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34 ABSTRACT 

35 Introduction: Congenital heart defects are associated with neurodevelopmental delay. It is 

36 hypothesized that fetuses affected by congenital heart defect have altered cerebral oxygen 

37 perfusion and are therefore prone to delay in cortical maturation. The aim of this study was to 

38 determine the difference in fetal brain age between consecutive congenital heart defect cases 

39 and controls in the second and third trimester using ultrasound. Material and methods: 

40 Since 2014, we have included 90 isolated severe congenital heart defect cases in the Heart 

41 And Neurodevelopment(HAND)-study. Every four weeks, detailed neurosonography was 

42 performed in these fetuses, including the recording of a 3D volume of the fetal brain, from 20 

43 weeks onward. 75 healthy fetuses underwent the same protocol to serve as a control group. 

44 The volumes were analyzed by automated age prediction software which determines 

45 gestational age by the assessment of cortical maturation. Results: In total 477 volumes were 

46 analyzed using the age prediction software (199 volumes of 90 congenital heart defect  cases; 

47 278 volumes of 75 controls). 16 (3.2%) volume recordings were excluded because of imaging 

48 quality. The age distribution was 19-33 weeks. Mixed model analysis showed that the age 

49 predicted by brain maturation was 3.0 days delayed compared to the control group (p = 

50 0.002). Conclusions: This study shows that fetuses with isolated cases of congenital heart 

51 defects show some delay in cortical maturation as compared to healthy control cases. The 

52 clinical relevance of this small difference is debatable. This finding was consistent 

53 throughout pregnancy and did not progress during the third trimester.

54

55 Keywords: 

56 Congenital Heart Defects, Malformations of cortical development,| Ultrasonography, Fetus,   

57 Neurodevelopmental outcome

58

59 Key Message: 

60 Fetuses with congenital heart defects are shown to have a slight delay in cortical maturation 

61 when compared to controls, using a novel brain-age prediction algorithm.  

62
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63 Abbreviations

64 CHD congenital heart defect

65 MRI magnetic resonance imaging 

66 GA gestational age

67 POF parieto-occipital fissure

68 SF sylvian fissure

69

70

71
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73 INTRODUCTION

74 Improvements over time in the quality of neonatal care and cardiothoracic surgery in children 

75 with congenital heart defects (CHD) have resulted in an increased survival of children with 

76 severe CHD. This has stimulated longer term follow up and a recognition that there is an 

77 association between CHD and impaired neurodevelopmental outcome.1, 2 Developmental 

78 delay, decreased IQ and behavioral disorders have been reported, even in non-syndromic 

79 CHD children.1 

80 Previously, these sequelae were attributed to perioperative hypoxia or thrombo-embolic 

81 events during surgery. Recent studies suggest, however, that signs of abnormal neurological 

82 development may be present prior to surgery.3-5 Imaging studies in pregnancy using magnetic 

83 resonance imaging (MRI)6, 7 and ultrasound 8, 9, have shown signs of delayed fetal brain 

84 development. It has been suggested that it is these abnormal findings that result in the altered 

85 neurological outcome later in life.5, 6 The hypothesized mechanism is that the abnormal 

86 development of the brain is the result of altered brain oxygenation in fetal life.10, 11 

87 However, there is no robust evidence for delayed fetal brain maturation, because the current 

88 studies are subject to potential bias due to the small number of included affected women and 

89 due to selection of participants with regard to the type of cardiac defect. 4

90 Therefore, the aim of this study is to assess fetal brain development and maturational changes 

91 over time in a prospective, consecutive cohort of fetuses with isolated CHD, to avoid 

92 selection bias. In this study, ultrasound (US) imaging was used, this not only enables the 

93 inclusion of a larger number of fetuses (and thus reduces selection bias), but also facilitates 

94 multiple examinations in the same fetus, to evaluate brain development and changes over 

95 time. Furthermore, the used technique assesses brain maturation automatically and is 

96 therefore blinded, which, in combination with repeated measurements, are important 

97 differences with previous studies.

98 We hypothesize that the patterns of brain maturation of fetuses with CHD are delayed 

99 compared to control fetuses. 

100

101 MATERIAL AND METHODS

102
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103 Data acquisition

104 All consecutive pregnant women, diagnosed with a fetal CHD before 32 weeks gestation at 

105 the Leiden University Medical Center between March 2014 and December 2016, were 

106 approached to participate in the Heart And Neurodevelopment (HAND)-study. To account 

107 for natural variation of cortical development in the healthy population, we constructed a 

108 control group by the recruitment of unselected pregnant women after a normal structural 

109 anomaly scan. Control cases were not offered additional genetic testing but had a postnatal 

110 visit in which dysmorphic featured were assessed. Gestational age (GA) in both the CHD 

111 cases and the control cases, was based on first-trimester ultrasound at approximately 10 

112 weeks gestation, according to Dutch national guidelines. For both cases and controls we 

113 excluded: Maternal age <18 years, multiple gestation, genetic or syndromic defects 

114 (prenatally diagnosed or postnatally apparent up to the age of six months), cases with 

115 placental pathology (pre-eclampsia, severe growth restriction) and cases that showed normal 

116 cardiac anatomy after birth. In the CHD group, non-isolated cases were excluded. The 

117 reasons for only including isolated CHD was that altered neurodevelopment could otherwise 

118 be attributed to genetic or syndromic defects. Furthermore, cases with aortic valve stenosis 

119 that underwent fetal balloon valvuloplasty were excluded, since fetal brain oxygenation may 

120 have changed due to the intervention during pregnancy.12 Also, strictly minor cases 

121 (persistent left caval vein, mild pulmonary stenosis and restrictive foramen ovale) were also 

122 excluded, since in these cases, blood flow towards the brain is expected to be 

123 uncompromised. The sample size calculation for the normal reference population was based 

124 on the available evidence from two MRI-studies7, 13 that compared hypoplastic left heart 

125 syndrome (HLHS)-fetuses to controls, to detect a difference in mean brain age of two weeks. 

126 The normal reference population was calculated to consist of 60 fetuses. The CHD-group 

127 contains all the women that met the inclusion criteria and were referred between March 2014 

128 – December 2016. 

129 A CHD in combination with minor associations – namely a single umbilical artery; enlarged 

130 first-trimester nuchal translucency with normal chromosomal analysis and small for GA with 

131 normal Doppler recordings, were considered as isolated CHD. These cases were not excluded 

132 unless genetic syndromes became apparent postnatally.

133 A detailed neurosonographic examination was performed in cases and controls every four 

134 weeks after the diagnosis or in the case of controls after normal standard anomaly scan. 
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135 Examinations were undertaken by experienced sonographers (FJ/AT/SE) using a RAB 6-D 

136 three-dimensional transducer on a Voluson E8 or E10 (GE Healthcare ultrasound, 

137 Milwaukee, WI, USA). The examination was conducted transabdominally in four scanning 

138 planes: axial, coronal, sagittal and parasagittal. At these visits, we assessed the presence of 

139 structural brain anomalies and fetal biometry. Multiple 3D volume recordings were obtained 

140 in the axial plane, starting at head circumference level of the transthalamic plane. The 3D 

141 acquisition was performed in the maximum quality setting (6-12 seconds) or on high quality 

142 setting (2-8 seconds) to limit the amount of movement artefacts.

143

144 Brain-Age prediction algorithm

145 The evaluation of brain maturation by 2D ultrasound imaging is known to have an agreeable 

146 rate of inter-observer variation.  Data from recent MRI studies show a strong correlation 

147 between the degree of gyrification and GA14, 15, neuropathologists consider the appearance 

148 and stage of the sulci to be so precise14  that cortical complexity can be used as an accurate 

149 proxy for intrauterine neurodevelopment. Therefore, we used a semi-automated age 

150 prediction algorithm as a proxy for cortical maturation. At each visit a mean of 2.7(0.9) 3D 

151 volumes for cases and 3.5(1.2) for controls were recorded. These volume recordings were 

152 examined to identify cases with poor acquisition quality due to fetal motion artifacts. The 

153 recording with the highest quality was selected to enter into the algorithm. All 3D volumes 

154 were processed with a study-code, which did not reveal the presence of a heart defect or not. 

155 Plane localization was annotated manually in each 3D volume using the ITK-SNAP tool.16 

156 The algorithmic details on the process of predicting brain maturation from a 3D ultrasound 

157 volume were previously described.17 Briefly, a 3D surface-based coordinate system is 

158 spatially aligned to the cranial pixels in the image. This coordinate system allows for the 

159 sampling of brain regions based on surface locations. The US image and its corresponding 

160 surface are passed into a regression forest model, where they traverse the nodes of a set of 

161 pre-trained binary decision trees, within the forest. At each node, a binary test is applied to a 

162 sampled brain region to evaluate whether it is indicative of a more or less advanced stage of 

163 maturation. In this way, each brain region (eg callosal sulcus, thalamic region, cingulate 

164 sulcus, parieto-occipital fissure (POF), sylvian fissure (SF), central sulcus and ventricular 

165 regions) votes for a particular brain age (figure 1). The final prediction of brain maturation is 

166 achieved by averaging the votes from the brain regions, across the full set of decision trees in 

167 the forest. Thus, the algorithm is able to estimate the brain-age according the pattern of 
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168 gyrification of the fetal cortex, which varies during gestation (figure 2). Furthermore, since 

169 the true GA was known for each case, we were able to compare the brain-age with the true 

170 age to determine any delay in cortical maturation. A more extensive description of the 

171 algorithm is available as Supporting information Appendix S1.

172 Data handling 

173 The prenatal diagnosis was compared to the postnatal echocardiographic findings. In case of 

174 discrepancy, the postnatal diagnosis or the results of post mortem examination in case of 

175 pregnancy termination, were considered as the definitive cardiac diagnosis. In cases in which 

176 the parents did not give consent for post mortem examination, the prenatal diagnosis was 

177 used for this study. We have previously shown that the rate of discrepancies is low in our 

178 unit.18

179 Statistical analyses

180 We investigated evidence of the presence of systematic between-group differences in brain 

181 age, as calculated by the age prediction algorithm, between the CHD group and the control 

182 group.  We have selected the data from measurements at 19 – 33 weeks since the age 

183 prediction algorithm had been validated in this GA.17 

184 As multiple volume measurements were acquired from the same patient during pregnancy 

185 (longitudinal repeated-measures data) linear mixed modeling must be applied to account for 

186 systematic within-patient correlation. The mixed-effect regression model corrected for GA 

187 (assumed to relate linearly to the age prediction), group (CHD-cases vs controls) and the 

188 interaction between GA and group as fixed effects. Within-patient correlation was modeled 

189 by inclusion of a random-effect intercept per individual. The presence of a between-group 

190 difference was then assessed by removing both the interaction term and the main group effect 

191 from the full model and assess the associated likelihood ratio test with two degrees of 

192 freedom. As the likelihood ratio test confirmed the presence of group effect, two follow-up 

193 hypothesis tests were investigated. Firstly, the main group difference was assessed at the 

194 median GA by comparing the (marginal) mean brain-age in that set.  Secondly, regression 

195 slopes were compared between CHD-cases and controls to assess whether groups differed in 

196 their maturation speed. In a sensitivity analysis we repeated the tests allowing for a quadratic 

197 effect of GA.  All statistical analysis were performed using IBM SPSS statistics version 

198 24.0.0.0 (IBM, Armonk, NY, USA). Statistical significance was determined when p ≤ 0.05.
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199 Ethical Approval 

200 This study was approved by the local ethics committee on March 17, 2014 under ref. number 

201 P13.107. 

202

203 RESULTS

204 In the study period, 90 consecutive CHD cases and 75 controls were included (see Table 1 for 

205 study characteristics). The groups were not prospectively matched for baseline 

206 characteristics, however the groups did not differ significantly in maternal age, parity, body 

207 mass index or maternal diabetes. We excluded 14 cases according the defined exclusion 

208 criteria, of which eight were postnatal diagnoses of genetic syndromes (three CHARGE 

209 syndrome, two Kabuki syndrome, three with postnatal multiple dysmorphic features, final 

210 genetic diagnosis pending). The genetic diagnosis of the CHD-cases was followed up until 

211 one year postnatally. 30 % of control cases opted for first-trimester screening. No genetic or 

212 structural abnormalities were found in the control-group up to six months postnatally. Thus, a 

213 total of 152 CHD cases and controls were eligible for analysis. From these 152 women, in 

214 493 scanning sessions, volume recordings were made. Of these volumes, 16 (3.2%) were 

215 excluded due to ultrasonographic factors (oblique insonation, fetal movement artifacts or very 

216 poor image quality), resulting in 477 volumes suitable for analysis by the age-prediction 

217 algorithm. In total, 199 volumes in 77 cases (mean of 2.4 recorded volumes per woman) and 

218 278 volumes in 75 controls (mean of 3.7 recorded volumes per woman) were analyzed using 

219 the automated age prediction algorithm. The CHD cases were scanned at 1-5 different time 

220 points during pregnancy, with 63% of the women scanned more than once. For the control 

221 group, all cases were measured more than once. 

222 The fetal brain-age of the healthy control cases was calculated by the age prediction 

223 algorithm. This cohort of normal fetuses showed a calculated brain-age by the algorithm 

224 which did not statistically differ from the true GA 17, based on first-trimester ultrasound 

225 suggesting the model is applicable to our cohort. The predicted brain-age increased perfectly 

226 linear in the second trimester and the algorithm tends to slightly underestimate the brain age 

227 during the third trimester (figure 3). 

228 The overall test indicated that the time trend significantly differed between CHD-cases and 

229 controls (p=0.005) indicating that indeed there was a group effect. When comparing CHD 
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230 cases with controls, the brain-age determined by the algorithm was lower compared to 

231 controls at the median true GA (26.20 vs 26.61 weeks; difference 3.0 days, 95% CI (1.07 to 

232 4.63) p = 0.001. (figure 4)  The speed of the development of the brain maturation (i.e. slopes 

233 of the curves), between both groups did not differ statistically significant. Cortical maturation 

234 was estimated to increase with 4.45 vs 4.52/days per week (p = 0.78) for CHD cases and 

235 controls, indicating similar speed of maturation between CHD cases and controls. This was 

236 also analyzed with a quadratic age trend analysis, which confirmed the similar increase in 

237 cortical maturation between cases and controls.

238

239 DISCUSSION

240 In this study of a consecutive cohort of fetuses with isolated CHD fetuses, we found a delay 

241 in fetal brain-age of 3.0 days, compared to normal fetuses. The delay was continuous 

242 throughout our study period, which opposes the earlier findings that suggest further delay in 

243 cortical maturation with advancing gestation.7, 19  This study is the first to implement a 

244 validated automated algorithm to assess fetal cortical development using ultrasound, to a 

245 clinically relevant group.  

246 Neurodevelopmental delay in CHD children has been recognized for decades, even with 

247 optimized pre-operative and neonatal care.20 prenatal brain damage is hypothesized to result 

248 from the altered hemodynamics caused by the cardiac defect, which may result in decreased 

249 flow or oxygenation of the blood directed towards the brain 21, 22, resulting in delayed brain 

250 development. Increased N-acetylaspartate to choline (NAA:Cho)-ratio and increased lactate 

251 levels in MRI and spectroscopy studies support a decrease in brain oxygenation in the 

252 developing fetal brain of fetuses with CHD.19, 23 

253 Cortical maturation by measuring fissure depth has been described before using both MRI 14 

254 and US 24, 25in non-CHD fetuses, application of these techniques show significant differences 

255 in the depth of the POF and Calcarine fissure in CHD cases as compared to controls. 6-9 These 

256 fissures were also reported to be shallower in CHD neonates when compared to controls with 

257 a comparable GA 3, which was explained as delayed maturation. The findings in these studies 

258 are, however, not in full agreement with each other. A significant decrease in depth of the SF, 

259 POF and Calcarine fissure was found by some authors 8 whereas others did not find a 

260 significant difference in the SF depth 6, but did find an overall decrease in brain maturation. 9 
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261 The differences in the results of these studies can be explained by the small sample sizes, 

262 different methodologies, and the differences in statistical analysis of the data.9  

263 Our study is the first to convey the development of cortical maturation with ultrasound by 

264 using maturational age as an outcome measure. Thus, the used methodology in this study is 

265 capable to determine the extent of the delay, which was demonstrated to be small (3.0 days). 

266 Moreover, we do not see a difference in the slopes of the development between CHD and 

267 control cases, indicating no further delay in the cortical growth trajectory in the third 

268 trimester, as described by other authors.7, 9 A possible explanation for this absence of third 

269 trimester difference, might be that the role of fetal brain oxygenation is being magnified in 

270 literature due to case selection. Decreased head growth as a proxy for brain development and 

271 developmental delay has however also been demonstrated in other types of CHDs which 

272 suggest a role for placental, genetic or epigenetic factors.

273 A common method of assessing fetal cortical development in the previously mentioned 

274 studies is a manual, sometimes unblinded, measurement of the depth of two-three fissures.6-9 

275 The applied algorithm in our study automatically selects the most age-discriminating regions 

276 of the entire fetal brain. As cortical maturation is an excellent proxy for brain age, this does 

277 not imply that the sulcation in itself is a linear phenomenon. 14, 26 The sampled locations (eg 

278 callosal, cingulate and central sulcus, thalamic region, POF and SF ) are proven as the most 

279 distinct points to assess maturation speed, as the algorithm used automated deep learning in a 

280 large cohort of normal fetuses.17 It is therefore arguable if the maturation patterns of the 

281 commonly chosen fissures in previous studies (SF, POF and calcarine fissure) are sensitive 

282 enough to detect brain maturation and representative of the global cortical development, as 

283 our algorithm selected more sulci to be able to assess brain-age with a precision of 6 days.17  

284 Another important difference with previous studies is the fact that we included cases with 

285 isolated CHD and have excluded neonates that were diagnosed with genetic syndromes 

286 (routinely tested with micro-array or whole exome sequencing) after birth. Although previous 

287 studies report the exclusion of aneuploid fetuses 6-8, only de Koning et al.9 report the postnatal 

288 exclusion of syndromic cases. Since a significant amount of genetic syndromes present with 

289 mental retardation, abnormal brain development could be caused not solely by the CHD in 

290 itself. 

291 Whether a delay of three days is clinically relevant, is debatable. On the other hand one could 

292 argue that even though differences are small, they could still have an impact on long term 
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293 outcome, since the detected delay is visible in early life.27 Two of the studies mentioned 

294 above6, 8  found significant differences when correlating cortical maturation and 

295 neurodevelopmental outcome by performing Bayley Scales of Infant and Toddler 

296 Development (BSID). However, authors performed BSID in a minority of infants and, 

297 paradoxically, only in milder CHD cases. With this sparse evidence, it is undisputable that 

298 there is an urgent need to explore the relation between altered fetal brain maturation and 

299 neurodevelopmental outcome further. As this is a limitation of the current study, we are 

300 planning to correlate the findings in this cohort to postnatal neurodevelopment.

301 It is controversial which imaging modality is superior to detect abnormalities in fetal brain 

302 development. While we do acknowledge the fact that MRI is regarded as the gold standard 

303 for detecting structural brain abnormalities28, both previously mentioned MRI-studies only 

304 comprise a single MRI acquisition during pregnancy, with slice thicknesses of 1,5-3 mm, 

305 which will influence the accuracy of the measurements as well. We believe that repeated 

306 measurements by US in the hands of experienced sonographers is sensitive enough to study 

307 brain maturation trajectories. 

308 A limitation of this study is the assessment of all CHD-cases combined. We acknowledge 

309 that fetuses with lower oxygen delivery to the brain might be prone to delayed cortical 

310 development, reduced head circumference and brain lesions.10, 19, 22, 29 However, reduced head 

311 circumference, as a proxy for brain development, has been reported in fetuses with only a 

312 single ventricular septal defect .30We have chosen to not stratify according to CHD, as the 

313 current group is too small to make statements on cortical development. Stratification 

314 according lesion physiology will be possible in the future as we continue monitoring these 

315 cases.  

316  A second limitation is the upper GA limit of included cases, because brain visibility is 

317 obscured due to acoustic shadowing and fetal position in the late third trimester. 

318

319 CONCLUSION

320 This study shows that fetuses with isolated cases of CHDs show some delay in cortical 

321 maturation as compared to healthy control cases. The clinical relevance of this small 

322 difference is debatable. This finding was consistent throughout pregnancy and did not 

323 progress during the third trimester. 
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403 SUPPORTING INFORMATION legend

404 Appendix S1. Description of the algorithm

405

406 FIGURE LEGENDS

407 Figure 1. Schematic representation of a regression forest. Different brain regions are sampled 

408 to calculate the brain-age in a 3D US volume

409

410 Figure 2. A visual representation of gestational age discriminating brain regions between 18-

411 32 weeks gestation. Colour scale is shown in the top left, top row: axial plane and bottom 

412 row: coronal plane. The colours closest to 1.0 represent brain regions that are selected most 

413 frequently by the algorithm.

414

415 Figure 3. Regression plot for 75 control cases: gestational age(‘true age’) on the x-axis and 

416 age prediction on the y-axis.  

417

418 Figure 4. The x-axis shows the gestational age at ultrasound(‘true age’), the y-axis shows age 

419 as predicted by the algorithm. Legend: □ CHD cases, - - (interrupted line), ○ control cases. 

420 ── (continuous line).

421

Page 15 of 26

http://www.aogs-online.com

Acta Obstetricia et Gynecologica Scandinavica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16

422 Table 1. Baseline characteristics of included cases. 

423

Characteristics Value

CHD cases Controls Total

No. of women 90 75

No. of analyzed 

volumes

199 (42%) 278 (58%) 477 

(100%)

Characteristics P-value

Maternal Age in years 

(Mean(SD))

29.76 (4.2) 32.08 (4.39) 0.30

BMI (kg/m2) Mean(SD) 23.79 (4.2) 23.24 (3.8) 0.11

Primigravidae (%) 44 (42%) 25 (33%) 0.28

Diabetes n(%) 3(2.9%) 0(0%) 0.14

Total no. of CHD cases 90 n.a.

Major CHD

HLHS 7

Transposition of the 

Great Arteries

13

Aortic Arch Hypoplasia 

and/or Aortic Stenosis

21

Tricuspid or Pulmonary 

Atresia

11

Tetralogy of Fallot or 

Fallot-like defect

15

(un)balanced 

atrioventricular septal 

defect

7

Other major CHDa 14

Minor CHD

Ventricular Septal 

defect

2

Excluded Cases 14 n.a.
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Fetal Intervention 3

Postnatal non-

isolated/syndromic

8

Postnatal normal heart 3

Pregnancy outcome n.a.

Live birth 75 (83%) 75(100%)

Termination of 

Pregnancy

15 (17%) 0(0%)

424 Abbreviations: CHD, Congenital Heart Defect; SD, Standard Deviation; BMI, Body Mass Index; HLHS, 

425 Hypoplastic Left Heart Syndrome; TGA, Transposition of the Great Arteries; 

426 a Other major CHD include: Truncus Arteriosus, Multiple level left obstruction syndrome (Shone’s complex), 

427 Double Outlet Right Ventricle-TGA, Congenitally Corrected TGA.

428

429

430
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Schematic representation of a regression forest. Different brain regions are sampled to calculate the brain-
age in a 3D US volume 
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A visual representation of gestational age discriminating brain regions between 18-32 weeks gestation. 
Colour scale is shown in the top left, top row: axial plane and bottom row: coronal plane. The colours closest 

to 1.0 represent brain regions that are selected most frequently by the algorithm. 
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Figure 3. Regression plot for 75 control cases: gestational age(‘true age’) on the x-axis and age prediction 
on the y-axis.   

159x134mm (96 x 96 DPI) 
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Figure 4. The x-axis shows the gestational age at ultrasound(‘true age’), the y-axis shows age as predicted 
by the algorithm. Legend: □ CHD cases, - - (interrupted line), ○ control cases. ── (continuous line). 
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Supplement

Estimation of gestational age is an essential part of safe obstetrical care. In order to provide 
an accurate age estimation, an ultrasonographic examination is performed around 10 weeks’ 
gestation.
According to the ‘ISUOG Practice Guideline: Performance of first-trimester fetal ultrasound 
scan’: Accurate dating provides valuable information for the optimal assessment of fetal 
growth and appropriate obstetric management. Dating a pregnancy by ultrasound between 
10+0 and 13+6 weeks appears to be the most reliable method with which to establish true 
gestational age. 
The age prediction algorithm which we have used in a clinical group of CHD-fetuses, 
originates from the idea that not all women have access to a first-trimester ultrasound scan to 
accurately date their pregnancy. Especially women living in rural settings are at risk for 
erroneous obstetrical management, resulting from inaccuracies in gestational age.  

The age prediction algorithm consists of an automated machine learning-based predictive 
model which has the ability to learn patterns of fetal brain changes over time. This model was 
‘trained’ by 448 3D US images (GA range 18+0-33+6 weeks) from the INTERGROWTH-
21st database (Papageorghiou et al. Lancet. 2014). This database contains a group of healthy 
volunteers from a low risk setting, for which pregnancy dating was performed following the 
ISUOG practice guideline as mentioned above. In addition, to account for natural variation in 
left and right hemispheres, only abdominal 3D Ultrasound(US) volumes were used with both 
visible hemispheres.
This supplement provides a more detailed description of the algorithm used in the main 
article. 

Brain Feature Selection
Three-dimensional US volumes contain a large amount of information and possibly several 
neighbouring image patches containing similar information. Reducing the number of 
surface/image ‘points’ included in the search space reduces redundancy which in turn 
improves the computational cost. To this end, the cranial surface was densely evaluated with 
a pre-selected number of points to represent anatomical regions of interest, P (Figure S.1).

However, due to the effects of cranial calcification, the brain hemisphere proximal to the US 
probe is typically occluded, leaving only the distal hemisphere with visible and discernible 
intracranial structures. As such, feature extraction is confined to points on half of the cranial 
surface corresponding to the distal cerebral hemisphere in the image volume (Figure S.1). For 
simplicity, the surface is split by the midsagittal plane— defined by a normal vector and the 
centre point of the plane.

Appearance-Based Features

The appearance-based features used by the model comprise of two groups: sulcal and 
intracranial VOIs. Sulcal features are evaluated by affixing the VOI to the inner cranial 
surface (Figure S.2). They are designed to capture the sonographic image appearance related 
to changes in shape and morphology of the sulci and gyri on the cortical surface across 
gestation. 
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Intracranial features, on the other hand, are evaluated by displacing the VOI along the vector 
normal to  (Figure S.1). For these features, the VOI can be placed anywhere in the 𝒀𝑚

trajectory between the inner skull and the falx cerebri (or midsagittal plane, ). This 𝒀𝑚

ultimately covers the entire space in the cerebral hemisphere of choice. 

Biometry-Based Features

Guided by prenatal assessment of fetal growth, the biometric feature is akin to the clinical 
head circumference (HC) measurement acquired from the standard transthalamic (TT) plane 
of the head. In this case, the feature is evaluated as the perimeter of the inner contour of the 
deformed cranial surface at the level of the diagnostic TT plane. The biometric HC feature 
captures global changes in head size in a manner similar to the current clinical method of GA 
estimation, emulating global (rigid) transformations related to fetal head growth. 

Figure S.1. 
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Figure S.2. 

Page 24 of 26

http://www.aogs-online.com

Acta Obstetricia et Gynecologica Scandinavica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

GA Prediction
During age prediction, an unseen data sample (i.e. brain volume and corresponding surface) 
of unknown GA traverses the nodes in each tree of the trained forest model, and the binary 
test associated with each split node evaluates whether to send the data to the left or right child 
nodes, until the sample eventually reaches a leaf node (Figure S.3). For each tree, the leaf 
node reached provides a mean age estimate with an associated variance. Leaf nodes with high 
variance values have lower age certainty, so they are assumed to be less informative and 
likely to add noise to the output predictions. Therefore, a single prediction  is generated by 𝑎
taking the mean of the GA estimated by all trees in the regression forest. Specifically:

𝑎 =  ∑
𝑡 ∈ 𝑇

𝑎𝑡

Fig S.3. GA Determination (Data used for model training)

In the INTERGROWTH-21st study, GA was defined by the known last menstrual period 
(LMP) and confirmed by a first-trimester (acquired between 9+0 and 13+6 GW) 
ultrasonographic measurement of the fetal crown-rump length. For added confidence, true 
GA was defined as the LMP- and CRL-based ages agreeing within 7 days, where the CRL-
based GA is accurate within 2.7 days, as determined from 3 independent clinical 
measurements. All women included in the study were screened according to the 
INTERGROWTH-21st criteria and scanning protocol, and were thus identified as having low 
risk of impaired fetal growth and absence of fetal brain anomalies. Consequently, it was 
assumed that there were no delays in cortical development and that the fetal brains included 
in the study exhibited age-appropriate structural composition.
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Image Selection for Model Training
Due to the fact that fetal head US images are typically challenged by reverberation artefacts 
(a consequence of increasing calcification of the cranial bones), the cerebral hemisphere 
proximal to the ultrasound probe is partially obstructed. Thus, the images selected for model 
training were included based on the following criteria:

1. Cranium occupies ≥ 50% of the image
2. Distal cranial hemisphere is unobstructed
3. Interhemispheric fissure and falx cerebri are clearly visible in the entire supratentorial 

region
4. Sylvian fissure is visible in the distal hemisphere
5. Thalami are visible
6. Cavum septum pellucidi are visible

The images were converted to an isotropic spatial resolution whilst preserving anatomical 
boundaries, speckle, and texture profiles obtained during image acquisition. 
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