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ABSTRACT  

Invasive candidiasis is the most common critical care-associated fungal infection with a crude 

mortality of ~40-55%. Important factors contributing to risk of invasive candidiasis in ICU include 

use of broad-spectrum antimicrobials, immunosuppressive drugs, and total parenteral nutrition 

alongside iatrogenic interventions which breach natural barriers to infection (vascular catheters, 

renal replacement therapy, Extra Corporeal Membrane Oxygenation (ECMO), surgery). This 

review discusses three key challenges in this field. The first is the shift in Candida epidemiology 

across the globe to more resistant non-albicans species, in particular, the emergence of multi-

resistant Candida glabrata and Candida auris, which pose significant treatment and infection 

control challenges in critical care. The second challenge lies in timely and appropriate initiation 

and discontinuation of antifungal therapy. Early antifungal strategies (prophylaxis, empirical and 

pre-emptive) using tools such as the Candida colonisation index, clinical prediction rules and 

fungal non-culture-based tests have been developed:  we review the evidence on implementation 

of these tools in critical care to aid clinical decision-making around the prescribing and cessation 

of antifungal therapy.  The third challenge is selection of the most appropriate antifungal to use in 

critical care patients. While guidelines exist to aid choice, this heterogenous and complex patient 

group require a more tailored approach, particularly in cases of acute kidney injury, liver 

impairment and for patients supported by Extra Corporeal Membrane Oxygenation. We highlight 

key research priorities to overcome these challenges in the future.  
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Take home message: Epidemiological shifts towards multi-resistant Candida requires enhanced 

surveillance and rigorous infection control to detect and prevent resistance emergence. The 

evidence around deployment of risk-scores and fungal non-culture-based tests in decision-

making around starting and stopping antifungals in the ICU is lacking: adequately powered multi-

site studies using a combination of tests linked to clinical and cost effectiveness outcomes are 

needed. Antifungal prescribing in special ICU populations, particularly acute kidney injury, liver 

impairment and ECMO requires a tailored approach and further PK evaluation.  

Tweet: Key ICU Candidiasis Challenges: Resistance Emergence, Biomarker-driven antifungal 

prescribing (start & stop), Tailoring therapy in ICU hosts 
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Introduction  

‘Invasive candidiasis’ (IC) is an umbrella term for three clinical conditions; candidemia;  deep-

seated candidiasis; and deep-seated candidiasis with associated candidemia[1]. Cases are often 

hospital-acquired, and critically ill patients are particularly vulnerable[2], with approximately one-

third of all candidemia occurring in this setting[3]. Despite expanded access to fungicidal agents, 

IC-related outcomes remain poor, with a crude mortality of ~40-55% in Intensive Care Unit (ICU)-

focused studies over the past decade[4–7].  

The incidence of deep-seated candidiasis without concomitant candidaemia in ICU is less certain 

due to challenges in obtaining specimens for microbiological confirmation. Intra-abdominal 

candidiasis (IAC) accounts for most deep-seated cases, with ~30% occurring in critical care[8]. 

Perforation, anastomotic leaks, repeat laparotomies, necrotizing pancreatitis and abdominal 

organ transplants increase risk, therefore incidence is higher in surgical ICUs[8]. Other forms of 

deep-seated candidiasis include haematogenously disseminated disease (hepatosplenic, ocular, 

cardiac, central nervous system, bone and renal), seen more frequently with prolonged 

candidemia, and in immunosuppressed and neutropenic patients[9, 10]. Host genetics also 

influence IC susceptibility, with various single-nucleotide polymorphisms (SNPs) identified as 

increasing candidaemia risk[11].  

Figure 1. illustrates key factors contributing to development of IC in ICU. IC risk factors have 

fluctuated with advances in intensive care medicine; while there is increased use of renal 

replacement therapy, Extra Corporeal Membrane Oxygenation (ECMO), and immunosuppression 

treatments, there has been improved vascular catheter management, more judicious use of total 

parenteral nutrition (TPN) and greater emphasis on antimicrobial stewardship[12–14]. The 

collective impact of this on IC incidence is unclear. Large multi-centre studies examining IC 

incidence in ICU have been conducted over the past decade[4–7, 15–18]. Rates of candidaemia 

reported vary significantly between 3.5 – 16.5 per 1000 admissions[4, 6, 7, 16–18].  However, 

due to inter-centre variability, the fact most studies focused on candidaemia only, and some 

encompassed cases likely to represent colonization rather than IC, evaluation of IC incidence 

trends in ICU over time is challenging.  

In this narrative review, we sought to summarise key epidemiological, diagnostic and treatment 

challenges of managing IC in ICU and highlight future directions in this field. To ensure broad 

coverage of relevant literature, we undertook a MEDLINE search for English language articles 

published before 1 July 2020, using the terms “candidiasis”, “candidaemia”, “critical care”, 
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“resistance”, “biomarkers” and “antifungal”, including further relevant studies from reference lists 

of articles identified. 
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Challenge 1: Changing Epidemiology and Emergence of Antifungal Resistance 

Epidemiological shifts 

There is significant geographic and demographic variation in IC[19]. C. albicans remains the 

dominant species in Europe[5–7]; in a pan-European ICU cohort study (2015-16)[6], C. albicans 

represented 57% of cases, followed by C. glabrata and C. parapsilosis.  Across India, C. tropicalis 

was the most common cause of ICU-acquired candidaemia[20], whereas C. albicans and C. 

parapsilosis predominate in Latin America[21].  The USA sees a higher proportion of non-albicans 

cases (approximately two-thirds), with increasing C. glabrata incidence[22]. Echinocandin-

resistant C. glabrata is reported; while European prevalence appears low (<1%)[23], US studies 

report a prevalence of 6-12%[24–26], with azole cross-resistance in up to one-third of isolates[27]. 

This is concerning given echinocandins are recommended first-line treatment in IC, and azoles 

the most widely used antifungals globally.  Moreover, the emergent multi-drug resistant C. auris 

has caused outbreaks on ICUs worldwide[28]. It is the 3rd most common cause of candidaemia in 

South Africa, with 88% of cases associated with ICU stays[29]. C.auris is usually fluconazole-

resistant, with variable amphotericin and echinocandin susceptibility, and pan-fungal resistance 

to all three classes reported[30].  

Reservoirs of resistance in ICU: the patient and environment 

The patient and the environment can be reservoirs of fungal resistance in ICU. Antibiotic use 

disrupts the skin and gut microbiome, increasing Candida colonization and risk of IC[31]. 

Antifungal exposure selects for less susceptible Candida species such as C. parapsilosis, C. 

krusei and C. glabrata[32] and fosters resistance; in a US study, echinocandin-resistant C. 

glabrata was associated with prior echinocandin exposure, fluconazole resistance, and prolonged 

hospitalization[26]. In Denmark, post-treatment (≥7 days) mouth swabs in candidaemic patients 

demonstrated acquired resistance to fluconazole and echinocandins in 29% and 22% of 

C.glabrata isolates respectively[33].  Specifically, reduced echinocandin penetration into the gut 

may select for the emergence of echinocandin-resistant species[33, 34].    

Resistant isolates spread between patients, and within the ICU environment, with reports of 

genotype-linked clusters of azole-resistant C. parapsilosis[35], and inter-hospital spread of azole-

resistant C. glabrata[36] in ICU. C. auris studies have described widespread contamination of 

environmental surfaces and equipment persisting for months, with patient acquisition of C. auris 

occurring after as little as 4-hours of contact[37]. The limited efficacy of commonly used 

environmental disinfectants and absence of effective skin decolonization regimens for C. auris, 
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have made transmission difficult to interrupt[38]. A UK ICU C.auris outbreak was only stemmed 

when reusable temperature probes were removed from circulation[39]. For C. auris, infection 

control measures including screening, isolation, cohorting and environmental disinfection are 

advised in Public Health guidance[40, 41]. ICU interventions for tackling fungal resistance are 

summarized in Figure 2.     

Many hospital laboratories do not identify yeasts in non-sterile specimens to species level; as a 

result, changes in ecology and resistance may go undetected. Misidentification of C. auris for 

other species, particularly C. haemulonii, when using common diagnostic platforms is 

recognized[42]. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) allows 

quick, accurate identification but is not universally available.  Improving laboratory capacity for 

Candida speciation, particularly C.auris, and fungal susceptibility testing is important for 

surveillance and early detection of resistance emergence in ICU.   
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Challenge 2: When to Start and When to Stop Antifungal Therapy?  

Timely delivery of effective AFT in proven IC is crucial, as delays are associated with increased 

mortality[43]. Conversely, over-prescription may be detrimental, exposing patients to drug 

toxicities and driving resistance emergence. A cross-sectional study of French and Belgian ICUs 

demonstrated that while 7.5% of patients were prescribed systemic AFT, two-thirds subsequently 

had no evidence of IFI[44], emphasising the challenge of achieving a balance between targeted, 

timely AFT whilst avoiding excessive and unnecessary use.   

Earlier antifungal strategies have thus been developed (prophylactic, empiric, pre-emptive), 

(Table 1) although the optimal strategy in ICU remains controversial. To aid decision-making 

about stopping and starting antifungals, three key tools, for use alone or in combination, have 

been proposed: Candida colonisation assessment, clinical prediction rules, and fungal non-

culture-based tests (NCBT) (Table 2). Table 3 summaries key studies using these tools to initiate 

or discontinue AFT, however their impact on clinical practice remains hotly debated. 

Role of candida colonization and clinical prediction rules  

Candida colonization is considered a pre-requisite for the development of IC (Fig.1)[62]; those 

with a higher Candida Colonization Index (CCI) are at greater risk[45]. However, although the 

proportion of ICU patients colonized with Candida increases over time (~50-80%), only 5-30% will 

develop IC[63]. While studies have proposed colonization can be used to guide prophylaxis and 

reduce IC[64–66], they have not shown a mortality benefit. A study found colonization-triggered 

caspofungin or azole use changed the ICU fungal ecology (increased C. glabrata), without 

reducing IC-associated mortality or incidence[67]. Hence, the moderate positive predictive value 

(PPV) of this approach (~66% for CCI[45]) could lead to excessive antifungal use that is neither 

appropriate or cost-effective.     

To improve the PPV, clinical prediction rules, incorporating host factors with or without Candida 

colonization, have been established. The UK FIRE Study reviewed ~60,000 ICU admissions and 

evaluated risk models for predicting IC. However, IC incidence was lower than expected (0.6%), 

and analysis suggested a strategy of no risk-assessment or AFT prophylaxis was the most cost-

effective [68].   

RCTs have evaluated the impact of clinical prediction rules triggering early AFT on IC incidence 

and mortality in ICU. The MSG-01 trial[57] (n=219) randomized to caspofungin prophylaxis or 

placebo based on the Ostrosky-Zeichner Clinical Prediction Rule, demonstrating a non-significant 
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reduction in IC (9.8% vs 16.7%, p=0.14) and no difference in all-cause mortality (16.7% vs 14.3%, 

p=0.78).  

The similarly-sized INTENSE trial[58] (n=241) randomized ICU patients with intra-abdominal 

infection requiring emergency surgery to ‘pre-emptive’ micafungin or placebo. Given prescribing 

was not based on NCBTs or radiology, current definitions would consider this an antifungal 

prophylaxis trial.  There was no reduction in IC incidence (micafungin 11.1% vs placebo 8.9%). 

AFT was possibly initiated too late (max. 120-hours post-surgery) given many developed IC early 

in their admission. No details around source control were presented (e.g. drainage of 

collections/second laparotomies), which may play a more significant role than early AFT in 

patients with a surgical abdominal focus.  

Both trials suggest early AFT based on risk factors alone does not reduce IC incidence or impact 

mortality. However, they also illustrate the challenges of powering studies adequately: in the 

MSG-01 trial, IC incidence in the control group was lower than expected, and the INTENSE trial 

highlighted the importance of selecting the right at-risk group and timepoint for intervention.  

Empirical antifungal therapy in ICU  

Given signs and symptoms of IC are non-specific, overlapping with many other infectious and 

non-infectious aetiologies, empirical AFT to cover the possibility of fungal infection in the septic 

ICU patient is common practice. A major factor driving empirical therapy are limitations of 

conventional culture-based methods. Although gold-standard for diagnosing IC, blood culture 

(BC) sensitivity is suboptimal (~75% in bloodstream infection, ~5-20% in abdominal 

candidiasis)[1, 69],  sterile site sampling (e.g. abdominal pus)  often difficult, and time-to-culture-

positivity prolonged (2-3 days)[1].  

No survival benefit of early AFT in non-neutropenic ICU patients was demonstrated in a 2016 

meta-analysis (>2300 patients from 22 RCTs)[70], although criteria triggering antifungal 

prescribing in the analyzed studies were very heterogenous. Subsequently, the EMPIRICUS 

trial[59] (n=261) randomized ventilated patients with evidence of ICU-acquired sepsis, Candida 

colonization, and multi-organ failure to empirical micafungin or placebo.  No improvement in 28-

day fungal-free survival was demonstrated (68% vs 60.2%, p=0.18), despite significant reduction 

in proven IC in the micafungin arm (3% vs 12%, p=0.008). Subgroup analysis suggested a trend 

towards better survival in those with SOFA score >8 (HR, 1.69 [95% CI, 0.96-2.94], p=0.07); 

Demonstrating survival benefit in ICU patient groups, often with multiple co-morbidities and high 
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baseline mortality, requires much larger trials to achieve adequate power. Identifying the subset 

of ICU patients who could benefit from early AFT remains a key challenge.  

Guidelines do not address de-escalation or discontinuation of empirical therapy for suspected 

infection in the absence of microbiological confirmation. In a post-hoc analysis (n=647) of the 

observational ARMCAND2 study including patients with suspected(57%)  or proven IC(43%), de-

escalation (defined as either switch to azole or antifungal discontinuation by day 5) only occurred 

in 22% (n=142; 96 switched; 48 stopped), of which half had no microbiological evidence of IC[71]. 

De-escalation was associated with shorter total AFT duration, with no negative impact on mortality 

or length of ICU stay despite similar illness severity scores between those who did and did not 

de-escalate. A smaller observational study had similar findings[72]. Nevertheless, the low 

proportion switched or stopped highlights barriers to de-escalation in practice. This includes 

reluctance to modify empirical treatment in unstable patients with uncertain diagnoses, alongside 

a desire to use a fungicidal, well-tolerated agent to cover the possibility of azole-resistant Candida. 

Yet, for patients on empirical therapy where the clinical picture suggests low IC-risk and BC are 

negative, discontinuing AFT appears a reasonable option and could be beneficial in preventing 

resistance emergence. For those where likelihood of IC is deemed moderate-to-high, non-culture-

based diagnostics may have a role in informing decisions. 

Role of non-culture-based tests  

Non-culture-based tests (NCBTs) have been developed in attempt to overcome the shortfalls of 

culture-based fungal diagnostics, given their quick turn-around-time, the potential for earlier IC 

detection and given they may remain positive for longer while on AFT[1]. They include 1,3-β-d-

glucan (BDG), T2 magnetic resonance Candida assay (T2Candida), Multiplex candida real-time 

PCR, and the detection of mannan antigen (MAg) and anti-mannan IgG antibodies (Anti-Mn) 

(Table 2).  Potential roles for NCBTs include aiding clinical decision-making to guide; 1) the 

initiation of pre-emptive AFT; 2) the discontinuation or withholding of empirical AFT; 3) monitoring 

clinical improvement in patients with IC. 

NCBTs have been described as “Bayesian”[69]; i.e. they do not deliver a definitive result, but 

assess the likelihood of infection. IC prevalence varies between ICUs due to differences in case-

mix and interventions. With variation in the pre-test likelihood, the negative predictive value (NPV) 

and PPV of NCBTs changes; in higher-risk patients and settings (e.g. surgical ICU) the PPV will 

rise and the NPV will decrease, and vice-versa[69]. Hence, as recently outlined in Mycoses Study 

Group recommendations, NCBTs must be requested and interpreted in the context of the pre-test 
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likelihood of IC[73]; they suggest that the clinical value of NCBTs is limited when this figure is less 

than 10%.   

Non-culture-based tests to trigger antifungal initiation   

The ideal NCBT for guiding early antifungal initiation needs a high sensitivity to identify IC, but 

reasonable specificity to avoid over-prescribing. The most widely used NCBT, BDG, has 

moderate specificity (~60-85%[48–50]), marred by false-positivity which may occur due to 

haemodialysis, blood product administration, high-burden Candida colonisation, and disturbed 

GI-mucosa; all common in ICU. This may result in antifungal overuse. Establishing diagnostic cut-

off values which optimise test performance in ICU is crucial. BDG specificity improves with 

consecutive sampling and increasing the ‘positive’ cut-off value to ≥250 pg/ml (instead of 

80 pg/ml[74]) which in one study increased specificity to 87% but reduced sensitivity to 52%[75]. 

NCBT combinations may also improve specificity; a positive BDG (≥80 pg/ml) alongside a 

negative PCT (<2 ng/ml) had a 96% PPV for candidaemia, when distinguishing IC from 

bacteraemia in one study[76]. Additionally, a highly-positive BDG (>259 pg/ml) alongside a 

positive CAGTA better distinguished IC from candida colonisation in patients with severe 

gastrointestinal conditions, compared to either used alone[75]. A prospective Danish study 

(n=126) in ICU patients at high-risk of IC (particularly IAC) found a combination of T2Candida and 

BC compared to MAg and BC, or BC alone had a the greatest specificity (64%/53%/29% 

respectively), and a sensitivity of >95%, for diagnosing proven/likely IC[77]. Additionally, a 

retrospective study assessing NCBTs performance for IAC (n=48) found the sensitivity/specificity 

for T2Candida was 33%/93% and BDG 83%/67%; however concordant positive results diagnosed 

IAC in 100% of cases, and concordant negative results excluded IAC in 90% of cases, suggesting 

combinations would be more useful clinically[78].  

To date, few prospective studies have examined the impact of NCBT-driven pre-emptive AFT on 

outcomes[79]. A small pilot RCT (n=64) administered pre-emptive anidulafungin to ICU patients 

with a BDG ≥60 pg/ml[56] during twice-weekly surveillance; while it demonstrated feasibility, 

enrolment difficulties meant it was not powered to assess a difference in IC or survival. In a sub-

group analysis of the EMPIRICUS study, fungal-free survival was not significantly different in 

those with an elevated BDG who received micafungin versus placebo (BDG >80 [HR 1.41, 95% 

CI 0.85-2.33], BDG >200 [HR 1.51, 95% CI 0.47-5.00]), but the trend was in the direction of the 

micafungin arm[59].  
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Current evidence is not robust enough to support the use of NCBTs alone to trigger AFT. The 

moderate specificity of BDG hinders its use, but combination with other NCBTs, optimising ‘cut-

off’ values, and directing testing to ‘high risk’ patients using Candida risk scores, make it a more 

valuable tool. NCBT-driven pre-emptive therapy using NCBT combinations which maximise test 

performance (T2Candida plus BDG) alongside culture is the most promising early AFT strategy 

which needs to be examined robustly in randomised multi-centre clinical trials. Outcomes should 

include IC, mortality, AFT consumption and cost-effectiveness, so benefits and risks of such a 

strategy can be holistically assessed. We eagerly await the results of the CandiSep trial 

(NCT02734550) comparing clinical outcomes of a BDG-driven versus culture-driven approach to 

AFT prescribing in septic ICU patients.  

Non-culture-based tests to aid antifungal discontinuation  

NCBTs with a high NPV may be better used to guide discontinuation or preventing initiation of 

AFT. A trial (n=109) randomized patients with evidence of infection who fulfilled IC-risk criteria to 

14-days’ empirical AFT or a NCBT-driven strategy, whereby AFT was stopped if BDG, MAg, Anti-

Mn, and BC were negative[61]. Unsurprisingly, given comparison was to a 14-day standard, AFT 

duration was shorter in the NCBT arm, but importantly there was no deleterious impact on 

mortality or development of IC. A further study (n=85) prescribed empirical AFT to patients with 

risk factors and signs of infection[60]; based on negative BC and serial negative BDGs, AFT was 

safely discontinued in 21/85 by day 4 and none developed candidaemia upon follow-up. Other 

retrospective studies demonstrated similar findings[80, 81]. An ICU study assessing utility of BDG 

for therapeutic decision-making found that although introduced to target patients ‘high-risk’ of IC, 

in practice only 26% of patients in whom it was used were in this category[82]. Results influenced 

AFT prescribing in over half of cases, deemed appropriate in three quarters and inappropriate in 

a quarter of cases (AFT continued/started with no subsequent evidence of IFI). Thus 

paradoxically, in real-world deployment of ICU BDG testing, any reductions in antifungal 

consumption gained through earlier stopping of inappropriate therapy based on the test’s good 

NPV may be outweighed by an excess in prescribing due to the test’s poor PPV when used in an 

unselected population. Studies so far have been too small to assess the safety and clinical 

effectiveness of NCBT-driven AFT discontinuation algorithms. Multi-site studies comprising a 

range of low-to-high IC prevalence settings are needed for results to be generalisable.  

In summary, whilst NCBT results interpreted in context remain a useful adjunct in stewardship, to 

date there is insufficient evidence to support antifungal discontinuation based on negative 

NCBT[48, 83]. The A-STOP trial (ISRCTN43895480), a large multi-site (35 hospital) UK 
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diagnostic accuracy study prospectively assessing which NCBT (or combination thereof) can best 

rule-out IC and facilitate AFT discontinuation in ICU patients, holds promise of delivering on this. 

Non-Culture-Based Tests for Monitoring  

Clinical response markers for monitoring and prognostication in IC are lacking. BC clearance of 

fungi is often used as a proxy for treatment effectiveness, however this is less-than-ideal given 

their suboptimal sensitivity, particularly in deep-seated candidiasis.  

Studies in ICU[77] and mixed ward/ICUs[84], found T2Candida remained detectable for longer 

than BC in candidaemia; in the latter study 7.5% (4/31) had a positive surveillance BC, yet 41.9% 

(13/31) had a positive surveillance T2Candida. Hence, time-to-negative result with T2Candida 

was significantly longer, perhaps unsurprising given T2Candida also detects non-viable Candida 

cells. To assess its clinical relevance, larger studies correlating persistent T2Candida positivity 

with clinical outcomes are needed. While studies have examined BDG kinetics for monitoring 

treatment response in IC[85–87], few have done so in an ICU-specific population[88, 89]. In 

heterogenous patient groups, serial BDG decline has been associated with successful therapy, 

with a slower decrease in patients with deep-seated candidiasis[85, 86], and persistently negative 

BDGs in candidaemic patients are associated with a lower 30-day mortality[90, 91].  However, in 

ICU patients with intra-abdominal candidiasis[88] and candididaemia[89] BDG was slow to clear 

from circulation and remained positive beyond clinical resolution of infection. Hence, while the 

trajectory of decline, or persistent negativity may have some monitoring use, there is little 

evidence to support that transition from a positive to negative BDG is valuable in assessing 

treatment response and currently no evidence that it can be used to guide AFT duration.   
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Challenge 3: Choosing the Optimal Antifungal Drug for the ICU Patient  

 

The antifungal armamentarium is limited, with just four classes of drugs available for treatment of 

IC; azoles (fluconazole, voriconazole); echinocandins (caspofungin, anidulafungin, micafungin); 

polyenes (amphotericin B); and the pyrimidine analogue, flucytosine. Drug development is 

progressing, with several new agents undergoing trials (e.g. Ibrexafungerp, fosmanogepix, 

rezafungin)[92].  

Several guidelines aid the appropriate selection of an antifungal[93, 94]. Echinocandins are 

recommended first-line  treatment of proven[93, 94] and suspected[93] IC in non-neutropenic 

critically ill adults, due to their broader-spectrum compared to fluconazole, fungicidal activity, 

excellent tolerability and minimal drug interactions. In the only comparative RCT, anidulafungin 

was found to be non-inferior to fluconazole for the treatment of IC (global response 73.2% versus 

61.1%, 95% CI, −1.1 to 25.3)[95]. A post-hoc subgroup analysis in ICU patients demonstrated 

significantly better response rates for those receiving an echinocandin (70.8% versus 54.1%, 

p=0.03), although this did not translate to a reduction in 28-day mortality (20.2% versus 24.3% P 

=0.57)[96]. Other observational studies comparing mortality between those initiated on 

fluconazole or echinocandins, showed either no difference[97–99], or favoured 

echinocandins[100, 101]. However, adjusting for the multiple confounders influencing outcome in 

ICU in non-randomised studies is difficult. A recent large RCT failed to demonstrate non-inferiority 

of the newest triazole, isavuconazole, when compared to caspofungin for IC (end-of-IV-therapy 

treatment response, 60.3% versus 70.1%, 95%CI -19.9– -1.8), consistent regardless of illness 

severity[102]. There is no evidence to suggest a difference in efficacy or mortality with 

Amphotericin B compared to azoles and echinocandins[103]. Given the higher cost and 

association with greater toxicity, amphotericin B in IC treatment is usually reserved for situations 

with no suitable alternatives eg. MDR Candida, for drug-penetration.  

In candidaemia, de-escalation from echinocandins to fluconazole for azole-susceptible isolates, 

when repeat BCs are negative and the patient is clinically stable is recommended within 5-7 days 

in IDSA[93], and at 10-days in ESCMID guidelines[94].  A number of studies, (albeit not RCTs) 

have demonstrated the safety of this approach at day 5 in proven IC[71, 100, 104] with no impact 

on clinical outcomes. The ESGCIP taskforce recently recommended considering de-escalation at 

day 5, dependent upon clinical response[105].  
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Antifungal drugs in special ICU populations  

Alongside guidelines, patient-specific factors need to be considered when choosing the most 

appropriate drug, dose and duration for different clinical scenarios[106], summarised in table 4.  

Acute kidney injury (AKI) is common in ICU, sometimes requiring continuous renal replacement 

therapy (CRRT) which can significantly affect antifungal PK/PD. The kidneys excrete 60-80% of 

fluconazole unchanged[107]; dose reduction in AKI is thus required due to delayed elimination. 

Conversely, high elimination is seen with CRRT due to low protein-binding and high water 

solubility, therefore increased fluconazole doses are advised[107]. For voriconazole, no renal or 

CRRT dose adjustment is required but frequent TDM is needed. Given the voriconazole IV solvent 

vehicle can accumulate in moderate-to-severe renal impairment, oral over IV therapy is 

recommended[107]. Amphotericin B, particularly the deoxycholate formulation, can be associated 

with nephrotoxicity and should be avoided in renal impairment if suitable alternatives are 

available. CRRT dose adjustment is not required. Echinocandins are highly protein-bound with 

minimal renal excretion, therefore no dose adjustment is required in renal failure, and CRRT has 

no clinically significant effect on drug removal[108], making them an optimal choice.  

Chronic and acute liver failure is frequently seen in ICU patients. Drug-induced liver injury (DILI) 

is a risk with all azoles, therefore caution is required in pre-existing moderate or severe liver 

disease and alternatives considered. No dose adjustment is required for amphotericin [109]. 

Anidulafungin is the only echinocandin eliminated through extrahepatic metabolism[110] and 

therefore often the preferred agent in hepatic impairment.  

ECMO is increasingly used for cardiorespiratory support in ICU; altered antifungal PK/PD may 

occur due to drug sequestration, increased volume of distribution, and drug clearance changes 

while on the ECMO circuit, but data are scarce[111]. Micafungin extraction by ECMO was 

demonstrated in an ex-vivo study[112], however there are conflicting data with caspofungin[113, 

114], the latter study demonstrating adequate levels at usual doses. Satisfactory liposomal 

amphotericin B levels at standard dosing on ECMO are reported[115], while others administering 

higher doses (10mg/kg/day) found a ~50% reduction in Cmax[116]. Due to increased volume 

distribution, larger fluconazole loading doses were required in children, however adult data are 

lacking[111, 117]. Voriconazole sequestration is reported, although the degree of sequestration 

changes with time, possibly due to saturation of ECMO circuit binding sites[114]. Hence frequent 

azole TDM is crucial yet rarely available in real-time, highlighting a pressing need for development 

of point-of-care antifungal TDM in ICU patients. Given expanding ICU ECMO use and its 
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association with higher IFI risk, further antifungal PK/PD studies are needed as current data is 

insufficient to adequately inform antifungal ECMO guidelines.   

CONCLUSION 

The diagnosis and management of IC poses many challenges in critical care; numerous 

unanswered questions remain as research priorities (Table 5). Improved identification of at-risk 

patients and the widening spectrum of diagnostics and therapeutics available for IC are promising. 

Personalized approaches to drug dosing and monitoring treatment response are needed.  The 

key knowledge gap remaining is how tools such as risk scores and NCBTs can best be 

implemented in ICU practice to optimise clinical outcomes whilst exercising antifungal 

stewardship.  
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