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Abstract 8 

Purpose of review 9 

Gram-negative bacteria (GNB) are a major cause of infection worldwide and multidrug 10 

resistance in infants and children. The major pathogens include Klebsiella pneumoniae, 11 

Escherichia coli, Enterobacter spp., Pseudomonas aeruginosa, and Acinetobacter baumannii. 12 

With new antibiotic options limited, immunisation is likely to play a critical role in 13 

prevention. This review discusses their epidemiology, the current state of vaccine research, 14 

and potential immunisation strategies to protect children. 15 

Methods 16 

A comprehensive review of the literature, conference abstracts along with web searches was 17 

performed to identify current and investigational vaccines against the major GNB in children. 18 

Recent findings 19 

Phase 1-3 vaccine trials have been undertaken for the major Gram-negative bacteria, but not 20 

in infants or children. E. coli is a common infection in immune competent children, including 21 

neonatal sepsis. Several vaccines are in late-phase clinical trials, with some already licensed 22 

for recurrent urinary tract infections in women. Klebsiella spp. causes community- and 23 

hospital-acquired infections, including sepsis in neonates and immunocompromised children 24 

although no vaccine trials have extended beyond early phase II trials.  P. aeruginosa is a 25 

common pathogen in patients with cystic fibrosis. Phase I-III vaccine and monoclonal 26 

antibody trials are in progress, although candidates provide limited coverage against 27 

pathogenic strains. Enterobacter spp. and A. baumannii largely cause hospital-acquired 28 

infections with experimental vaccines limited to phase I research. 29 
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Summary 30 

The current immunisation pipelines for the most prevalent GNB are years away from 31 

licensure. Similar to incentives for new antibiotics, global efforts are warranted to expedite 32 

the development of effective vaccines. 33 

 34 

 35 

  36 
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Introduction 37 

The rising burden of sepsis caused by Gram-negative bacteria (GNB) and rapidly increasing 38 

antimicrobial resistance rates present major challenges because of a lack of effective 39 

treatments (1). In infants and young children, Gram-negative infection is not only a major 40 

cause of community-acquired sepsis but also of multidrug-resistant (MDR) bacterial disease 41 

and hospital-acquired infections, and is associated with high rates of morbidity and mortality 42 

worldwide, especially in lower- and middle-income countries (LMIC) (2). Given the high 43 

rates of MDR infections and lack of new antibiotics being developed (3), there is an urgent 44 

need to prioritise preventive strategies against these infections, focusing on passive and active 45 

immunisation. This review discusses the epidemiology, current state of research into active 46 

and passive immunisation, and potential immunisation strategies to protect high-risk children 47 

against GNB. 48 

1. Burden of GNB disease 49 

Gram-negative bacteria include a diverse range of species and subtypes, with five priority 50 

pathogens representing a significant global clinical burden: Klebsiella pneumoniae, 51 

Pseudomonas aeruginosa, Escherichia coli, Enterobacter spp. and Acinetobacter baumannii 52 

(2) (see table 1). These are identified as high-priority pathogens by the World Health 53 

Organization (4) which has encouraged health institutes and researchers to find effective 54 

vaccines and treatments (4,5). GNB contain intrinsic antibiotic resistance mechanisms 55 

including decreased membrane permeability, efflux pumps and broad-spectrum-β-lactamases 56 

(3,6). A 2015 systematic review of paediatric (0-16y) sepsis across a range of LMIC found 57 

the level of resistance to third-generation cephalosporins in Gram-negative bacteria to be 58 

84% in Asia and 50% in Africa (7). Up to 30% of neonatal sepsis deaths globally are caused 59 

by multi-drug-resistant pathogens (8).  60 

 61 

Invasive bacterial sepsis due to GNB in childhood is associated with high morbidity and 62 

mortality, with one-third of patients developing progressive organ dysfunction and 17% of 63 

survivors experiencing at least moderate disability on discharge (2). Although case fatality 64 

rates have fallen, the odds of dying from sepsis remain more than four times higher in LMIC 65 

settings compared to high-income countries (10). Some children are at higher risk, especially 66 
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born premature, with underlying comorbidities such as malignancy, immunosuppression, or 67 

impaired host-barrier defences in cystic fibrosis and burns.  68 

 69 

Neonates 70 

A recent study estimated an annual global incidence of 3 million neonatal cases of sepsis (9-71 

11). In neonates, Gram-positive bacteria, particularly Group B Streptococcus (GBS), remain 72 

a common cause of sepsis, especially in high-income countries, although the proportion of 73 

GNB has been increasing rapidly, with rising rates of E. coli infections reported in up to 29% 74 

of positive neonatal cultures (0.28 per 1000 live births) in both high-income and low-income 75 

countries (11–16). A recent systematic review of available data on microbiologically 76 

confirmed invasive bacterial infection in neonates from African countries since 1980, showed 77 

that Klebsiella sp accounted for 21% of culture-proven infections, second only to 78 

Staphylococcus aureus (25%), with E.coli accounting for 10% (8–10). Of note, Klebsiella 79 

infections have increased over time, from 15% (1980-2007) to 21% (2008-18).  80 

 81 

Healthy children 82 

In older children in high-income countries, GNB have been identified as causing more than 83 

50% of paediatric sepsis (10), but their contribution in LMICs is less certain and more 84 

variable, ranging between 21% (10) to 67% (7,17). Published reviews, however, report 85 

different pathogen distribution in LMICs, and the most prevalent pathogen is K.pneumoniae 86 

compared to Pseudomonas spp. in high-income countries, possibly representing differences 87 

in the characteristics and risk factors of children presenting to hospital. A recent systematic 88 

review found K. pneumoniae was the predominant pathogen causing sepsis in LMICs, 89 

accounting for 50% of all GNB in children <16years, although this was limited by significant 90 

heterogeneity (7). Community-acquired infections in LMICs are also commonly caused by 91 

GNB including Klebsiella spp. (11,17-18). Analysis of global data on pathogens causing 92 

severe sepsis in paediatric intensive care units (PICUs), some of whom had comorbidities, 93 

reported the most prevalent being Pseudomonas spp. (7.9%), Klebsiella spp. (6.4%), E. coli 94 

(5.6%), Enterobacter spp (3.0%) and Acinetobacter spp. (2.5%) (2). 95 

 96 

Immunocompromised children  97 

Immunocompromised children, including those with cancer, on chemotherapy or receiving 98 

immunosuppressive medications, are also at high risk of GNB infection (33). In one UK 99 
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study, 80% of infections in paediatric cancer patients were associated with the presence of a 100 

central venous catheter and a quarter of culture-confirmed cases were due to GNB (34). GNB 101 

infection in immunocompromised children is also associated with high MDR rates; in one 102 

Brazilian paediatric oncology intensive care unit, MDR was detected in 50.0% of E. coli, 103 

46.6% of K. pneumoniae and 36.4% of A. baumannii causing sepsis in children with 104 

haematological malignancy (35). 105 

 106 

Hospital-acquired infections 107 

Children in intensive care are disproportionately represented among reports of hospital-108 

acquired GNB infections. In PICU, GNB infections are highly prevalent and associated with 109 

invasive devices such as intravascular catheters, ventilators, tracheostomies, nasogastric 110 

tubes, multiple antibiotic use and prolonged hospital stays (2,20,21). In neonates, low birth 111 

weight and premature infants are at risk, due to use of invasive devices, including ventilators, 112 

prolonged hospital stays and regular antibiotic exposure (14,22,23). Paediatric burn survivors 113 

are at risk due to disruption of the skin barrier, translocation across the gut mucosa and 114 

immunosuppression, with GNB responsible for half of deaths in some burns units (24-27) 115 

(24-30). Among childhood trauma, infection-related deaths have been reported due to A. 116 

baumannii (34.9%), Pseudomonas spp. (19.1%), K. pneumoniae (18.5%) because of tissue 117 

barrier disruption, invasive catheters and multiple antibiotic use (31-32). 118 

 119 

 120 

 121 

Treatment 122 

  123 

Inadequate stewardship, increased travel (with subsequent transmission of bacteria and 124 

resistant genes), limited antibiotic development, and intrinsic mechanisms contribute to rising 125 

multi-drug-resistant GNB (36-37). WHO guidelines for empiric antibiotic therapy of neonatal 126 

sepsis recommend gentamicin plus benzylpenicillin or ampicillin, with third-generation 127 

cephalosporins as second line (38-39), yet the majority of responsible pathogens are now 128 

resistant to these recommendations in African and Asian countries (18). Empiric antibiotic 129 

therapy is, therefore, increasingly based on local resistance; in South Asia, carbapenems are 130 

used as first-line empiric treatment for neonatal sepsis (2,8). Polymyxins are used as last-131 

resort for carbapenem-resistant GNB (40), despite lack of safety or dosing data in infants (3). 132 
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Colistin-resistant Enterobacteriaceae infection has been reported in adults; with few 133 

paediatric data (41). New antibiotics in development with activity against MDR GNB include 134 

fosfomycin, cefiderocol, eravacycline and aztreonam-avibactam (40).  135 

 136 

 137 

2. Vaccine research and development 138 

Gram-negative bacteria included in this review share a three outer membrane structure. Early 139 

research focused on lipopolysaccharide (LPS), also known as endotoxin, a highly 140 

immunogenic component of the outer membrane complex (39). LPS contains three 141 

components. The outer O polysaccharide antigen is highly immunogenic and the outermost 142 

surface-exposed component, therefore making an excellent target for antibiotics, host and 143 

synthesised antibodies, but it varies widely between species and is responsible for the range 144 

of serotypes. Lipid A, the innermost region, is a highly conserved disaccharide with fatty 145 

acids. Considered the toxin component, it causes an inflammatory cascade, high fever and 146 

coagulopathy in sepsis (43). These are connected by an oligosaccharide on the outer surface 147 

of the cell wall core that binds the O antigen and Lipid A. LPS is the main trigger for 148 

systemic symptoms associated with sepsis (44).  149 

Table 2 outlines the current status of GNB vaccine research. Use of such vaccines will 150 

depend on the target population and immunisation strategies will require knowledge of 151 

natural immunity and an assessment of patient needs and strategic priorities (Table 3). 152 

 153 

E. coli  154 

Disease targets 155 

There are more than 160 E. coli serotypes but few are pathogenic in humans. The main 156 

targets for the disease would be serotypes causing invasive disease including neonatal sepsis 157 

and meningitis, in addition to those causing less severe disease including diarrhoeal disease 158 

and urinary tract infections (Table 1).  Consequently, a multi-valent vaccine targeting a 159 

limited serotypes might be sufficient to prevent invasive disease without affecting carriage of 160 

benign serotypes (45). This is an important consideration because the majority of E. coli that 161 

colonise the human gut are non-pathogenic (46). 162 

 163 

Virulence factors of E. Coli 164 
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An E. coli vaccine will need to act on multiple and diverse virulence factors common to the 165 

range of pathogenic E. coli; such specific virulence factors are less well-defined than in other 166 

pathogens (48). Moreover, E. coli infection is not immunogenic and the humoral response is 167 

short-lasting, suggesting previous infection may provide only partial immunity, further 168 

hindering vaccine development (47,49). Key virulence factors that enable immune evasion 169 

include the LPS O antigen and K antigen, with K1 and K5 virulent due to adhesins and toxins 170 

that facilitate colonisation and tissue penetration (50). The K1 antigen is a major cause of 171 

meningitis, whilst the K5 antigen, associated with neonatal sepsis, presents high 172 

heterogeneity, which is a major barrier to vaccine development (51) .  173 

 174 

Vaccines against different disease targets 175 

Vaccines for preventing E. coli sepsis have been developed with varying success. A phase 1 176 

pilot study of an E. coli vaccine conjugated to Pseudomonas LPS was found to be safe and 177 

immunogenic; this vaccine covered 12 E. coli serotypes (O1, O2, O4, O6-O8, O12, O15, 178 

O16, O18, O25, O75) and significant increases in post-vaccination antibody titres were 179 

observed for most of the serotypes with demonstration of functionally active 180 

opsonophagocytic antibody that paralleled quantitative antibody responses (52). Attempts 181 

have been made to improve this vaccine by conjugation with other proteins; to date only a 182 

minimal additional increase in antibody titres in animal studies has been observed (59). 183 

 184 

Vaccines against colonisation 185 

There are licensed E. coli vaccines directed towards urinary tract carriage and infection in 186 

adults, including whole-cell/lysate-based vaccines, for symptomatic E. coli urinary infection. 187 

The most successful is Urovac (53), which has demonstrated some effect in reducing 188 

recurrent urinary tract infection in women. The vaccine has been licensed by the FDA in the 189 

United States, is administered by vaginal pessary and requires regular boosters; there are, 190 

however, no data on prevention of systemic infections (54). Such a vaccine has the potential 191 

to protect neonates against local and systemic E. coli infections by reducing maternal vaginal 192 

colonisation, and includes serotypes K1 and K5 which are large contributors to neonatal 193 

disease, but protection against neonatal disease is not discussed, and little work has been 194 

done on use in children or acceptability of pessaries in children/teenagers. Phase 1 research of 195 

oral lyophilized vaccines has been conducted in adults and found to reduce gastrointestinal 196 

carriage; other licensed E. coli vaccines also target secondary prevention of urinary tract 197 

infection; Uro-Vaxom (OM Pharma, Switzerland), an oral lyophilized protein vaccine from 198 
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18 E. coli serotypes, has demonstrated efficacy against UTI recurrence in adults, but requires 199 

daily administration for 3 months (55). Trials with the same vaccine have found no impact 200 

(56).  201 

 202 

Passive immunisation 203 

Attempts to derive monoclonal and polyclonal antibody therapies based on the vaccines 204 

above demonstrated conflicting results but most recently no significant impact was observed 205 

in phase 1 trials (43,52,57,58). Further monoclonal antibodies are in development (60). 206 

 207 

Klebsiella pneumoniae 208 

Disease targets 209 

Important disease targets in Klebsiella pneumoniae include neonatal sepsis, hospital-acquired 210 

infections, and urinary infections (76,77).  211 

 212 

Virulence factors  213 

Virulence factors in K. pneumoniae include: 77 K capsular polysaccharide antigens, which 214 

have formed the predominant vaccine target; eight O LPS antigens; as well as a range of 215 

fimbriae (type 1 and 3) that promote biofilms and adhesion; siderophores that upregulate iron 216 

uptake by the bacteria (78). 217 

 218 

Vaccines against disease 219 

Vaccination against K. pneumoniae has been pursued for several decades with little success 220 

(78). Studies have investigated killed whole cell preparations, cell lysates, proteins and 221 

purified polysaccharides (and PS-protein conjugates). Several immunisation strategies have 222 

focused on the polysaccharide capsule, but with a large range of serotypes, obtaining 223 

sufficient coverage has been challenging (79), and wide geographical variation in serotype 224 

distribution presents further difficulties in developing an effective vaccine.  225 

A 24-valent capsular polysaccharide vaccine demonstrated good IgG and IgA antibody 226 

responses in a phase 1 trial, and caused minimal toxicity, although this vaccine covered only 227 

50% of pathogenic strains in some geographical regions thereby minimising its utility (79). 228 

Partly due to its limited coverage and complexities, no further research beyond phase 1 trials 229 
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has been performed. To date, the authors are not aware of any vaccines targeting pregnant 230 

women or neonates, and therefore no vaccines targeting neonatal sepsis (78). 231 

 232 

Vaccines against colonisation 233 

Other vaccine targets have included lipopolysaccharides as they play a greater role in urinary 234 

tract colonisation and only have 8 serotypes (80). These and others targeting outer membrane 235 

proteins have, however, not yet been developed beyond preclinical research (80,81). The 236 

lyophilized protein vaccine, Urovac, contains one strain of Klebsiella spp., and along with a 237 

similar vaccine, Urostim (82), have been shown to reduce the risk of urinary tract infection 238 

caused by the included strains, but with no cross-protection against other Klebsiella 239 

serotypes.  240 

 241 

Passive immunisation 242 

One trial of passive immunisation used hyperimmune pooled IVIG, specific for Klebsiella 243 

taken from donors who had generated immunoglobulin to the vaccine above (73). Passive 244 

immunisation was trialled as prophylaxis in intensive care patients in a phase I trial but 245 

stopped because of a lack of efficacy. 246 

 247 

Pseudomonas aeruginosa   248 

 249 

Disease targets 250 

Disease targets include children with comorbidities, such as cystic fibrosis, cancer, as well as 251 

critically unwell children in the context of trauma, burns or ventilator- associated pneumonia 252 

(61). In cystic fibrosis, up to 45% may carry P. aeruginosa in the respiratory tract due to 253 

impaired mucociliary clearance and formation of biofilms, with MDR resistance rates of 8% 254 

(19). 255 

 256 

 257 

Virulence factors 258 

Immunisation against P. aeruginosa is difficult because of diverse virulence mechanisms. A 259 

number of different immunisation approaches have been taken in preclinical and early 260 

clinical trials, including lipopolysaccharide O antigens, live attenuated vaccines, outer 261 

membrane protein vaccines, and passive immunisation approaches (62–64). Since there are 262 



 

 

11 

20 serotypes and 30 subtypes of P. aeruginosa with little or no cross-protection between 263 

serotypes, vaccines based on the LPS O antigen need to incorporate at least 10 or more 264 

common serotypes and, potentially, other P. aeruginosa-specific antigens in order to ensure 265 

cross-reactivity and breadth of protection (61).  Toxins and flagella further increase its ability 266 

to evade and suppress host cilia, and immune cell function (65,66). 267 

 268 

Vaccines against disease targets 269 

A phase two randomised controlled trial conducted in adults admitted to intensive care 270 

incorporating a recombinant (OprF/I) protein and aluminium hydroxide adjuvant 271 

demonstrated a significant increase in antibody titres in the vaccine group and was well 272 

tolerated (63). However, a subsequent phase three trial adopting the same vaccine and 273 

population demonstrated no difference in clinical outcomes including pneumonia, 274 

bacteraemia or mortality (63,67). Further vaccines including intranasal live vaccines are in 275 

development (68,69). 276 

 277 

Vaccines against colonisation 278 

Among the recent P. aeruginosa vaccine candidates, the most successful candidate was 279 

shown to reduce lung colonisation (albeit with borderline statistical significance (p=0.05)), 280 

with no effect observed for strains with non-vaccine flagella types. To our knowledge the 281 

company responsible has discontinued further work on this vaccine (70).   282 

  283 

Passive immunisation 284 

In recent years, passive immunisation against P. aeruginosa has received greater attention, 285 

especially because of the recognition that underlying immunocompromising conditions (71) 286 

may render active immunisation approaches ineffective (72). Older trials of hyperimmune 287 

immunoglobulin had no protective effects (73). More recently, two passive immunisation 288 

approaches have demonstrated potential, with phase 2 trials in progress for a monoclonal 289 

antibody prophylaxis (74). Mouthwash-based immunoglobulin prophylaxis is in phase 3 290 

clinical trial(s) aiming to decolonise and therefore prevent infections; this follows promising 291 

data that it can prolong the interval between infections (75).  292 

 293 

Acinetobacter 294 

 295 

Disease targets 296 

The focus of A. baumannii is largely hospital acquired infection and neonatal intensive care 297 

although community acquired infections have been reported (Insert ref to Hu 2010). 298 
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 299 

Immunisations 300 

Obstacles to development of a vaccine against A. baumannii include the propensity of the 301 

bacterium to evade immune surveillance and the large number of strain types (83). This 302 

pathogen exhibits a high degree of antigen variability due to selective immunological 303 

pressure, which makes it difficult to identify conserved antigens across strains (84). Further 304 

logistical problems include its widely varying prevalence rates, which complicate clinical 305 

trial design (83). No vaccines against A. baumannii have progressed beyond phase 1 clinical 306 

trials (84). Potential targets include outer membrane vesicles, outer membrane protein A, 307 

auto-transporter, biofilm-associated protein, K1 capsular polysaccharide, and poly-(beta-1,6)-308 

N-acetyl glucosamide (85). Experimental vaccines based on several targets have been shown 309 

to be immunogenic and confer protection against A. baumannii in animal models (86). A 310 

monoclonal antibody against K1 capsular polysaccharide was shown to be protective in-vivo; 311 

however, there are almost 40 recognised LPS serotypes, and the antibody only recognised 312 

13% of the tested strains (87). An outer membrane protein Omp22, delivered using an E. 313 

coli-derived outer membrane vesicle, protected mice from lethal A. baumannii challenge 314 

(88). 315 

 316 

Enterobacter 317 

Enterobacter infections are largely hospital acquired, in neonatal intensive care and children 318 

with immune deficiency. Vaccines against Enterobacter spp. are by far the least developed of 319 

all GNB, and current research is limited to a small number of pre-clinical studies focusing on 320 

identifying capsular polysaccharide targets such as poly-(beta-1,6)-N-acetyl glucosamide 321 

(88,89).  322 

 323 

Pooled immunoglobulin 324 

 325 

In a meta-analysis of published literature, use of pooled IVIG to induce passive immunity in 326 

premature neonates has been demonstrated to reduce all-cause sepsis by 3%, with no data on 327 

deaths. The lack of cost-effectiveness meant that this has not been widely adopted (42). 328 

 329 

 330 
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3. Future immunisation strategies against GNB 331 

Neonatal sepsis 332 

Since GNB are a major cause of infant sepsis early protection – ideally from birth – is likely 333 

to be critical. In light of the success of antenatal immunisation in preventing neonatal tetanus 334 

and pertussis, emphasis is being placed on antenatal vaccination as a potential strategy 335 

(90,91). Passive immunity via maternal immunisation and placental transfer of antibodies is 336 

appealing given the high burden of neonatal and early infant disease (2). IgG antibodies to 337 

GNB have been demonstrated to transfer from mother to baby and are hypothesised to be 338 

protective, therefore this could be an approach for the future, in line with other maternal 339 

vaccination programmes (92,93). In pre-clinical trials, maternal vaccination of animal models 340 

did confer antibody rise in the offspring against GNB (94,95), including Klebsiella spp., E. 341 

coli and Pseudomonas spp. (92,96). 342 

 343 

So far, however, there have been no human trials of maternal vaccination for any of the major 344 

GNB. Such a strategy could potentially have the greatest impact in reducing the burden of 345 

neonatal sepsis. The protection offered through passive foeto-maternal transfer of vaccine-346 

induced antibodies would be short-lived but should protect infants during their period of 347 

highest risk. An important consideration, however, would be whether the vaccine could be 348 

administered early enough in pregnancy to provide adequate protection for infants born 349 

prematurely. Adolescent vaccination may provide another strategy if the vaccine is long-350 

lived, with a view to it also providing immunity during subsequent pregnancies.  351 

 352 

Routine infant and childhood immunisation 353 

Developing vaccines that can be incorporated into routine infant and childhood immunisation 354 

programmes has obvious implementation benefits, especially if the vaccine provided long-355 

term protection. Unlike current vaccines, such vaccines may only provide direct protection to 356 

vaccinated children without providing any indirect (herd) protection to those around them, as 357 

nosocomial infections present a greater source of transmission than children, although further 358 

research would be needed. Additionally, this approach is limited because it would not protect 359 

the major high-risk groups, especially neonates, and children whose immunity had been 360 

reduced by disease or active immunosuppression. So far, prevention of GNB through 361 

vaccination is far from realisation since few studies have progressed past phase 2 clinical 362 

trials. 363 
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 364 

Active and passive immunisation for high-risk groups 365 

High-risk groups for GNB are likely to benefit from targeted immunisation strategies, either 366 

through passive or active immunisation. Passive immunisation with pathogen-specific 367 

antibodies after birth in premature neonates or at the time of neonatal infection, once the 368 

causative pathogen is identified, may be a successful strategy.  High-risk older children 369 

include those with cancer, cystic fibrosis, receiving immunosuppressive therapy and those 370 

admitted to intensive care, requiring prolonged hospitalisation or with severe trauma (Table 371 

3). Whilst potentially much more costly, in the case of passive antibody-based therapy, this 372 

approach has the benefit of providing direct and rapid immune protection against specific 373 

pathogens during the child’s period of highest risk. With early-phase trials of active 374 

immunisation demonstrating evidence of protection in acutely unwell adults (52) and the 375 

rapid expansion of monoclonal antibodies (5), targeted immunisation of high-risk groups 376 

seems the most promising option for immunisation against these pathogens. 377 

  378 

Conclusion  379 

The growing burden of GNB sepsis in high-risk paediatric populations, including neonates, 380 

children with chronic conditions and those requiring intensive care, as well as rapidly 381 

increasing rates of multidrug resistance to antibiotics urgently necessitates new preventative 382 

strategies. Past research has focused predominantly around active immunisation, especially 383 

targeting LPS on the surface of GNB, although research into passive immunisation using 384 

pathogen-specific monoclonal antibodies is expanding. Whilst there is a focus amongst 385 

global health research funders and policymakers on passive antibody administered against 386 

specific pathogens during the acute illness, the benefits of other approaches including 387 

antenatal immunisation must be considered and developed to protect additional risk groups 388 

such as neonates and premature infants, especially in lower- and middle-income countries. 389 

 390 

Key Points 391 

 The growing burden of GNB sepsis in high-risk paediatric populations, alongside 392 

rising resistance, necessitates new preventative strategies. 393 
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 Five major GNB: Klebsiella pneumoniae, Escherichia coli, Enterobacter spp., 394 

Pseudomonas aeruginosa, and Acinetobacter baumannii, have trials in phase 1-3 but 395 

licensure for children, particularly neonates seems years away. 396 

 There is a focus on passive immunisation, but alternative potential future strategies 397 

for immunisation include passive immunity via maternal vaccination, and vaccination 398 

of high risk groups. 399 
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References of special interest with annotations 

 

*Special literature 

**Outstanding literature 

 

Tan B, Wong JJ-M, Sultana R, Koh JCJW, Jit M, Mok YH, et al. Global Case-Fatality Rates in Pediatric Severe Sepsis and Septic Shock: A 

Systematic Review and Meta-analysis. 2019 Feb 11; ** 

In their outstanding systematic review, Tan and colleagues systematically review global data, providing useful data and analysis on global case 

fatality rates, including lower, middle and high income countries alike. This enormous data pool provides the opportunity for cross-

country comparison and enables meaningful interpretation of risk to children with sepsis and septic shock. More broadly, this highlights 

the challenges facing the management of sepsis in low income settings. 

 

Adlbrecht C, Wurm R, Depuydt P, Spapen H, Lorente JA, Staudinger T, et al. Efficacy, immunogenicity, and safety of IC43 recombinant 

Pseudomonas aeruginosa vaccine in mechanically ventilated intensive care patients—a randomized clinical trial. Crit Care. 2020;24(1):1–

10. ** 

In this outstanding randomised controlled trial, Adlbrecht and colleagues present data from a phase 2 trial of a recominant Pseudomonas 

aeruginosa vaccine, IC43 in ICU patients. Whilst this a phase 2 trial, the lack of clinical benefit is an important demonstration of the 

difficulties in developing immunisations against Pseudomonas aeruginosa, although the vaccine was well tolerated and immunogenic.  
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Choi M, Tennant SM, Simon R, Cross AS. Progress towards the development of Klebsiella vaccines. Expert Rev Vaccines [Internet]. 2019 Jul 

3;18(7):681–91. Available from: https://doi.org/10.1080/14760584.2019.1635460* 

 

 

In this reference which we have identified as special, Choi and colleagues review data on Klebsiella. Pneumoniae vaccine. One strength of this 

review is the authors comprehensive discussion of different vaccine platforms, including polysaccharide vaccines, LPS, antigen and the 

consideration of future nanoparticle and liposome platforms. 



Table 1 (original): Microbiological, clinical, and epidemiological features of the most prevalent Gram-negative bacteria  

 

Pathogen Microbiological features  Clinical features (97,98) Epidemiology 

Escherichia coli Type species of the genus 

Escherichia (97) 

  

Most common species of the 

Enterobacteriaceae family 

(102) 

  

Contains a variety of strains, 

ranging from commensal to 

highly pathogenic (23) 

Respiratory 

Can cause hospital-acquired infections and neonatal 

sepsis and meningitis. 

 

Genitourinary  

Frequent cause of community UTIs and 

uncomplicated pyelonephritis  

 

Gastrointestinal  

E. coli commonly presents with profuse watery or 

bloody diarrhoea, low grade fever and potentially 

fatal haemolytic uraemic syndrome  

 

Neurological 

Neonatal meningitis, with higher risks of adverse 

neurological disabilities compared to other bacteria  

 

Other 

Cause of severe clinical chorioamnionitis and 

subsequent neonatal sepsis  

High income 

In USA, E. coli most common cause of early onset 

neonatal sepsis (15)  

 

Most significant Gram-negative pathogen in pre-term 

infants (15,16) (37) 

 

Most common cause of mortality in early-onset 

neonatal sepsis (14)  

 

Greater survival of VLBW infants may also be a 

factor accounting for the increasing proportion of 

EOS caused by E. coli (14) 

 

Low- and middle-income 

In Eastern Mediterranean region, principal Gram-

negative cause (and 2nd most common overall) of 

EOS (103) 

Pseudomonas 

aeruginosa 

Aerobic Gram-negative bacilli, 

glucose non-fermenter (40) 

Respiratory  

Colonisation or acute cough and purulent green 

High-income 

Globally, most common Gram-negative isolate in 

Table 1



 

Ubiquitous, particularly in 

hospital environments (97) 

 

Low intrinsic virulence: causes 

opportunistic infection (97) 

sputum 

 

Genitourinary and GI 

Causes gastroenteritis, and recurrent and catheter-

associated urinary tract infections.  

 

CNS 

Cause of meningitis and brain abscess post-trauma, 

mastoiditis and sinusitis 

 

Skin, bone, soft tissue  

Cause of necrotic ulcers, paronychia (green nail 

syndrome), septic arthritis/osteomyelitis  

 

Other 

Cause of neonatal sepsis, necrotizing otitis externa, 

chronic mastoiditis, endophthalmitis.  

hospital acquired infection (2); resistance to 

Carbapenems noted (40) (101) 

 

Caused 4% of neonatal sepsis in U.S.(15) 

 

Caused up to 15% paediatric sepsis in referral 

hospitals in Italy (3)   

 

Low- and middle-income 

In India, caused highest case fatality rate among 

neonates (99) , and caused 2% of neonatal sepsis 

(Gupta 1993) 

 

Caused 9% of neonatal sepsis in low birth weight 

infants in Brazil (100)  

 

 

Klebsiella Pneumoniae Klebsiella is a genus of 

Enterobacteriaceae (102)  

  

Usually harmless gut 

commensals (97) 

  

Most infections are due to K. 

Pneumoniae subspecies 

pneumoniae, followed by 

K.Oxytoca (102) 

 

Respiratory 

Cause of lung abscesses, and necrotising 

pneumonia, with ‘redcurrant jelly’ sputum and 

multiple lung abscesses.  

 

CNS 

Cause of meningitis. Associated with nosocomial 

bacterial sinusitis secondary to head trauma, 

diabetic ketoacidosis and prolonged intubation  

 

Genitourinary and GI  

High income 

Second most common Gram-negative organism 

causing paediatric severe sepsis (6.4%) (2) (37) 

 

Low- and middle-income 

Accounted for 49.8% of all Gram-negative bacteria in 

children with sepsis in resource-limited countries (7) 

 

In neonates in Asia, most common Gram-negative 

organism and cause of most deaths (17)  

 



Causes UTIs, peritonitis in children with chronic 

liver disease and pyogenic polymicrobial liver 

abscesses  

 

Eyes and ears  

Cause of chronic suppurative otitis media and 

hearing impairment  

 

Neonatal sepsis 

In Eastern Mediterranean regions, main Gram-

negative cause of late-onset neonatal sepsis (104)  

 

Accounts for one in five cases of neonatal sepsis in 

LMIC, including 21% in African countries (18)   

Acinetobacter 

baumanii 

Strictly aerobic non-

fermentative coccobacillary 

Gram-negative bacilli (40) 

 

Acinetobacter is a genus of 

Gammaproteobacteria  and 

contains around 19 genospecies 

(97,102)  

  

Acinetobacter baumannii is the 

commonest infectious species 

(105) 

  

Has few virulence factors: 

causes opportunistic infection 

as found in water (97) 

 

Respiratory  

Associated with nosocomial pneumonia, ventilator-

associated pneumonia. 

 

Cardiovascular 

May cause endocarditis  

 

Eyes 

May cause superficial infections of the periorbital 

area 

High income 

2.5% of cases of global paediatric severe sepsis (2)  

 

In a US paediatric population, isolated from 6.8% of 

patients (106)  

 

Low- and middle-income 

Predominant pathogen in neonatal sepsis in India, 

with high levels of multidrug resistance (99)  

 

Common Gram-negative organism in LMICs (107) 



Enterobacter sp. Genus of Enterobacteriaceae. 

Includes species E. Aerogenes, 

E.Cloacae, E. sakazakii (97)   

  

Common human gut 

commensals (97) 

  

E. Sakazakii is a cause of 

severe neonatal meningitis (97) 

Respiratory  

Cause of pneumonia and nosocomial pneumonia. 

 

CNS  

Specifically, E. sakazakii has been implicated in 

severe neonatal meningitis (mortality rate 40–80%)  

 

GI and Genitourinary  

Cause of UTIs and acute pyelonephritis  

 

 

High income 

3% of cases of global paediatric severe sepsis (2); 

with widespread carbapenem resistance (36)(109–

112) (108) 

 

Cause of 16.7% of paediatric bloodstream infections 

in US (106)  

 

Low- and middle-income 

Accounted for 4% of neonatal sepsis in Delhi (99) 

 

 

 



 



Table 2 (original): Immunisations against Gram-negative bacteria, by current research stage 

  

Research 

Post licensure * 

Pathogen Preclinical/ Phase 1 Phase 2 Phase 3  

E coli Maternal vaccination in animal models 

showed antibody response in offspring 

(Matias (17), Luis (15), Rabinowitz(16). 

(52) 

12 Valent LPS vaccine led to good antibody 

response and little toxicity, but was not 

developed further (52).  

 

ExPEC4V does not reduce UTI recurrence but 

minimal side effects (RR 0.82, 95% CI 0.62–

1.10) (119)  

Phase 2 in children monoclonal 

antibody therapy against E coli 

toxins, minimal effect seen but no 

toxicity (52) 

(Uro-vaxom) Phase 3 

recurrent UTI reduced 

reinfection rate (120). 

 

Uro-Vaxom (oral bacterial strain vaccine, 3 

month duration prevents UTI (55) 

 

Uroimmune oral lysed bacterial vaccine daily 

prophylaxis prevents UTI (121)  

(Urovac) Lysed whole cell vaccine 

administered via vaginal pessary of 10 strains 

of pathogens reduced reinfection rate, with 

greater effect seen in context of boosters (54). 

 

(Urostim) Lysed bacterial cells via oral tablet, 

reduced UTI symptoms at 1 year in children 

and adults with recurrent UTI (82) 

Pseudomonas 

aeruginosa 

LPS- based vaccine prevented death in adults 

with solid cancer (113) and adults with burns 

(62), but high toxicity. No impact on children 

with leukaemia.  

 

Specific monoclonal antibodies against 

Pseudomonas and Klebsiella had non-

significant effect on infection and more 

adverse reactions (73) 

 

 

(Medimmune) Monoclonal antibody 

MEDI3902 led to good antibody immune 

response (114)  

IC34 OprF membrane protein based 

vaccine, seroconversion seen with 

>4-fold rise in antibodies. Well 

tolerated without safety concerns 

(63)  

 

16- valent polysacharide vaccine 

demonstrated minimal difference in 

lung function compared to placebo 

in children with cystic fibrosis, no 

difference in time to infection and 

work discontinued (115)   

 

KB001 Passive monoclonal 

antibody, non-significant lower 

mortality in treatment group in 

IC34 OprF membrane 

protein based vaccine, 

seroconversion seen but no 

clinical infection rate 

difference was seen. 

Discontinued (63,67)  

 

 

Flagella-based vaccine. 

Small, borderline 

statistically significant 

reduction in frequency of 

infection in cystic fibrosis 

patients (p=0.05), 

production discontinued. 

(118)  

Nil 
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ventilated patients, no difference in 

bacterial load (64). In cystic fibrosis 

patients no difference in bacterial 

density or symptoms, but lower 

inflammatory markers and 

neutrophils in sputum (116). 

 

(Medimmune) 

Monoclonal antibody, led to 

antibody response and adequate 

safety profile (117) 

 

 

 

Mouthwash of passive IgY 

antibodies to delay time 

until infection - ongoing 

trial (75) 

Klebsiella 

Pneumoniae 

Vaccine 

Phase 1 only, toxic side effects but >four-fold 

antibody rise (123) 

 

O Polysaccharide Conjugate vaccine led to 

antibody rise in burn survivors with minimal 

toxicity, and in healthy volunteers (79,124) 

 

 

IVIG passive antibodies against Pseudomonas 

and Klebsiella administered had non-

significant effect on infection and more 

adverse reactions (73)  

N/a N/a (Urovac) Lysed whole cell vaccine 

administered via vaginal pessary of 10 strains 

of pathogens reduced reinfection rate, with 

greater effect seen in context of boosters (54) 

 

Acinetobacter 

baumanii 

Monoclonal antibodies have protected mice 

against infection. Active vaccines developed 

but none effective beyond phase 1 (88) 

Nil Nil Nil 

Enterobacter sp. Passive injection of PNAG antibody in mice 

generated protection against Enterobacter 

infection (89)  

  

Toxin injection generated neutralizing 

antibodies in animal studies (122) 

Nil Nil Nil 



  

     

 

* only active immunisation against E. coli recurrent urinary tract infections have been licensed 

 



Table 3 (original): Future targeted immunisation strategies  

 

Potential target populations Target pathogen(s) Proposed immunisation 

approach 

Considerations 

Maternal vaccination E coli, Klebsiella, Enterobacter,  Passive immunity for the newborn 

via maternal active vaccination 

Protection for mother and during highest-risk 

period for neonate 

Neonatal immunisation E coli, Klebsiella,  Active immunisation and passive 

antibody immunisation 

Premature infants may not be protected early 

enough through active immunisation at birth 

Routine childhood No targets yet Active immunisation Childhood immunisation could be successful if the 

vaccine provided long-term immunity and/or 

indirect (herd) protection 

Cancer patients Klebsiella, Enterobacter, 

Pseudomonas aeruginosa, 

Acinetobacter 

Vaccinating prior to initiating 

immunosuppressive therapy, 

active non-live immunisations or 

passive immunisation 

Leaky gut and immunocompromise after 

chemotherapy, high risk of nosocomial infection 

Chronic disease including cystic 

fibrosis 

Pseudomonas aeruginosa A combination of active and 

passive immunisation 

High risk of nosocomial infection, impaired 

clearance mechanisms 

Immunosuppressed groups Klebsiella, Enterobacter, 

Pseudomonas aeruginosa, 

Acinetobacter 

Vaccinating prior to initiating 

immunosuppressive therapy, 

active non-live immunisations or 

passive immunisation 

Existing immunity may be ineffective 

Acutely unwell patients/ trauma/ 

burns in intensive care 

Klebsiella, Enterobacter, 

Pseudomonas aeruginosa, 

Acinetobacter 

Vaccinating prior to initiating 

immunosuppressive therapy, 

active non-live immunisations or 

passive immunisation 

Reduced barriers to invasive infection 
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