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Abstract

Introduction
Disease registers and electronic health records are valuable resources for disease surveillance and
research but can be limited by variation in data quality over time. Quality may be limited in terms
of the accuracy of clinical information, of the internal linkage that supports person-based analysis
of most administrative datasets, or by errors in linkage between multiple datasets.

Objectives
By linking the National Down Syndrome Cytogenetic Register (NDSCR) to Hospital Episode Statis-
tics for England (HES), we aimed to assess the quality of each and establish a consistent approach
for analysis of trends in prevalence of Down’s syndrome among live births in England.

Methods
Probabilistic record linkage of NDSCR to HES for the period 1998–2013 was supported by linkage
of babies to mothers within HES. Comparison of prevalence estimates in England were made using
NDSCR only, HES data only, and linked data. Capture-recapture analysis and quantitative bias anal-
ysis were used to account for potential errors, including false positive diagnostic codes, unrecorded
diagnoses, and linkage error.

Results
Analyses of single-source data indicated increasing live birth prevalence of Down’s Syndrome, par-
ticularly in the analysis of HES. Linked data indicated a contrastingly stable prevalence of 12.3
(plausible range: 11.6–12.7) cases per 10 000 live births.

Conclusion
Case ascertainment in NDSCR improved slightly over time, creating a picture of slowly increasing
prevalence. The emerging epidemic suggested by HES primarily reflects improving linkage within
HES (assignment of unique patient identifiers to hospital episodes). Administrative data are valuable
but trends should be interpreted with caution, and with assessment of data quality over time. Data
linkage with quantitative bias analysis can provide more robust estimation and, in this case, stronger
evidence that prevalence is not increasing. Routine linkage of administrative and register data can
enhance the value of each.
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Key messages

• Register and administrative data both indicated an in-
creasing prevalence of Down’s syndrome among live
births in England, but linked data suggest a stable preva-

lence.

• Analysis of Hospital Episode Statistics for England can
be severely biased by linkage errors in the assignment of
patient identifiers (‘HESID’) to hospital episode records,
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particularly when using birth episodes prior to 2009.
Many administrative datasets can be similarly affected
by errors in internal linkage.

• Linkage error is difficult to measure but quantitative
bias analysis can be used to reflect plausible assump-
tions about its potential impact on an analysis.

• Linked data can provide more robust evidence for disease
surveillance than single-source registry or administrative
data and can support analyses involving changes in data
collection systems.

• Linkage between datasets can be enhanced by identify-
ing familial links within datasets, such as between moth-
ers and children in Hospital Episode Statistics.

Introduction

Congenital anomalies are a major cause of infant mortality,
childhood morbidity and long-term disability, affecting over 1
in 50 children worldwide [1]. Accurate surveillance of congen-
ital anomalies is essential to ensure that the right services are
available to treat affected children, to provide reliable informa-
tion on outcomes for prospective parents faced with difficult
decisions in early pregnancy, to guide prevention programmes
and for research into pregnancy and birth characteristics as-
sociated with anomalies. Congenital anomaly registries have
been set up to collect accurate information for the surveillance
of all anomalies [2]. Longitudinal population data routinely
collected for administrative purposes (e.g. payments by health
insurers and universal healthcare systems such as the NHS) of-
fers an additional resource for identification of cases, informa-
tion about long-term outcomes, and data on comparator pop-
ulations to support analysis of aetiology and risk. However,
the quality of administrative data is variable and its suitability
for research applications requires careful evaluation. Linking
data from independent sources of information about the same
condition can be used to assess the quality of each source
and to estimate the total number of cases, including those
not detected by either source. Data linkage brings additional
complexities, particularly around linkage error and integration
of multiple sources of potentially conflicting information. In
this article, we compare several possible approaches to anal-
ysis of linked population data, which we hope will provide
methodological insights for population data science beyond
their present application to Down’s syndrome [3].

The National Down’s Syndrome Cytogenetic Register (ND-
SCR) began in 1989 and collected all cytogenetic or DNA re-
ports of trisomy 21 and the cytogenetic variants occurring in
England and Wales [4]. In 2015 the NDSCR was incorporated
into the National Congenital Anomaly and Rare Disease Reg-
istration Service (NCARDRS) [5]. NCARDRS have expanded
the systems available for follow-up of cases through adminis-
trative data and close links with the health professionals who
report new diagnoses (notifiers). These changes in collection
methods present a potential problem for research on trends
during the transition period. It is important to have evidence
that can help separate any effects of changes in data collection
from changes in disease prevalence.

With England’s universal National Health Service (NHS),
researchers and service planners alike are interested in estab-
lishing the potential for administrative NHS data to be used
for population health monitoring and surveillance. Hospital
Episode Statistics for England (HES) is a key source of hos-
pital activity data (inpatient admissions, outpatient appoint-
ments and emergency department presentations) used for ser-
vice planning and payment for hospital care funded by the
NHS [6]. Linkage between registers has previously been used
to assess case ascertainment (percent of cases detected) in the
NDSCR and other congenital anomaly registers [4, 7], but not
linkage to administrative data. Linkage between population-
based registers and hospital records has been used to assess
the coverage of each [8], but findings are specific to the data
sources in questions.

In this article we describe the approach to linkage of ND-
SCR to HES and use the linked data to estimate the level
of case ascertainment (proportion of all cases identified) in
each data source and trends in the prevalence of Down’s Syn-
drome among live births in England, between 1998 and 2013.
In doing so, we aim to support integration of NDSCR and
NCARDRS, to provide a resource for research on long-term
outcomes of Down’s syndrome, and to establish methods that
can be extended to linkage of NCARDRS and the full range of
congenital anomaly and rare disease research that it facilitates.

Methods

Data sources: National Down Syndrome Cy-
togenetic Register

From 1989–2014, all cytogenetic laboratories in England (and
Wales) notified the NDSCR of any cytogenetically confirmed
diagnosis of trisomy 21 or related karyotype [9]. The register
included pre- and postnatal diagnoses. Information on birth
outcomes following prenatal diagnoses (live birth vs foetal
death or termination) was obtained from clinicians and mid-
wives but was missing in 8% of all diagnoses [9]. A total of
13 650 records were extracted for linkage, including 10 415
where the birth outcome was "live birth", the year of birth
was between 1998 and 2013, and the postcode did not in-
dicate residence outside of England (Figure S4, Appendix 1,
Supplementary Material). A further 1226 records had miss-
ing birth outcomes but were within scope with respect to year
and postcode region. The possible proportion of these that
were live births is considered in the analysis, but these records
had insufficient data for linkage (i.e. dates of births and NHS
numbers were unknown).

Data sources: Hospital Episode Statistics for
England

With the universal healthcare provided by the NHS, HES cap-
tures 98–99% of all hospital activity in England [6]. When
legally permitted and ethically justified, data are made avail-
able for research in de-personalised form (excluding names, ad-
dresses, etc.). Like most administrative data, records in HES
represent events, in this case episodes of admitted patient care
under one consultant, outpatient appointments, and emer-
gency department presentations. Each patient’s records are
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linked through assignment of ’HESIDs’ by NHS Digital, a link-
age process (involving NHS number, date of birth, postcode,
sex and the patient ID numbers used locally by hospitals) that
is subject to linkage error [10]. Missed links lead to records
belonging to the same patient being assigned different HES-
IDs, and false links (which are relatively rare) cause records
from different patients to be assigned the same HESID [11].
The accuracy of HESIDs depends on the quality of matching
data in the administrative record (NHS number, date of birth,
postcode and local patient identifiers assigned by the treat-
ing hospital) which is known to be poorer in earlier years [10]
and in birth episodes [12], partly because NHS numbers were
not allocated at birth until after 2003 (NHS numbers were
previously allocated at registration of birth or with a general
practice).

Simply counting all distinct HESIDs with a Down’s syn-
drome diagnosis may lead to double-counting of cases when
some patients have multiple HESIDs. To mitigate this, we
first identified all birth episodes during our study period to
identify a birth cohort which, by virtue of the fact that people
are only born once, can reasonably be assumed to contain few
duplicates. We then linked these to any subsequent hospital
activity using HESID to identify diagnoses recorded after the
birth admission. This birth cohort approach also allowed us
to ensure that patients had been born in England and were
therefore within the target population.

The birth cohort contained birth episodes for an estimated
10.3 million babies admitted during the 1997-98 to 2013-14
financial years. It therefore excludes babies born outside of
hospital (2.2% of live births in England during 1997–2013)
but represents 99.0% of the number of live births not at home
recorded by the Office for National Statistics [13]. The con-
struction of this birth cohort followed methods detailed in Har-
ron, Gilbert [14] (Appendix 1, Supplementary Material). For
each person in this cohort, Down’s syndrome status was iden-
tified by the presence of any admitted patient care episode or
outpatient appointment, at any time up until 2017-18 (linked
by HESID), which included a three-character ICD10 "Q90"
diagnosis code (i.e. including all four-character subclassifica-
tions).

While this birth cohort approach mitigates double-counting
from the splitting of patient’s HESIDs, there is a potential
trade-off in false negative misclassification when information
about Down’s Syndrome diagnoses is captured after birth but
cannot be linked to the birth episode (because of having sep-
arate HESIDs). We therefore compared this approach to a
simple analysis of HESIDs with dates of birth within the tar-
get range (but for whom country of birth could not necessarily
be confirmed). These analyses were contrasted against anal-
ysis of NDSCR records alone, and to analysis of linked data
from both NDSCR and HES.

Data linkage

The NDSCR contains matching data relating to both the af-
fected babies and their mothers (Table S1, Appendix 1, Sup-
plementary Material). In HES, however, information about ba-
bies and mothers is recorded separately. Harron and colleagues
[14] demonstrated how babies can be linked to their mothers
in pseudonymised HES (records with the personally identify-
ing information usually required for linkage removed) using

demographic and clinical variables captured in both admission
records (mostly so-called ’baby tail’ and ’maternity tail’ vari-
ables). By extending their methods to the 1997-98–2013-14
financial years and incorporating additional matching data that
were available at Public Health England, the birth cohort was
enhanced by initial linkage of babies to their maternal delivery
episodes within HES. Linkage of babies to mothers allowed
maternal NHS numbers and dates of birth to be added to
babies’ HES records for linkage of HES to NDSCR, and for
missing data in babies’ postcodes to be completed using the
mothers’ records (Figure 1). Further details about HES co-
hort construction and probabilistic linkage [15] are provided in
Appendix 1 (Supplementary Material).

Estimation of prevalence and case ascertain-
ment

Three sets of estimates of annual prevalence were generated:

1. Using NDSCR data alone, with ONS estimates of live
births in England [13] as the denominator. The main
analysis considered only where the birth outcome was
’live birth’. An alternative analysis that included records
with unknown birth outcomes is presented in Appendix
3 (Supplementary Material).

2. Using HES data alone. The main analysis considered the
proportion of the HES birth cohort to have a Down’s
syndrome diagnosis code recorded at any time. This
analysis includes only children born in NHS hospitals in
England, in both numerator and denominator. Appendix
3 (Supplementary Material) presents an alternative anal-
ysis of the proportion of all HESIDs with dates of birth
within the cohort window (i.e. without requiring an iden-
tified birth episode), ever to have a Down’s syndrome
diagnosis code recorded. That analysis includes children
born outside hospital but also outside England, in both
the numerator and denominator.

3. Using linked data and capture-recapture analysis to esti-
mate the total number of incident live birth cases, with
ONS estimates of live births in England [13] as the de-
nominator (this analysis therefore includes children born
in and outside hospital, in England, in both the numer-
ator and denominator).

Prevalence estimation using linked data depends critically
on the accuracy of linkage. If nNDSCR is the number of live
birth diagnoses registered in NDSCR and nHES is the number
of people with Q90 diagnosis codes in the HES birth cohort,
then the total number of incident cases, n, can be divided into
four key subgroups (Figure 2). Missed links between NDSCR
and HES could result in somebody whose diagnosis is recorded
in both sources being counted twice; once in n10 and once in
n01. False links could result in two people from n10 and n01

being counted once (in n11). Capture-recapture analysis of
the number of unrecorded cases (n00) relies on accurate es-
timation of the other subgroups [16]. We therefore assigned
estimates and plausible limits for both missed links and false
links, varying the assigned rates of false links with the level of
evidence supporting each link (Table S2, Appendix 2, Supple-
mentary Material). Lastly, we also allowed for the possibility
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Figure 1: Linkage overview

Hospital episodes

Maternal cohortBirth cohort

Enhanced birth cohort NDSCR registrations

Down's syndrome cases

(i)

(ii)

(iii)

(i) Construction of cohorts of live babies born and mothers who delivered a live baby in HES
(ii) Linkage of babies to mothers in HES
(iii) Linkage of the enhanced HES birth cohort to NDSCR

Figure 2: Subgroups for estimating prevalence and case ascertainment

n Number of cases
nNDSCR Number of cases who appear as registered live birth diagnoses in NDSCR
nHES Number of cases who appear as in the HES birth cohort and have an associted “Q90” diagnosis code for

Down’s syndrome recorded at any time in HES.
nij Number of cases, with presence in NDSCR (i) and HES (j) indicated by 1 (present) or 0 (absent), such that

n00 indicates the number of unrecorded cases.
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of false positives diagnostic codes to have been recorded in
HES. Further details about the approach to quantitative bias
analysis [17-19] and capture-recapture analysis are provided in
Appendix 2 (Supplementary Material).

For each analysis, trends in prevalence were estimated us-
ing logistic regression of Down’s syndrome status on year of
birth. This produced annual odds ratios that were converted
into annual growth rates (% change in prevalence per year).

Results

Results of linkage are included in Appendix 1 (Supplemen-
tary Material). Characteristics of candidate links and unlinked
records are presented in Table 1 and stratified by match weight
(a measure of agreement on variables used for linkage). Table
S4 (Appendix 3, Supplementary Material) provides regional
statistics.

Prevalence and trends

Analyses of single-source data are illustrated in Figures S8 and
S9 (Appendix 3, Supplementary Material). A simple analysis
of HESIDs (without restriction to a birth cohort) produced
prevalence estimates that were both highest and most steeply
increasing, with an estimated relative annual growth rate of
1.6% (95% CI: 1.3%, 2.0%), increasing to a prevalence of
13.1 cases per 10,000 live births in 2013. Restricting HES
records to a birth cohort produced results that were compa-
rable to analysis of NDSCR data if NDSCR records with un-
known birth outcomes were included, with annual growth of
1.1% (95% CI: 0.6%, 1.5%) and 0.9% (95% CI: 0.5%, 1.3%),
respectively. Excluding NDSCR records with unknown birth
outcomes produced the lowest and most stable prevalence es-
timates, increasing by 0.4% (95% CI: 0.0%, 0.8%) per year to
10.4 cases per 10 000 live births in 2013.

In marked contrast to these indications of increasing preva-
lence, linked data indicated an overall prevalence that was gen-
erally higher than single-source estimates but was stable, with
no significant change over time at a 95% confidence level (es-
timated annual growth = -0.1% (95% CI: -0.5%, 0.2%)) and
an estimated prevalence of 12.3 cases per 10 000 live births,
both in 2013 and overall (Figure 3).

Quantitative bias analysis provided regions of plausibility
around these base cases estimates, reflecting uncertainty in the
accuracy of diagnostic codes in HES and accuracy of linkage
between HES and NDSCR (Figure 3 shading). Since 2006,
prevalence estimates produced by analysis of the HES birth
cohort have fallen within this range. Prevalence estimates
produced by NDSCR live births were consistently below this
range but would have overlapped it since 2004 if records with
unknown birth outcomes were included. Combining all up-
per and lower estimates from the quantitative bias analysis
indicated a plausible range of 11.7–12.5 cases per 10 000 live
births in 2013, and 11.6–12.7 overall.

Subtracting the number of cases captured in single-source
estimates from the number estimated in linked data indicates
that case ascertainment in NDSCR varied between 74% and
88% over the study period but was more stable than in HES,
which increased from 81% (1998) to 96% (2012) (Figure 4).

Discussion

This analysis demonstrates the feasibility and value of linking a
perinatal cytogenetic register to HES. Data linkage provided a
picture that contrasted with both the individual data sources
which, if we accept it as being less biased, illustrates how
linked data can be more than the sum of its parts.

These findings highlight strengths and limitations of both
data sources. Ascertainment of live births with Down’s syn-
drome in the NDSCR appeared lower than in HES in more
recent years, possibly because of loss to follow-up of pre-
natal diagnoses, but NDSCR’s more consistent data quality
over time provided better reflection of the underlying trends
in prevalence. While HES appeared to have more complete
case ascertainment in recent years, changes in the quality of
HES over time could have created an alarming picture of an
emerging epidemic of Down’s syndrome. We propose that this
can largely be explained by decreasing errors in the assignment
of HESIDs, which is evidenced by the increasing recording of
NHS numbers in birth episodes up until about 2009 (Figure
S7, Appendix 1, Supplementary Material) and the decreas-
ing proportion of HES cases with only one episode in their
first year (Figure S10, Appendix 3, Supplementary Material).
This variation in quality of administrative data over time can
distort analysis of trends and could confound evaluation of
changes in policy or universal health care services, such as the
recent introduction of free non-invasive screening for Down’s
syndrome.

The problem of missed links in the assignment of HESIDs
is poorly documented and there is little information available
to help analysts address it. It is also statistically complex;
in the simple analysis of all HESIDs it is likely to have con-
tributed to overestimation from double-counting (splitting of
one patient’s records into multiple observational units) while,
in analysis of the birth cohort, it is likely to have contributed
to underestimation through false negative misclassification of
patients with missed links to their subsequent HES records
that contain diagnosis codes [17]. Like many administrative
datasets, HES is generated by service events that must be
linked before person-level analyses can be implemented. With
missed links in person identifiers having potential to wreak
such statistical havoc, they are an issue that requires focused
mitigation efforts by data providers through linkage quality as-
sessment [20] and by researchers through sensitivity and bias
analysis [17-19].

With HES providing such a critical resource for health ser-
vices research, and birth episodes containing unique informa-
tion about perinatal health and family characteristics, there is
a strong argument for refining the HESID algorithm to better
support linkage of birth episodes by incorporating and lever-
aging familial links. While mother-child linkage is possible
with the current data, a more complete record of familial links
could be constructed with routine linkage to other health data,
such as general practice registrations and routine child health
checks.

Of course, the linked dataset is not a ’gold standard’ and is
itself prone to error. There are many possible sources of error
and bias in this analysis, but we have attempted to quan-
tify the main ones. People born earlier in the cohort had a
longer period of observation in which HES events could be
captured, but in the linked data this was accounted for by
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Table 1: Characteristics of linked and unlinked records

Deterministic
links

Probabilistic
(MW >
40.6)

Probabilistic
(MW:
30.5–40.6)

Probabilistic
(MW:
18.1–30.5)

Probabilistic
(MW <
18.1)

Unlinked
NDSCR
records

Unlinked
HES cases

n
NDSCR records 4939 3694 449 662 534 137 -
HES records 4941 3703 446 646 654 - 2280
Candidate links1 4941 3720 454 799 739 - -
Q90 code (in HES records) 96.4% 91.1% 70.2% 81.4% 17.0% - -
Difference in DOB >
180 days (in candi-
date links)

0.4% < 0.3% 1.5% 3.6% 6.0% - -

Sex = male
in NDSCR records 55.4% 53.9% 52.2% 52.9% 54.7% 49.3% -
in HES records 55.1% 53.8% 52.7% 52.9% 56.3% - 53.6%
Premature (<37 weeks)
in NDSCR records 22.3% 19.1% 16.7% 12.7% 18.4% 10.5% -
in HES records 23.3% 22.3% 22.5% 20.7% 10.8% - 23.3%
Age at diagnosis (in NDSCR records)
Prenatal 9.9% 10.0% 7.1% 3.7% 8.5% 7.4% -
< 12 months 89.5% 89.7% 91.9% 93.7% 81.4% 85.2% -
≥ 12 months 0.6% 0.3% 1.0% 2.6% 10.1% 7.4% -
Age at first diagnosis code (in HES records)
< 12 months 90.9% 89.8% 90.4% 88.2% 88.9% - 77.7%
≥ 12 months 9.1% 10.2% 9.6% 11.8% 11.1% - 22.3%
Number of episodes in first year of life (in HES records)
1 22.5% 38.4% 48.6% 42.4% 78.2% - 36.1%
2–4 42.5% 37.1% 30.4% 31.5% 15.4% - 34.5%
≥ 5 35.0% 24.4% 20.9% 26.1% 6.5% - 29.4%

DOB: Date of birth
HES: Hospital Episode Statistics for England
MW: match weight
NDSCR: National Down Syndrome Cytogenetic Register.
NDSCR records exclude those with missing birth outcome. All data are column proportions, ignoring missing data, so that associ-
ations between record characteristics and linkage quality are reflected by differences in proportion across columns within each row.
Probabilistic links are grouped by match weight, a score reflecting the level of agreement over matching variables (see Methods).
1The number of candidate links may be higher than the number of records in either file, indicating ambiguity of multiple links with
equal agreement; for two of such candidate links, either at least one is false or both are true and it is the records in the contributing
files that have not been completely deduplicated.
Source: Hospital Episode Statistics (HES), NHS Digital (Copyright © 2019. Re-used with the permission of NHS Digital. All
rights reserved) and the National Down Syndrome Cytogenetic Register (NDSCR), Public Health England.
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Figure 3: Linkage overview
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Figure 4: Linkage overview
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the capture-recapture analysis. More sophisticated methods
for extracting diagnostic information from HES, using related
diagnoses, procedure codes or outpatient appointments, may
result in improved case ascertainment. Improvements in link-
age might also be possible if NDSCR records with missing birth
outcomes are considered, with approximate matching between
date of sample and date of birth (sample date was not avail-
able for this linkage).

The main unaccounted potential source of error is in the
assumptions of the capture-recapture analysis. Aside from
no linkage error, the three main assumptions of the formula
used are (i) equivalent source populations, (ii) homogeneity
in probabilities of detection and (iii) independence of the data
sources [16]. Most concerning is the source populations, which
are known to have slight differences; people not born in hos-
pital (an estimate 3% of all births) have no opportunity for
their Down’s status to be ’captured’ in the HES birth cohort.
By increasing the number of people identified only by ND-
SCR, this is likely to have led to overestimation of the number
of unrecorded cases (cases detected by neither source), and
therefore overestimation of the total prevalence and underes-
timation of case ascertainment in each dataset (the denomina-
tor for case ascertainment is the estimated total prevalence).
We considered accounting for this quantitatively but this be-
came complicated by implausible combinations with other bias
parameters, suggesting that the potential for bias was already
encompassed within the plausible range.

Heterogeneity in the probability of detection in either data
source could have occurred if some parts of the population
were both less likely to be screened and less likely to be born
in hospital (e.g. people from rural and remote areas). This
could similarly have inflated linked data estimates but may

have been offset by dependence between the data source, if
people recorded in one data source were more likely to be
recorded in the other (e.g. because of related data collection
mechanisms).

Regardless of these three assumptions, the contribution of
unrecorded cases (those estimated through capture-recapture)
was relatively small at between 0.8% (2012) and 6.2% (2001)
(Table S3, Appendix 2, Supplementary Material). Even if
these phenomena varied over time—which there is no obvious
reason to suspect—they could not feasibly have accounted for
all of the observed differences in trends.

In 2014, the NDSCR was integrated into the National
Congenital Anomaly and Rare Disease Registration Service
(NCARDRS). NCARDRS now integrates information from ev-
ery maternity unit in England, has established electronic data
feeds from cytogenetic laboratories, and is able to trace birth
outcomes through the NHS Summary Care Record. Our find-
ings about live births recorded in the NDSCR are therefore
unlikely to be generalisable to NCARDRS, while data for all
registrations (i.e. including unknown birth outcomes) may be
more comparable.

Similarly, our findings with respect to identification of
Down’s syndrome in HES cannot be generalised to other dis-
eases, phenotypes or datasets (see [8] for a relevant example
with contrasting findings). There is considerable variation in
how diagnostic information is recorded in administrative data
across diagnoses, between datasets and potentially over time,
so it is important to assess the quality of administrative data
sources in the context of each analysis.

When interpreting trends in live birth prevalence of Down’s
syndrome internationally, authors typically focus on the disen-
tangling the competing effects of increasing risk factors for
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Down’s syndrome (e.g. maternal age) and increasing rates
of termination [21, 22]. Using surveillance data, de Graaf
and colleagues [23] estimate an increasing trend in live birth
prevalence in the US over a similar time period. Using hospital
records, the Public Health Agency of Canada [24] estimate a
stable trend. Ours is the only known example to have used
data linkage to control for quality issues in the underlying data
sources.

Conclusion

The differing conclusions that could be drawn from linked data
versus single data sources highlight both the value that data
linkage can offer and the dangers that it can pose when the
quality of linkage is ignored. Reassuringly, we demonstrate
that even when the quality of matching data is poor and there
is uncertainty in linkage, quantitative bias analysis can be used
to identify plausible boundaries within which target parame-
ters should lie [17]. Probabilistic techniques [18] could further
enhance quantification of this uncertainty.

When NDSCR and HES were linked, we found that detec-
tion of live birth cases in NDSCR increased over time, resulting
in a slowly increasing trend in live birth prevalence of Down’s
syndrome. In HES, we observed a potentially alarming increase
in prevalence that appeared partly attributable to internal link-
age errors in the assignment of HESIDs. In the linked data,
the trend appeared contrastingly stable. Given the value that
this study demonstrates in linking registry with administrative
data, the fairest basis for analysis of trends during and after
transition from NDSCR to NCARDRS is likely to be provided
by integrating NDSCR-HES linked data with a future linkage
of NCARDRS to HES. Such routine linkage of registry and ad-
ministrative data can provide other benefits also, in this case
including invaluable support for analysis of long-term health
outcomes.
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