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Abstract

Background: Esophageal thermal injury can occur after radiofrequency (RF) abla-
tion in the left atrium to treat atrial fibrillation. Existing methods to prevent esopha-
geal injury have various limitations in deployment and uncertainty in efficacy. A new
esophageal heat transfer device currently available for whole-body cooling or warming
may offer an additional option to prevent esophageal injury. We sought to develop a
mathematical model of this process to guide further studies and clinical investigations
and compare results to real-world clinical data.

Results: The model predicts that the esophageal cooling device, even with body-
temperature water flow (37 °C) provides a reduction in esophageal thermal injury com-
pared to the case of the non-protected esophagus, with a non-linear direct relationship
between lesion depth and the cooling water temperature. Ablation power and cooling
water temperature have a significant influence on the peak temperature and the
esophageal lesion depth, but even at high RF power up to 50 W, over durations up to
20 s, the cooling device can reduce thermal impact on the esophagus. The model con-
curs with recent clinical data showing an 83% reduction in transmural thermal injury
when using typical operating parameters.

Conclusions: An esophageal cooling device appears effective for esophageal protec-
tion during atrial fibrillation, with model output supporting clinical data. Analysis of
the impact of ablation power and heart wall dimensions suggests that cooling water
temperature can be adjusted for specific ablation parameters to assure the desired
myocardial tissue ablation while keeping the esophagus protected.

Keywords: Atrial fibrillation, Radiofrequency ablation, Esophageal protection, Finite
element model, Mathematical modeling, Esophageal cooling, Ablation parameters

Background

Esophageal injury is known to occur during ablation of the left atrium with radiofre-
quency (RF) energy, and the extreme outcome of this injury, atrio-esophageal fistula,
may occur in up to 0.25% of patients [1, 2]. Cooling the esophagus during RF ablation has
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been investigated in a variety of fashions, including through the use of balloon devices
and via direct instillation of liquid into the esophagus [3-10]. A recent meta-analysis
found a 61% reduction in esophageal lesions using direct instillation of cold liquid [11].

A whole-body temperature management device that operates through the esophagus
(EnsoETM, Attune Medical, Chicago, IL, USA) became commercially available in 2015,
and is being investigated for its potential to counteract unintended esophageal heating
during RF ablation of the left atrium [12]. Clinical data are now available from a small
6-patient study from a single site, [13] and a larger 120-patient clinical study, [14, 15]
with longer term follow-up showing efficacy recently presented [16].

The device is available for a range of patient temperature management needs, and pro-
vides a high flow rate of water through a closed-circuit multi-channel 12-mm-diameter
cylindrical silicone tube placed in the esophagus analogously to a standard orogastric
tube (images and video available at https://www.attune-medical.com/). The device has
a large heat transfer capacity and is currently used in cooling mode for the reduction of
patient core body temperature from febrile or normothermic states, in warming mode
for the prevention of inadvertent perioperative hypothermia, and in a feedback-control
mode (automatically warming or cooling) for a variety of temperature management
needs [17-20]. In order to further investigate the potential of this new approach, and
quantify the possible efficacy, we sought to develop a mathematical model of this pro-
cess and evaluate performance over a range of expected operating conditions while com-
paring output to recently available clinical data.

Results
The sweep of the parameter values (RF power and cooling temperature) resulted in mul-
tiple simulations to study the influence of those parameters in the maximum or peak
temperature, the lesion depth and the fraction of damage for up to 20 s of ablation. The
esophageal lesion depth was defined as the distance from the pericardium (fat)—esopha-
gus interface to the farthest point along the line perpendicular to the catheter tip cross-
ing the ablated tissues, which results in a fraction of damage over 2%. The last point was
obtained using the free software Python by linear interpolation of the corresponding
data from Comsol®.

A line based on, and perpendicular to, the catheter tip across the involved tissues
(myocardium, pericardium and esophagus) was defined as a data set for evaluation of
fraction of damage and temperature for these studies.

RF power application and the relationship to the temperature profile

The temperature profiles were determined across the ablated tissues when power was
varied from 10 to 50 W for the control situation (the cooling device not inserted)
for both Study 1 and Study 2 during 20 s ablation duration. These profiles are shown
in Fig. 1a, ¢, respectively. Similarly, the fraction of damage for the same situation in
Study 1 and Study 2 is shown in Fig. 1b, d, respectively. From this, the dependency
on maximum temperature, esophageal and myocardial lesion depth, and fraction of
damage on RF power can be appreciated, showing the expected association (increas-
ing peak temperature, fraction of damage and lesion depth as RF power is increased).
Note that at higher wattages, typical durations of ablation are in the range of 8—10's or
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Fig. 1 Temperature across ablated tissues for a Study 1 and ¢ Study 2, and fraction of damage across ablated
tissues for b Study 1 and d Study 2 after 20 s ablation time as a function of RF power applied

Table 1 Control peak temperature and lesion results as a function of RF power for Study 1

and Study 2
Power (W) Study Esophageal lesion Maximum esophageal Peak
depth (mm) fraction of damage (%) temperature
(°C)
10 Control 1 0.00 1.14 50.07
Control 2 0.52 322 50.11
20 Control 1 0.77 4.56 65.25
Control 2 1.88 34.71 65.29
30 Control 1 1.72 24.68 82.56
Control 2 2.50 100.00 82.96
40 Control 1 244 77.44 99.63
Control 2 2.50 100.00 100.85
50 Control 1 2.50 100.00 11131
Control 2 2.50 100.00 112.76

Numerical values are from Fig. 1

less; therefore, peak temperatures shown here are not expected to occur. Data derived
from values in Fig. 1 for ablation peak temperature and esophageal lesion depth and
maximum fraction of damage as a function of RF power for Control 1 and Control
2 (control situation for Study 1 and Study 2) are shown in Table 1. The comparison
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between the results for Control 1 and Control 2 for each value of RF power applied is
useful to quantitatively compare the implications of different anatomical dimensions
in the lesion formation.

Esophageal protection with the cooling device

We next performed simulations with esophageal cooling in place. Figure 2 shows the
comparison of control situation at 30 W RF power against the situation with esophageal
protection from thermal injury achieved by the cooling device at different cooling water
temperatures (T_water) and demonstrates how lesion formation and depth changes with
cooling water temperature. The temperature across ablated tissues is shown in Fig. 2a, b
for Study 1 and Study 2, respectively, while the fraction of damage is shown in Fig. 2c, d,
respectively.

In a similar way to the control situation, the relevant quantitative data of peak temper-
ature and esophageal lesion depth and maximum fraction of damage was obtained from
Fig. 2, corresponding to the esophageal protection studies, and are presented in Table 2.
The control values at 30 W RF power for both Study 1 and Study 2 are compared against
different cooling device water temperatures (T_water) in Table 2.

The qualitative results for a 270 ° 3D revolution of the original 2D axisymmet-

ric geometry corresponding to Study 2 are presented in Fig. 3, which compares the
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Fig. 2 Temperature across ablated tissues for a Study 1 and ¢ Study 2, and fraction of damage across ablated
tissues for b Study 1 and d Study 2 after 20 s ablation time as a function of cooling water temperature and
control at 30 W RF power
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Table 2 Cooling device protection peak temperature and lesion results as a function of RF
power for Study 1 and Study 2 when RF power is 30 W

Study Esophageal lesion depth  Maximum esophageal fraction Peak
(mm) of damage (%) temperature
Q)

Control Study 1 1.56 81.21 12017
T_Water=37°C 2.50 14.87 67.79
T_Water=30°C 0.52 4.59 63.30
T_Water=20"°C 0.00 061 56.29
T_Water=10°C 0.00 0.11 5043
T_Water=5°C 0.00 0.04 4833
Control Study 2 2.50 100.00 82.96
T_Water=37°C 250 29.62 67.88
T_Water=30°C 093 11.31 65.61
T_Water=20°C 0.00 2.57 6246
T_Water=10°C 0.00 061 59.61
T_Water=5°C 0.00 033 5844

Numerical values are from Fig. 2
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Fig. 3 Temperature surface plot around ablated tissues for Study 2. a Control and b with the cooling device
at 5 °C for 30 W RF power. Fraction of damage surface plot around ablated tissues for Study 2 ¢ Control and
d with the cooling device at 5 °C for 30 W RF power after 20 s ablation time. The subdomains are marked

by letters in black circles: ¢ catheter body; d catheter tip; e blood; f myocardium; g pericardium (fat layer); h
esophagus; i cooling device wall; j cooling device water

control situation at 30 W and the esophageal protection when the cooling device
water temperature (T_water) is 5 °C, the lowest value considered. Figure 3 shows the

temperature distribution as well as the lesion formation shape in terms of the fraction
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of damage in the ablated tissues. The temperature surface plots for control at 30 W
and the esophagus protection with T_water=5 °C are shown in Fig. 3a, b, respec-
tively, while the fraction of damage is presented in Fig. 3c, d, respectively. For the tem-
perature and fraction of damage profiles in Fig. 3, the color range value was adjusted
to be the same, so the qualitative comparison is clearer and more understandable. The
black circles with letters in Fig. 3 denote the computational subdomains as specified
in Fig. 6.

A widely used parameter implied (and utilized as a control mechanism in the actual
RF ablation procedures) is the impedance fall, and these values are available in the
clinical trial data. Simulated data for impedance fall, measured as the magnitude of
the relation between the terminal (catheter tip) voltage and current, were determined
and are presented in Fig. 4. Figure 4a, b shows results for Study 1 and Study 2 control
situation as a function of RF power applied. Figure 4c, d shows results for Study 1
and Study 2 using esophageal protection with the cooling device as a function of the
cooling water temperature (T_water) when ablation power is 30 W. The control line is
shown as well for further comparison.

Finally, we created contour plots for Study 2, to examine the influence of param-
eters simultaneously. Contour plots showing esophageal and myocardial peak fraction
of damage (Fig. 5a, d, respectively), the myocardial peak temperature (Fig. 5b) and
the esophageal lesion depth (Fig. 5¢) and as a function of both RF power and cooling
water temperature (T_water) are shown in Fig. 5. In these, with a given set of input
operating parameters, an adjustment to cooling water temperature can be made such
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Fig. 4 Control impedance vs. time plots for different RF power values for a Study 1 and b Study 2. Cooling
device protection impedance vs. time plots for 30 W RF power and different values of cooling water
temperature




Mercado et al. BioMed Eng OnLine (2020) 19:77

Study 2 - Esophagus protection with the cooling device
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Fig. 5 Contour plots for Study 2: a myocardial peak fraction of damage; b myocardial peak temperature; ¢
esophageal lesion depth and d esophageal peak fraction of damage after 20 s ablation time as a function of
cooling water temperature and RF power

Table 3 Patient and procedure characteristics in the clinical trial for both protected
esophagus and control studies

Patient and procedure characteristics Protected (n=60) Control (n=60)
Male n=36 (60%) n=37(61.7%)
Age (years) 65410 6549

LA diameter—anteroposterior (cm) 410409 420406

LV ejection fraction (Simpson’s) (%) 55+9 52+8

BMI (kg/mz) (%) 285453 29807
Persistent, 1st time ablation n=27 (45%) n=230 (50%)
PAF, 1st time ablation n=24 (40%) n=20 (33.40%)
Repeat left atrial ablation n=28(13.3%) n=9 (15%)

LAT (left atrial tachycardia) n=1(0.7%) n=11.7%)

that optimal protection can be provided to the esophagus while keeping the desired
myocardial damage.

Comparison to clinical data
The results of a 120-patient clinical trial involving RF ablation procedure for the treat-
ment of atrial fibrillation are presented in Tables 3 and 4. Patient and procedure charac-
teristics are presented in Table 3, while the lesion grade of damage, classified from grade
1 to grade 6 is presented in Table 4.

Because results show only endoscopic outcome (and not tissue depth of injury, which
would require a separate surgical procedure or autopsy to determine), we rely on the
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Table 4 Lesion grade results for the clinical trial

Endoscopy results (n=120) Protected (n=60) Control
(n=60)
No lesion 56 42

Grade 1 (erythema)

Grade 2 (erosion <5 mm)

Grade 3 (erosion(s) > 5 mm)
Grade 4a (superficial ulcer, clean)

Grade 5a (deep ulcer, clean)
Grade 5b (deep ulcer with clot)
Grade 6 (fistula)

o 0o = = &~ = = b

0
1
0
1
Grade 4b (superficial ulcer with clot) 0
0
0
0

reduction in esophageal lesion formation of 83% as a marker of efficacy. When compared
with model output, using similar operating parameters, and considering the expected
variation in tissue thickness across patients and within the region of interest in each

patient, the findings appear in line with predictions.

Discussion

We show here for the first time the protective effect of a new esophageal cooling device
from RF energy applied to the atrium and evaluate this effect across a range of operat-
ing parameters that encapsulate the expected values in clinical use. These findings sug-
gest that the protective effects of this approach may be significant, and moreover, that
these effects can be adjusted, or tuned, by adjusting coolant temperature, such that opti-
mization of esophageal protection can be pursued while minimizing or eliminating any
reduction of ablation efficiency in the atrial wall. Comparison of model predictions with
actual clinical data further reinforces the value of this model.

Several variables impact the efficacy of this approach, with the temperature of the
coolant (water) having perhaps the greatest impact in the lesion depth and peak tem-
perature, as might be expected. Also, the anatomical dimensions of the patient have a
significant effect in the results as evidenced by the difference in the results for Study 1
and Study 2. Peak temperature and the esophageal lesion depth and fraction of damage
are considerably influenced by the RF power. Figure 1a, ¢ shows the temperature profile
across the ablated tissues as a function of RF power. It is evident that the temperature
begins rising from the catheter tip until reaching a peak temperature and then falls with
different slopes, depending on the dimensions considered. Apparently, the peak temper-
ature varies almost linearly with RF power. The fraction or percentage of damage shown
in Fig. 1b, d shows a non-regular shape, which can be attributed to the nature of the
fraction of damage calculation (Egs. 8, 9), and to the different material properties (fre-
quency factor and activation energy) considered for the myocardial and the esophagus
compared with those set up for the fat layer [21]. Additionally, Fig. 1b, d suggests 10 W is
the only power applied leading to weak myocardial damage for both anatomical dimen-
sions studied in Study 1 and Study 2, in turn suggesting that for low wattage, a longer
duration is generally required to obtain adequate lesion formation. For RF powers from
20 to 50 W, the myocardial lesion reaches 100% depth in almost all regions, but the peri-
cardial (fat layer) lesion is considerably higher as the power is increased. Nevertheless,



Mercado et al. BioMed Eng OnLine (2020) 19:77 Page 9 of 17

it also increases the undesired esophageal damage, especially for the case of very thin
cardiac walls considered in Study 2. These extreme anatomical conditions lead to both
larger esophageal lesion depth and percentage of damage, suggesting a thin cardiac wall
could lead to greater probability of the lethal atrio-esophageal fistula.

The results shown in Table 1 quantitatively support what is graphically evident in
Fig. 1, specifically that the maximum esophageal percentage of damage is considerably
higher in Study 2 than in Study 1, highlighting that the degree of damage is greater with
thin heart walls. As shown in Fig. 2 and Table 2, the esophageal protection against dam-
age using the cooling device even with body-temperature water flow (37 °C) is seen in
the reduction in some of the critical parameters considered in this study: the fraction
of myocardial and esophageal damage, and the global peak temperature; but leads to a
higher esophageal lesion depth, suggesting that 30 °C cooling or lower is needed to have
beneficial effect. The discontinuous steps observed in Fig. 2 are a result of changes in
tissue properties, which differ for each tissue. The most influencing properties on the
discontinuous steps are those related to the thermal damage measured by the Arrhenius
equations (Egs. 8 and 9).

As expected, the protective effect is more evident in Study 1 than in Study 2. This can
be expected by the greater lesion depth predicted for the thin cardiac wall conditions
in Fig. 1. Nevertheless, the cooling device considerably reduces esophageal damage for
both cardiac dimensions considered. On the other hand, despite the fact that pericar-
dial (fat) damage is also reduced with the placement of the cooling device and with the
reduction of the cooling water flowing inside it, the myocardial lesion remains almost
unchanged when the water temperature is around 30 °C (which is the aim of RF abla-
tion therapies for the treatment of atrial fibrillation). A reduction of the desired cardiac
injury is possible at lower water temperatures in some anatomic conditions; however,
recently presented clinical data showing longer term follow-up has shown equivalent
efficacy of the ablation procedure with and without the cooling device, despite a marked
reduction in esophageal lesion formation [16]. Use of the esophageal device appears to
impact temperature and tissue damage more significantly at the esophagus than at the
myocardium. Moreover, adjustment of temperature can be performed to optimize pro-
tection while minimizing any impact on myocardial lesions, if needed. Figure 3 further
shows that esophageal cooling provides a notable reduction in esophageal lesion depth
compared to the case of the non-protected esophagus.

The results in Fig. 3 for Study 2 suggest a regular shape for the temperature distribu-
tion, and as expected, it is evident that the cooling water in the device acts as a ther-
mal barrier for the esophageal protection. In contrast, the shape of the lesion formation
in terms of the fraction of damage is irregular, suggesting the greater influence of the
parameter is the Arrhenius expression for the measurement of tissue thermal damage
(Egs. 8 and 9). Although myocardial damage can also be affected by the cooling water
temperature (for example, the fraction of damage and the size of the injury may both be
reduced when very low temperatures as 5 °C are used), as mentioned above, recent clini-
cal data suggest that any impact is clinically insignificant [16].

The impedance falls for the control situation in both Study 1 and Study 2 (Fig. 4a, d)
suggest that increasing the power slightly increases the final impedance fall. Neverthe-

less, the values are very similar within different powers and anatomical dimensions. For
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the esophageal protection, it is evident from Fig. 4c, d that the placement of the cooling
device increases the initial impedance when compared to control, but the impedance fall
remains similar, without significant influence from the cooling water temperature. The
clinical data show an average 122 Q impedance and a drop of 9+ — 5 ), suggesting the
simulation results are considerably close to those reported clinically.

We included a wide range of energy deposition in our model, including a high range
that is generally beyond what most practitioners aim to achieve; however, since the trend
in current ablation practice is towards higher energy, but shorter duration, inclusion of a
wider range of energy in this model is appropriate. Moreover, even when not intending
to deploy higher energy, it is often the case that sufficient energy is deployed to result
in a steam pop. Steam pops occur when tissue temperature exceeds 100 °C, and in fact,
experimental measurements have found tissue temperatures of 102417 °C reached dur-
ing steam pop formation [22]. Steam pops are common when cooled electrode tempera-
ture exceeds 40 °C and are not predictable from power or impedance drop, but small
impedance rises and sudden drops in measured electrode temperature indicate possible
steam formation [23]. Investigators have found that the incidence of steam pops signif-
icantly increased for both nonirrigated and irrigated ablations at 40 W [24] and have
noted that the disparity between catheter and tissue temperatures during irrigated RF
ablation frustrates one’s ability to predict steam pops [25].

The contour plots shown in Fig. 5 offer a means to determine which parameter (abla-
tion power or cooling device temperature) should be adjusted to minimize esophageal
damage while maximizing the desired cardiac injury. Figure 5 highlights the esophageal
lesion depth and both myocardial and esophageal maximum fraction of damage and the
myocardial peak temperature as a function of cooling water temperature and the RF
power applied, which allows selection of appropriate cooling water temperature in order
to protect the esophagus from thermal damage while assuring the desired myocardial
tissue ablation. Pairs of values for different parameters can be taken from these graphs
to assure both low esophageal lesion depth and maximum fraction of damage and high
myocardial peak fraction of damage.

In summary, a 2D axisymmetric model of an esophageal heat transfer device currently
available for whole-body cooling or warming shows significant protective effects on the
esophagus against thermal damage from RF energy ablation. The model supports grow-
ing clinical data now available.

Limitations

Although mathematical modeling offers valuable insight into physical phenomena such
as those investigated in this study, and these results serve as a guide to expected clinical
results, some variation in the results found in clinical application should be expected.
The results are expected to vary with parameters outside of those considered in this
study. For example, tissue properties may vary between patients, as may the contact
force and ablation power. Nevertheless, all these parameters can easily be studied in
silico with the model proposed here. Future work should pave the way to build compu-
tational models aimed to simulate the RF ablation based on the ablation index instead
of fixed values for the various parameters in order to have improved reference cases to
compare model predictions with clinical data and to increase reliability. We modeled
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a wide range of energy depositions during ablation, and the high end of this range of
energy deposition is actually beyond what is typically done in real practice. As such,
extremes of temperature are shown in our results that occur at higher ranges of energy
deposition; however, as noted in the Discussion, the occurrence of steam pops resulting
from high energy deposition is likely more frequent than appreciated, and with trends
towards higher energy usage in current clinical practice, these higher temperatures are
important to highlight.

Conclusions

An esophageal cooling device appears effective for esophageal protection during atrial
fibrillation, with model output supporting clinical data now available. Analysis of the
impact of RF power, ablation time, cooling water temperature and tissue thermal conduc-
tivity suggests that cooling water temperature can be adjusted for specific ablation param-
eters to assure the desired cardiac tissue ablation while keeping the esophagus protected.

Methods

Comsol Multiphysics® was used to model and simulate the process of RF ablation of the
left atrium for two situations. The first (Study 1) contemplates a collapsed esophagus in
contact with the left atrium, while the second (Study 2) includes the presence of the esoph-

ageal cooling device being investigated, circulating a range of water flow temperatures.

Computational domain

Figure 6 shows the computational domain composed by a simplified 2D axisymmetric
model of the left atrium in contact with the esophagus protected by the cooling device and
immersed in the thoracic cavity. A surrounding infinite elements domain is defined in Com-
sol to truncate the model and consider an infinitely extended domain without increasing
the computational size and cost. The ablation catheter is inserted in the blood subdomain
and is in contact with the inner wall of the myocardium. The cooling device subdomain is
not considered in the computations for the collapsed esophagus model (control).

a ® e
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I 0
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‘\\
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Fig. 6 Computational domain (geometry): a general view, b zoom-in of the ablation area, and ¢ zoom-in of
the catheter tip. The subdomains are marked by letters in black circles: a thoracic cavity (infinite elements); b
thoracic cavity; ¢ catheter body; d catheter tip; e blood; f myocardium; g pericardium (fat layer); h esophagus;
i cooling device wall; j cooling device water. The relevant boundary conditions are marked by numbers

in white circles: (1) external boundaries, (2) catheter tip boundaries, (3) left atrium blood inlets, (4) cooling
device water inlet
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The thickness of myocardium, pericardium (fat layer) and esophagus walls were set at
two combinations (Study 1 and Study 2) as specified in Table 5. [26, 27] The dimensions
were chosen to consider two different left atrium posterior wall anatomies and analyze how
much the esophageal lesion depth results are affected by different tissue thicknesses. The
catheter tip radius was set to 1.1665 mm and the insertion depth was set to 160 pm, cor-
responding to 1/25 of the tip height (4 mm). As an infinite element domain was used to

guarantee a large enough domain, the non-mentioned dimensions are not critical.

Governing equations and boundary conditions

Maxwell equations govern electromagnetism. The ACDC module from Comsol® was used
to model electromagnetic phenomena at low frequency. Because the magnetic skin depth
in human tissues is known to be very large when compared with tissue dimensions, only
electric currents were considered as a heating source. The Electric Currents interface from
the ACDC module was used to solve the equations for current conservation (Egs. 1-4). The
energy balance governs heat transfer. The Pennes’ approximation allows us to obtain the bio-
heat transfer equation, which accounts for heat sources from blood perfusion and metabo-
lism in the classical heat transfer equation. The associated Eq. 5 is solved through the Biokeat
Transfer interface from the Heat Transfer module from Comsol®. The term Q represents the
external heat source, which in this case is the electromagnetic, volumetric and surface losses
due to applied RF power, and given by the expression in Eq. 6. The term Q,;, in Eq. 7 cor-
responds to the sum of the heat produced by blood perfusion and the metabolic heat source.

VJ=Q (1)
J=0E+joD +]J,, (2)
E=-VV, 3)
D = g5, E, (4)
pcp% + pcpu - VT 4+ V - (=kVT) = Q + Quyy» (5)
Q= %Re(} ‘E%), (6)
Qbio = P6Cpp@p(Ty — T) + Qmet- (7)

Table 5 Left atrium posterior wall anatomy dimensions considered in Study 1 and Study 2

Study Myocardium thickness (mm) Fat thickness (mm) Esophagus
thickness
(mm)

1 2.00 1.00 2.50

2 1.50 0.50 250
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For electric governing equations, J is the current density, Q is the current source term,
o is the electric conductivity, E is the electric field intensity, D is the electric displace-
ment, w is the angular frequency, Je is the external current density and V'is the electric
potential. For thermal governing equations: T is the temperature, p is the density, C, is
the heat capacity, u is the fluid velocity, & is the thermal conductivity, Q is the heat source
term (which corresponds to resistive heating in this case). The heat due to blood perfu-
sion is given in terms of blood perfusion rate w,, the subscript b indicates blood (the
metabolic heating source Q.. was neglected). To account for convective transport while
avoiding the complexity of a full fluid dynamics study, the blood domain was replaced by
a convective heat flux boundary condition. The heat transfer coefficient between blood
and tissue was /1, =610 W/(m’K), and between blood and ablation catheter 4, = 3346 W/
(m?K) [28]. This way, the model considers an average situation for the flow of blood. On
the other hand, to couple RF energy and bioheat transfer, the multiphysics interface Elec-
tromagnetic Heat Source from the Multiphysics module of Comsol was used to account
for electromagnetic volumetric and surface losses.

The governing equations (1-7) are for the whole computational domain, and changes
within domains are based on the material properties related to those equations. The bio-
heat terms in Eq. 5 only apply for tissue domains: myocardium, esophagus, fat layer and
thoracic cavity (domains a, b, f, g, and h). The electromagnetic heat source was applied
to all domains. Besides the material properties, boundary and initial conditions are also
needed to solve this set of partial differential equations. Figure 6 shows the relevant
boundaries in the model, while Table 6 describes the associated thermal and electrical
boundary conditions. The electrical boundary conditions for the catheter tip considered
power values from 10 to 50 W by means of the “Terminal” boundary condition feature,
which is available in the Electric Currents interface of Comsol®. The cooling water tem-
perature inlet was set from 5 to 37 °C. The initial temperature was 37 °C (body tempera-
ture) while the initial electric potential was set to 0 V.

Thermal damage analysis

To evaluate the fraction of damage in the ablated tissues (domains a, b, f, g, and h), a
thermal damage analysis was performed based on the Arrhenius equation (Eq. 8). [21,
29-31] Where « is the degree of tissue injury, A is the frequency factor, AE is the activa-
tion energy, R is the gas constant and T is the temperature. For myocardium, esophagus
and average tissue domains (a, b, f, and h), A=2.94e38[1/s], AE=2.596e5[]J/mol]. For
the pericardial fat domain (g), A =4.43e16[1/s], AE=1.3e5[J/mol]. The fraction of dam-
age is evaluated with the expression in Eq. 9 and is valued between 0 and 1, or between
0 and 100, which represents the fraction of damage as a percentage of tissue thickness.

Table 6 Thermal and electrical boundaries conditions

Boundary  Description Electrical boundary condition ~ Thermal boundary condition
1 External boundaries Ground Thermal Isolation

2 Catheter tip boundaries Power=(10, 20, 30, 40, 50) W N/A

3 Left atrium blood inlets N/A T=37°C

4 Cooling device water inlet N/A T=(5,10, 15,20, 30,37) °C




Mercado et al. BioMed Eng OnLine (2020) 19:77 Page 14 of 17

do _ (1 — a)Ae™ RT (8)
dt wne
0, = min(max (o, 0), 1) 9)

Tissue and material properties

The electrical and thermal tissue and material properties are presented in Table 7. To
account for the dependence of tissue material properties with the temperature, interpo-
lation functions were defined for electrical conductivity o, thermal conductivity k and
density p in Eqs. 10 to 12, respectively. Some of the related functions are available in the
Comsol material library [32, 33]. For the water and blood domains, predefined Comsol
functions for liquid water available in the material library were used. The mean values
for the predefined functions are shown in Table 7.

(9e — 3(T — 313.15) + 0.42) if293.15 < T < 348.15

(9e — 3(348.15 — 313.15) + 0.42) if348.15 < T < 358.15
(—3.5e — 3(T — 358.15) + 0.735) if358.15 < T < 378.15
(—52e — 3(T — 378.15) + 0.57) if378.15 < T < 388.15

ko(T[K]) = 0.493(1 + 1.2¢ — 3(T — 310.15)) if276.15 < T < 373.15,

0a(T[K]) =
(11)
1+ 1.2¢ — 3(T — 310.15)

pa(T[K]) = 0.493 if276.15 < T < 373.15.
(3212)(1.474e — 7(1 + 3.39¢ — 3(T — 310.15)))
(12)

Meshing

The mesh utilized the meshing option “physics controlled” with a predefined tetrahedral
fine mesh size and a mesh refinement made in the area around the catheter tip, where
we expect to find the most relevant changes in temperature. The mesh consisted of tri-
angular elements: 5748 for the collapsed esophagus and 6234 with the cooling device
inserted. Figure 7 presents the mesh with the same region zooming used in Fig. 6.

Table 7 Tissue and material properties

Subdomain Electrical Thermal properties

properties

o(S/m) € k(W/(mK))  C,(/(kgK) p (kg/m3)
Myocardium, esophagus, and thoracic cavity — 0,(T) 8000 k(T) 3212 0,(T)
Silicone catheter body and cooling device 10e—12 117 130 700 2329
Platinum catheter tip 8.9e6 1 716 133 21,450
Blood 1.50 22e4  N/A N/A N/A
Pericardium fat layer 0.5 80 0.21 2348 911

Cooling device water 5.5e—6 75 ~05 ~4000 ~1000
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Study type and solver

The Frequency-Transient study type from Comsol was used. This selection was made
because the multiphysics phenomena that were analyzed involve alternating electric
currents, which are convenient to solve with a frequency domain study, while the
additional heat transfer phenomena are solved in the transient domain in order to
appreciate the temperature profile changes over time. The frequency considered for
the ablation RF energy was 500 kHz, and simulations were obtained from 0 to 20 s
with a step of 1 s. For the case with esophagus protection with the cooling device,
a precooling time of 5 min was applied before beginning the ablation. A parametric
sweep was performed to simulate all the combinations of specified values for ablation

power and cooling water temperature (Table 6).

Comparison with clinical data

Recently presented clinical data from a randomized controlled trial enrolling 120
patients are available and were used for comparison to model predictions [14—16].
Ablation settings were 30 W posteriorly, 40 W anteriorly with Ablation Index targets
of 350—-400 posterior, 450-500 anterior. Because use of the Ablation Index (calcu-
lated from time, contact force and power) eliminates a firm time cut-off, and because
the coefficients of the Ablation Index are proprietary, we extrapolated ablation times
from procedures performed prior to use of the Ablation Index, where if contact force
is high, the delivery is just over 8 s, with a 20 s upper-limit cut-off otherwise. The
clinical data measuring esophageal protection with the cooling device as well as the
control conditions were compared with the simulated results to validate the math-
ematical model reliability and prediction power. The esophageal cooling device is
shown in Fig. 8; reprinted with permission from Attune Medical.
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Fig. 7 Free triangular mesh refined and around the catheter tip region. The infinite elements domain was
meshed using a mapped mesh. The complete mesh consists of 5748 for the collapsed esophagus and 6234
with the cooling device inserted
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Fig. 8 Intraesophageal cooling device EnsoETM®
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