doi:10.1093/brain/awu145 Brain 2014: 137; 1 | e300

LETTER TO THE EDITOR

Music, reward and frontotemporal dementia

Phillip D. Fletcher, Camilla N. Clark and Jason D. Warren

Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK

Correspondence to: Dr Jason Warren, Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK

E-mail: jason.warren@ucl.ac.uk

Sir, The recent study by Perry *et al.* (2014) draws attention to the important issue of abnormally enhanced reward-seeking by patients with frontotemporal dementia (FTD). This issue presents major challenges for the clinical management of these patients and provides a unique window on the neurobiology of brain network disintegration in a diverse group of neurodegenerative pathologies. While Perry and colleagues emphasize seeking of stimuli with clear biological reward potential (sweet foods, drugs of abuse and sex), abnormal reward-seeking in FTD is not restricted to such stimuli. Indeed, one of the most potent inducers of such behaviour in patients with FTD is a stimulus with no clear biological value: music. Abnormal, intense craving for music (musicophilia) is common in FTD and has a cerebral correlate centred on the mesial temporal lobe (Fletcher *et al.*, 2013).

Both in functional imaging studies of the healthy brain and in neurodegenerative disease (Omar *et al.*, 2011; Salimpoor *et al.*, 2013; Clark *et al.*, 2014), music has been shown to engage striatal and basal forebrain regions overlapping or intimately connected with those demonstrated by Perry *et al.* (2014), in addition to a distributed network of cortical and limbic structures. Why music should behave as a biologically rewarding stimulus remains unresolved although clues may lie with its capacity to encode emotional mental states (Clark *et al.*, 2014): a cognitive process that is also often catastrophically disrupted in FTD.

We therefore suggest music as a promising candidate model system for addressing some of the key questions for future work raised by the study of Perry and colleagues. In particular, as a universal and widely valued, yet abstract stimulus, music is ideally suited to probe interactions between reward, affective and cortical information processing circuitry (Omar et al., 2011; Salimpoor et al., 2013). This circuitry is inherently vulnerable in FTD. Moreover, a stimulus that can dissect apart the components of such large-scale brain networks may enable hedonic and physiological phenotyping of a range of other neurodegenerative disorders (including Parkinson's disease) that also cause profound derangements of reward processing.

References

Clark CN, Downey LE, Warren JD. Music biology: all this useful beauty. Curr Biol 2014; 24: R234–7.

Fletcher PD, Downey LE, Witoonpanich P, Warren JD. The brain basis of musicophilia: evidence from frontotemporal lobar degeneration. Front Psychol 2013; 4: 347.

Omar R, Henley SM, Bartlett JW, Hailstone JC, Gordon E, Sauter DA, et al. The structural neuroanatomy of music emotion recognition: evidence from frontotemporal lobar degeneration. Neuroimage 2011; 56: 1814–21.

Perry DC, Sturm VE, Seeley WW, Miller BL, Kramer JH, Rosen HJ. Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia. Brain 2014; 137: 1621–26.

Salimpoor VN, van den Bosch I, Kovacevic N, McIntosh AR, Dagher A, Zatorre RJ. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 2013; 340: 216–9.