1 

chr14:91341069 
-92368623 

rs7153397 C/T 0.70 0.81 ERPOS Signal 1 3 1.01 (0.99-1.04) 1.06 (1.04-1.08) 3.25x10-11 D,C 
CCDC88C, CTD-2547L24.4, 
C14orf159, GPR68, RPS6KA5, 
RP11-73M18.7, RP11-895M11.3 

Level 2 

chr16:52038825 
-53038825 

rs4784227 C/T 0.27 0.95 ERPOS Signal 1 1 1.15 (1.12-1.18) 1.26 (1.24-1.28) 4.63x10-160 D TOX3m Level 1 

chr18:23832476 
-25075396 

rs180952292 T/C 0.01 0.01 ERNEG Signal 4 1 1.24 (1.12-1.37) 0.98 (0.92-1.05) 2.07x10-5 na na  

chr18:41899590 
-42899590 

rs9952980 T/C 0.34 0.95 ERALL Signal 2 3 0.97 (0.94-0.99) 0.95 (0.93-0.96) 7.43x10-12 D SLC14A2 Level 2 

chr20:5448227 
-6448227 

rs16991615 G/A 0.07 0.97 ERALL Signal 1 1 1.09 (1.04-1.15) 1.07 (1.04-1.11) 7.89x10-7 D, C GPCPD1, MCM8 Level 2 

chr22:45783297 
-46783297 

rs184070480 C/T 0.01 0.00 ERALL Signal 2 1 1.40 (1.20-1.64) 1.01 (0.91-1.12) 5.02x10-5 D ATXN10, WNT7B Level 2 

 

a GRCh37/hg19, bp 

b Current reference ID  

c Reference (Ref) versus Alternative (Alt) Allele 
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d Effect allele (Alt allele) frequency in OncoArray 

e PP: Posterior probability. Largest posterior probability in all evaluated models 

f Model where the variant reaches the largest posterior probability 

g Signal where the variant is included. Between brackets moderate confidence signals. 

h Number of CCVs in the signal 

i Multinomial logistic regression summary statistics, 2 single variant analysis p-value, estimated using 67,136 ER-positive and 17,506 

ER-negative cases, together with 88,937 controls.  

j D: Distal regulation, P: proximal regulation, C: coding; na: prediction non available 

k Predicted target genes with the largest confidence level for each variant. Between brackets, largest confidence level. na: prediction 

non available 

l INQUISIT level of confidence 

m Target genes with functional follow up 

n Two variants reach PP> 0.8 in both the ERall and ERpos models; rs4442975: ERpos PP = 0.83, ERall PP = 0.84; rs45631563: ERpos PP 

= 0.93, ERall PP = 0.92 
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Editorial summary: Fine-mapping of causal variants and integration of epigenetic and chromatin conformation data identify likely target 

genes for 150 breast cancer risk regions. 



 1 

Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes 

 

SUPPLEMENTARY INFORMATION  

  

Supplementary Excel Table guide, supplied as individual files  

Supplementary Table 1. Breast cancer risk regions identified through genome-wide 

association studies.  

(a) Definition of fine-mapping regions based on previous results. 179 variants across 152 

genomic regions. Variants located less than 500kb away from each other were included in the 

same region. (b) Imputation quality metrics across the 152 fine-mapping regions.  

Supplementary Table 2. Breast cancer risk signals and credible candidate variants (CCVs).  

(a) Multinomial Logistic Regression models. (b) Strong signals (BCAC and CIMBA) multinomial 

logistic regression models. (c) Candidate causal variants and high posterior probability 

variants. 

Multinomial logistic regression summary statistics 2 p-value, estimated using 67,136 ER-

positive and 17,506 ER-negative cases, together with 88,937 controls 

Supplementary Table 3. Bio-features enrichment. 

Logistic regression robust variance estimation for clustered observations, Wald test 2 p-

values estimated using 67,136 ER-positive and 17,506 ER-negative cases, together with 

88,937 controls. 

Supplementary Table 4. Consensus transcription factor binding motif enrichment.  

(a) Transcription Factor consensus binding motif enrichment analysis. (b) Transcription Factor 

enrichment at MCF-7 H3K4me1 regions. (c) ER-positive CCVs overlap with transcription factor 

binding motifs significantly enriched  



 2 

Logistic regression, Wald test 2 p-values estimated using 67,136 ER-positive and 17,506 ER-

negative cases, together with 88,937 controls. 

Supplementary Table 5. Coding, splicing CCVs and overlap of CCVs with variant drivers of local 

gene expression.  

(a) CCVs collocating with eQTL variants in normal breast tissue. (b) CCVs collocating 

with eQTL variants in breast tumor tissue. (c) CCVs coding annotation. (d) CCVs predicted to 

affect splicing  

Logistic regression robust variance estimation for clustered observations, Wald test 2 p-

values estimated using 67,136 ER-positive and 17,506 ER-negative cases, together with 

88,937 controls. 

Supplementary Table 6. (a) 191 Level 1 predicted target genes. (b) Regions in which target 

genes are predicted with high confidence 

Supplementary Table 7. INQUISIT results for coding/splicing variants.  

Supplementary Table 8. INQUISIT results for promoter variants.  

Supplementary Table 9. INQUISIT results for distal variants.  

Supplementary Table 10. Pathways significantly enriched in CCV and high posterior 

probability predicted target genes. 

Hypergeometric test p-value. P-values adjusted using Benjamini-Hochberg procedure 

Supplementary Table 11. BCAC studies ethical agreements 

Supplementary Table 12. CIMBA studies ethical agreements 
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Supplementary Figures 

 

Supplementary Figure 1. Bio-features enrichment  

(a) Intersection between CCVs and known bio-features. (b) ENCODE enhancer-like and 

promoter-like enrichment. ENCODE enhancer-like regions, top, ENCODE promoter like tissues, 

bottom. Each bar shows the overlap p-value for each subset of CCVs (Strong, ER-positive, ER-

negative and ER-neutral) with regulatory regions defined by ENCODE at 73 tissues, primary 

cells, immortalized cell line, and in vitro differentiated cells (from most significant, dark red, 

to less significant, blue; grey bars indicate regions where there is <5 CCVs overlapping the 

region) 

Logistic regression robust variance estimation for clustered observations, Wald test 2 p-

values estimated using 67,136 ER-positive and 17,506 ER-negative cases, together with 

88,937 controls. 
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Supplementary Figure 2. Correlation between variants overlapping significantly enriched 

bio-features 

Ranges of Correlation Coefficient values (Pearson's r) estimated using 639,118 variants 

overlapping enriched biofeatures are denoted by colours as shown in the key labelled: Coeff. 
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Supplementary Figure 3. Bayesian fine mapping  

Top: Number of Variants per total posterior probability (PP) from PAINTOR models for (a) ER-

all model (b) ER-positive (c) ER-negative.  

Bottom: Cumulative distributions of PP for variants in strong signals for overall breast cancer 

(d, green), strong signals for ER-positive breast cancer (e, blue), and strong signals for ER-

negative breast cancer (f, red), compared to cumulative distributions of variants outside of 

these signals (black).  
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Supplementary Figure 4. Predicted target genes enrichment analysis  

(a) Predicted target genes are enriched in known breast cancer driver genes and TFs. (b) 

Hanging rootograms for the negative binomial model (glm.ng), and the Poisson model 

(glm.pois). The red line represents the expected counts given the model. The bars denote the 

observed counts. X-axis shows the count bin. Y-axis shows the square root of the observed or 

expected count  
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Supplementary Figure 5. Examples of INQUISIT using genomic features to identify predict target genes. 

In each panel, CCVs and PAINTOR variants with posterior probability >0.3 are shown, with independent signals in different colors. Chromatin 

interactions are shown as arcs (Capture Hi-C from selected breast cell lines) or boxes connected by lines, colored with gray-scale according to 

interaction score (ENCODE ChIA-PET). Biofeatures which overlap CCVs from the global genomic enrichment analysis are depicted as red boxes. 

Computationally predicted enhancers including PreSTIGE, FANTOM5 and super-enhancers which overlap risk variants are represented by black 

boxes. High confidence INQUISIT target gene predictions include NRIP1 (b), CHEK2 and XBP1 (c), and RPLP0 and MSI1 (d) 
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Supplementary Figure 6. Selection of a set of credible causal variants 

Scheme of the forward stepwise procedure to define a set of credible causal variants 
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