

Citation: Harb AK, Mohammed H, Furegato M, Wayal S, Mercer CH, Hughes G (2020) The association between region of birth and sexually transmitted infections among people of black Caribbean ethnicity attending sexual health services in England, 2015. PLoS ONE 15(2): e0228654. https://doi.org/10.1371/journal.pone.0228654

Editor: Remco PH Peters, University of Pretoria, SOUTH AFRICA

Received: July 25, 2019
Accepted: January 21, 2020
Published: February 21, 2020

Copyright: © 2020 Harb et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: Data from the GUMCAD STI Surveillance System cannot be shared publicly because it contains sensitive patient-level data and their storage and access are under strict control. In its role providing infectious disease surveillance, Public Health England has permission to handle data obtained through the GUMCAD STI Surveillance System under Regulation 3 of the Health Service (Control of Patient Information) Regulations 2002. Patients do

RESEARCH ARTICLE

The association between region of birth and sexually transmitted infections among people of black Caribbean ethnicity attending sexual health services in England, 2015

Ana K. Harb 1*, Hamish Mohammed 1,2, Martina Furegato 1,3, Sonali Wayal 2,4, Catherine H. Mercer 4, Gwenda Hughes 1,4

- 1 National Infection Service, Public Health England, London, United Kingdom, 2 Centre for Population Research in Sexual Health and HIV, University College London, London, United Kingdom, 3 The Applied Diagnostic Research and Evaluation Unit (ADREU), St George's, University, City, London, United Kingdom, A National Institute for Health Property Health Property Light in Placed Regree and Sexually.
- 4 National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, University College London, London, United Kingdom

Abstract

Background/Introduction

In England, people of Black Caribbean (BC) ethnicity are disproportionately affected by sexually transmitted infections (STIs), but it is unclear whether this varies by their region of birth.

Aim(s)/Objectives

To examine differences in STI diagnoses among UK- and Caribbean-born BC people.

Methods

Data on STI diagnoses in BC people attending specialist sexual health services (SHSs) during 2015 and living in England were obtained from the GUMCAD STI surveillance system, the national surveillance system for STIs in England. Associations between being UK- or Caribbean-born and each of several STI diagnoses were examined, using univariate and multivariable generalised estimated equations logistic regression models adjusted for sexual orientation, place of residence (London vs. non-London), HIV status, area-level deprivation, and STI diagnosis in the last year. All analyses were stratified by age (<25 vs. \geq 25 years).

Results

In 2015, 63,568 BC people made 108,881 attendances at specialist SHSs; 81.9% of these attendances were made by UK-born BCs. The median age (years) was 26 for UK-born and 35 for Caribbean-born people ($p \le 0.001$). Chlamydia, gonorrhoea and non-specific genital infection (NSGI) were the most commonly diagnosed STIs among UK- (5.8%, 2.1% and 2.8%) and Caribbean-born people (4.5%, 1.7% and 3.5%) respectively. Among BCs aged

^{*} ana.harb@phe.gov.uk

not provide consent for their data to be shared outside of PHE. Data requests can be made by contacting the GUMCAD (GUMCAD@phe.gov.uk) team but all publicly released data must adhere to PHE data sharing guidelines around small cell sizes.

Funding: The research and SW are funded by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections at UCL, http://bbsti.hpru.nihr.ac.uk/, in partnership with Public Health England (PHE), https://www.gov.uk/government/organisations/public-health-england, and in collaboration with the London School of Hygiene and Tropical Medicine. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health and Social Care, or PHE. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

under 25, no significant differences in STIs were found between UK- and Caribbean-born people. Among BCs aged \geq 25, compared to Caribbean-born people, those who were UK-born were more likely to be diagnosed with chlamydia (AOR 1.15 [95%C.I. 1.04–1.27]); gonorrhoea (AOR 1.23 [95%C.I. 1.06–1.45]) and genital herpes (AOR 1.23 [95% C.I. 1.10–1.56]) and less likely to be diagnosed with NSGI (AOR 0.89 [95% C.I. 0.80–0.99]) and Trichomoniasis (AOR 0.84 [95% C.I. 0.71–0.99]).

Discussion/Conclusion

STI diagnoses in BC people aged \geq 25 attending specialist SHSs vary by region of birth. Country of birth may have an influence on social and sexual networks and therefore transmission of STIs.

Introduction

Black ethnic minorities bear a disproportionate burden of sexually transmitted infections (STIs) in many high-income countries[1]. In the UK, the highest diagnosis rates of STIs are among people of black Caribbean (BC) ethnicity[2]. These high rates are a consequence of the interaction of cultural, socioeconomic and sexual behavioural characteristics[3–5], and these are likely to vary depending on an individual's region of birth.

The BC (i.e. Afro-Caribbean or African Caribbean) ethnic group includes people of African ancestral origins whose family settled in the Caribbean before emigrating to the UK[6]. BC people are a diverse population from at least two perspectives: first, they are from a number of different countries in the Caribbean, each with their own sociocultural influences[7] and, second, they comprise people born in the Caribbean who migrated some decades ago through to sixth-generation people who identify as BC, but who were born in the UK[8,9]. Prevalence of some STIs by region of birth have been described higher in the Americas than in Western Europe[10]. The extent to which region of birth is associated with the risk of STIs is unclear. Thus, we examined differences in the likelihood of being diagnosed with STIs between UK-and Caribbean-born BC people attending specialist sexual health services (SHSs) in England.

Methods

Data on STI diagnoses in BC people living in England were obtained for 1 January– 31 December 2015 from the GUMCAD STI surveillance system, the mandatory national surveillance system for STIs in England (formerly known as Genitourinary Medicine Clinic Activity Dataset). GUMCAD is a patient-level dataset containing information on STI diagnoses and services provided by all specialist SHSs in England, as well as key sociodemographic data, including country of birth[11]. Specialist SHSs refers to genitourinary medicine (GUM) and integrated GUM/sexual and reproductive health (SRH) services. Attendances made by people who self-identified as BC but had unknown region of birth (14.2%) or were born outside of the Caribbean or the UK (4.3%) were excluded from the analysis, as were those of unknown gender (0.01%), unknown sexual orientation (2.0%) or living outside England (2.0%).

For this analysis, the following countries and territories were defined as being in the Caribbean: Antigua and Barbuda, Aruba, the Bahamas, Barbados, Cuba, Dominica, Dominican Republic, Grenada, Haiti, Jamaica, Netherland Antilles, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, and Trinidad and Tobago.

Clinical definitions

All STIs reported in GUMCAD were confirmed diagnoses, defined using national STI management guidelines[12], that were coded and reported as such.

The list of STIs reported in history of being diagnosed in the last year with any STI includes *Chlamydia trachomatis*, *Haemophilus ducreyi* (Chancroid), *Klebsiella granulomatis* (Donovanosis), herpes simplex virus (Genital herpes: First episode), human papillomavirus (Genital warts: First episode), *Neisseria gonorrhoeae*, serovars L1, L2, L2a, L2b or L3 of *Chlamydia trachomatis* that cause Lymphogranuloma venereum (LGV), *Mycoplasma genitalium*, Molluscum contagiosum, Non-specific genital infection (NSGI), *Pthirus pubis* (Pediculosis pubis), Pelvis Inflammatory Disease (PID) & epididymitis: Unspecified aetiology, *Sarcoptes scabiei* (Scabies), *Treponema pallidum* (Syphilis: Primary Syphilis: Secondary Syphilis: Early latent) and *Trichomonas vaginalis* (Trichomoniasis). The diagnosis code used to report NSGI should include complicated and uncomplicated cases. For males, cases of NSGI are recorded in the presence of polymorphonuclear leucocytes (at >5 per high power field) and in the absence of laboratory confirmed *Chlamydia trachomatis* and *Neisseria gonorrhoeae*. Females being treated for non-specific mucopurulent cervicitis are also reported as NSGI.

Data analysis

Based on the Kolmogorov-Smirnov test[13], the age distribution of BC attendees varied by region of birth, therefore all models were stratified by age, using 25 years as a cut-off due to the higher STI diagnosis rates within people under 25 year olds[2].

Separate models were run for <25 and ≥25 year old UK-born compared with Caribbean-born BC attendees to calculate the unadjusted odds ratio (OR) and adjusted odds ratios (AOR) of being diagnosed with each STI. In GUMCAD, a patient is permitted only one record relating to a particular STI in a six week period; repeat codes for the same STI within this period are considered as relating to the same episode of care and so are removed to prevent overcounting of diagnoses. The following STIs were included in the analysis: Chlamydia; gonorrhoea; NSGI; genital herpes (1st episode); HIV; genital warts (1st episode) and trichomoniasis. The following were considered as confounders: gender and male sexual orientation[14] (coded heterosexual male, men who have sex with men, or women), place of residence (London vs. non-London) [15], HIV status[16] (coded negative or unknown vs known positive), a history of STI diagnosis in the last year[17] (coded yes or no), and area-level socioeconomic deprivation defined using quintiles of the Index of Multiple Deprivation (IMD)[18] for each lower super output area (LSOA) of residence.

As this was an attendance-level analysis and many attendees had multiple attendances, all univariate and multivariable models were built using generalised estimated equations logistic regression models to account for these clustered observations.

Results

In 2015, among those with a known region of birth, 63,568 BC people made 108,881 attendances at specialist SHSs in England. These attendances were 3.9% of the total attendances that year (2,780,434). Of these 108,881 attendances by BC people, the majority (81.9%) were by UK-born BC people.

The median age of UK- and Caribbean-born BC people was 26 (min:15—max: 83) and 35 (min:15—max: 91; (p<0.001)) years, respectively. Fewer UK-born (52.0%) vs. Caribbean-born (64.3%; p<0.001) BC people resided in London. For both UK- and Caribbean-born people, STIs were most likely to be diagnosed in those living in the most socioeconomically deprived areas of England.

Chlamydia, gonorrhoea and NSGI were the most commonly reported STIs among UK-born (5.8%, 2.1% and 2.8%) and Caribbean-born BC people (4.5%, 1.7% and 3.5%) respectively, while the fourth most common infection was genital warts (1.5%) for UK-born BC people and trichomoniasis for Caribbean-born BC people (1.3%). HIV was less commonly diagnosed at attendances by UK-born (0.1%) vs. Caribbean-born BC people (0.2%).

For those <25 years old (Table 1), and diagnosed with chlamydia, gonorrhoea, NSGI, genital herpes, or genital warts, a higher proportion of Caribbean-born people were London residents compared to UK-born BCs. Also, a higher proportion of Caribbean-born BC people with a history of STI diagnosis in the last year were diagnosed with chlamydia compared to UK-born BC people.

For those \geq 25 years old (<u>Table 2</u>), and diagnosed with gonorrhoea or trichomoniasis, a higher proportion of those Caribbean-born were London residents compared to UK-born BC people.

The unadjusted and factors adjusted associations between diagnosis with selected STIs and attendances by UK- vs. Caribbean-born BC people at specialist sexual health services, by agegroup, England, 2015 are shown in Fig 1.

Among BC attendees <25 years, those who were UK-born were more likely to be diagnosed with genital herpes (OR 1.51 [95%C.I. 1.06–2.15]) than Caribbean-born people. However, after adjusting for confounders, this association did not remain significant.

According to the univariate models, among those aged \geq 25 years, UK-born people were more likely to be diagnosed with chlamydia (1.17 [1.07–1.30]); genorrhoea (1.23 [1.06–1.43]); genital herpes (1.30 [1.10–1.56]) and genital warts (1.44 [1.18–1.77]), and less likely to be diagnosed with NSGI (0.87 [0.79–0.97]) and HIV (0.59 [0.37–0.95]) compared to Caribbean-born people.

In the multivariable analysis, the association with region of birth remained statistically significant for all but two of these STIs (genital warts and HIV) with UK-born BC people being more likely to be diagnosed with chlamydia (1.15 [95%C.I. 1.04–1.27]); gonorrhoea (1.23 [1.06–1.45]) and genital herpes (1.23 [1.02–1.47]), and less likely to be diagnosed with NSGI (0.89 [0.80–0.99]) and trichomoniasis (0.84 [0.71–0.99]) compared to Caribbean-born people.

Discussion

In this analysis, we examined the differences in the likelihood of STI diagnoses among BC people by region of birth. While BC people have previously been shown to have higher STI diagnosis rates[19], we found that the likelihood of being diagnosed with STI varies markedly by region of birth among those aged over 25 years old. UK-born BC people were more likely to be diagnosed with the most commonly diagnosed STIs in England, i.e. chlamydia, gonorrhoea, genital herpes, while their Caribbean-born counterparts were more likely to be diagnosed with trichomoniasis and NSGI. The reasons for this are unknown but may be associated with differences in patterns of health-seeking behaviours, and/ or differences in their sexual networks[20,21].

There is evidence of differences in sexual health outcomes of UK-born compared to migrant populations. For example, a large proportion of all HIV cases among heterosexuals in most countries of the European Union originate from outside of Europe[22]. In England, black ethnic minorities and especially black Caribbean populations are at much greater risk of STIs, especially for gonorrhoea and trichomoniasis[19]. However, there is limited published evidence specifically for STIs in BC people living in England, and this was not differentiated by region of birth[23].

In our analysis, adjusting for confounders had very little impact on the ORs apart from for genital warts in those aged \geq 25. It is interesting to note that the direction of association

Table 1. Percentage of all attendances by black Caribbean people at specialist sexual health services resulting in STI diagnoses and differences in socio-demographic profile by region of birth among those aged <25 years^a, 2015.

		Chlaı	Chlamydia			Gone	Gonorrhoea	_		NS	NSGI			Trichomoniasis	oniasi	.s.		Genital Herpes	Herpes		HIV	-newly	HIV-newly diagnosed	pes	Ğ	Genital warts	arts	
	UK-	UK- born	Caril	Caribbean- born	UK	UK- born	Car	Caribbean- born	UK-	UK- born	Cari	Caribbean- born	UK- born	born	Caril	Caribbean- born	UK-	UK- born	Carit	Caribbean- born	UK-	UK- born	Caribbean- born	san-	UK- born		Caribbean- born	ean- n
	п	%	u	%	п	%	u	%	u	%	п	%	u	%	п	%	п	%	п	%	п	%	п		п	%	п	%
Diagnoses	3,116	8.0%	334	8.8%	941	2.4%	107	2.8%	220	2.0%	93	2.4%	392	1.0%	46	1.2%	509	1.9%	33	%6.0	15	%0.0	3 0.	0.1%	807 2.	2.1%	69	1.8%
Age median (min—max)	20 (1)	20 (15-24)	21 ()	21 (15-24)	20 (20 (15-24)	21 (21 (15-24)	22 (1	22 (15–24)	22 ((16-24)	20 (15-24)	;-24)	20 (1	(16-24)	21 (1	21 (15–24)	22 (1	22 (16–24)	21 (1:	21 (17–24)	22 (22–23)	-23)	20 (15-24)		20 (16-24)	-24)
Gender and male sexual orientation																												
Heterosexual men ^b	1,351	43.3%	157	47.0%	355	37.7%	53	49.5%	089	88.3%	85	91.4%	18	4.6%	ю	6.5%	177	34.8%	∞	24.2%	ω,	20.0%	0	0.0%	373 40	46.2%	31 4	44.9%
Men who have sex with men	%	2.8%	15	4.5%	177	18.8%	19	17.8%	30	3.9%	5	5.4%	0	%0.0	0	%0.0	6	1.8%	-	3.0%	∞	53.3%	3 100	%0.001	25	3.1%	8	4.3%
Women	1,679	53.9%	162	48.5%	409	43.5%	35	32.7%	09	7.8%	3	3.2%	374	95.4%	43	93.5%	323	63.4%	24	72.8%	4	26.7%	0	0.0%	409 50	50.7%	35 5	20.8%
Resident in London																												
Nob	1,659	53.2%	135	40.4%	449	47.7%	28	26.2%	337	43.7%	31	33.3%	180	46.0%	16	34.8%	295	28.0%	=	33.3%	7	46.7%	1 33	33.3% 4	476 59	29.0%	29 4	42.0%
Yes	1,457	46.8%	199	29.6%	492	52.3%	79	73.8%	433	56.3%	62	%2'99	212	24.0%	30	65.2%	214	45.0%	22	%2'99	∞	53.3%	2 66	66.7% 3	331 4	41.0%	40 5	58.0%
History of STI ^c in the last year																												
Nob	2,598	83.4%	263	78.7%	77	72.0%	763	83.1%	561	72.9%	9	%6.69	292	74.5%	34	73.9%	442	86.8%	27	81.8%	14	93.3%	2 66	66.7% 7	715 88	88.6%	99	81.2%
Yes	518	16.6%	71	21.3%	30	28.0%	178	18.9%	209	27.1%	28	30.1%	100	25.5%	12	26.1%	29	13.2%	9	18.2%	1	9.2%	1 33	33.3%	92 1:	11.4%	13 1	18.8%
HIV status																			Н								-	
Negative or unknown ^b	3,112	%6.66	334	100.0%	922	80.86	107	100.0%	268	99.7%	93	100.0%	389	99.2%	46	100.0%	208	%8'66	33 1	100.0%					807 100	100.0%	6 89	98.5%
Known positive	4	0.1%	0	0.0%	19	2.0%	0	0.0%	2	0.3%	0	0.0%	3	0.8%	0	%0.0	1	0.2%	0	0.0%					0	0.0%	1	1.5%
Residential area-level deprivation $2015^{\rm d}$																												
1 (most deprived) ^b	1,284	43.7	142	45.1%	434	48.2%	48	46.1%	288	39.1%	42	47.2%	161	50.4%	25	26.8%	185	38.1%	16	20.0%	8	53.4%	2 66	66.7% 2	298 39	39.1%	30 4	45.5%
2	861	29.3	104	33.0%	252	28.0%	32	30.8%	229	31.1%	31	34.8%	109	28.7%	10	22.7%	150	30.9%	6	28.2%	5	33.3%	1 33	33.3% 2	216 28	28.3%	21 3	31.8%
3	453	15.4	41	13.0%	122	13.5%	17	16.3%	142	19.3%	Ξ	12.4%	22	14.5%	7	15.9%	77	15.9%	3	9.4%	0	0.0%	0	0.0%	130 I.	17.1%	9	13.7%
-4	204	6.9	13	4.1%	63	7.0%	4	3.9%	55	7.4%	4	4.5%	20	5.3%	0	%0.0	45	9.3%	7	6.2%	0	0.0%	0	%0.0	89	8.9%	3	4.5%
5 (least deprived)	139	4.7	15	4.8%	30	3.3%	3	2.9%	23	3.1%	-	1.1%	4	1.1%	2	4.6%	78	5.8%	2	6.2%	2	13.3%	0	%0.0	20	%9.9	3	4.5%

"The list of countries and territories included in the Caribbean region were Antigua and Barbuda, Aruba, The Bahamas, Barbados, Cuba, Dominica, Dominican Republic, Grenada, Haiti, Jamaica, Netherland Antilles, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, and Trinidad and Tobago.

genitalium, Molluscum contagiosum, Non-pecific genital infection, Pediculosis pubis, PID & epididymitis: Unspecified, Scabies, Syphilis: Primary Syphilis: Secondary Syphilis: Early latent and History of being diagnosed in the last year with any STI (Chlamydia, Chancroid, Donovanosis, Genital herpes: First episode, Genital warts: First episode, Gonorrhoea, LGV, Mycoplasma Frichomoniasis).

https://doi.org/10.1371/journal.pone.0228654.t001

First line is the baseline of the analysis.

Residential area-level deprivation is defined using the Index of Multiple Deprivation (IMD) for each lower super output area (LSOA) of residence. LSOAs are small areas designed to be of a similar population size, with an average of approximately 1,500 residents or 650 households.

https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015.

IMD was not available for those diagnoses reported with LSOAs older than the 2011 Census Super Outputs Areas.

In bold, associations statistically significant (p<0.05).

Table 2. Percentage of all attendances by black Caribbean people at specialist sexual health services resulting in STI diagnoses and differences in socio-demographic profile by region of birth among those aged ≥ 25 years^a, 2015.

	Chlamydia	ydia			Gonc	Gonorrhoea			NSGI				Tricho	Trichomoniasis			Genital Herpes	Herpes			HIV	HIV—newly diagnosed	iagnose		Genital warts	arts		
	UK- born	orn	Caribbean- born	ean-	UK- born	born	Caribbean- born	bean-	UK- born	E	Caribl born	Caribbean- born	UK-born		Caribbean- born		UK- born		Caribbean- born		UK- born		Caribbean- born		UK- born		Caribbean- born	
	п	%	п	%	n	%	u	%	u	%	п	%	u o		u d	%	и	п	%		" u		% u	п	%	u	%	
Diagnoses	2,096	4.2%	556	3.5%	932	1.9%	235	1.5%	1,698	3.4%	290	3.7%	640	1.3%	221	1.4%	949	1.3% 1	157	1.0%	21	0.1%	27 0.	0.2% 51	516 1.	1.0% 113	\vdash	0.7%
Age median (min—max)	29 (25–59)	-59)	34 (25-79)	-79)	30 (2	30 (25–58)	36 (25–76)	(92-	32 (25-78)	78)	40 (25-83)	5-83)	34 (25–65)		40 (25-82)	-82)	30 (25-67)		38 (25-74)	П	35 (25-58)	М	11 (25-73)	Н	29 (25–59)		36 (25-74)	
Gender and male sexual orientation																			_		_					_		
Heterosexual men ^b	354	63.7%	1,223	58.4%	381	40.9%	Ξ	47.2%	1,546	91.1%	541	91.7%	82	12.8%	46	8.07	271 4	41.9%	72 4	45.9%	11 2	21.6%	13 48.	48.1% 30	301 58.	58.4% 7	71 62.8%	8%
Men who have sex with men	59	10.6%	208	%6'6	361	38.7%	92	39.1%	68	5.2%	29	4.9%	-	0.5%	0	%0.0	14	2.2%	∞	5.1%	29 5	98.99	10 37.	37.0% 2	25 4.	4.8%	4 3.	3.6%
Women	143	25.7%	999	31.7%	190	20.4%	32	13.6%	63	3.7%	20	3.4%	557	87.0%	175	7.2%	361 5	25.9%	77 49	49.0%	11 2	21.6%	4 14.	14.9% 15	190 36.0%		38 33.6%	%5
Resident in London																			_							_		
Nob	1,057	50.4%	205	36.9%	389	41.7%	78	33.2%	604	35.6%	170	28.8%	310	48.4%	82	38.5%	273 4	42.3%	58 30	36.9%	17 3	33.3%	12 44.	44.4% 23	239 46.	46.3% 4	41 36.	36.3%
Yes	1,039	49.6%	351	63.1%	543	58.3%	157	%8.99	1,094	64.4%	420	71.2%	330	21.6%	136	61.5%	373 5	57.7%	9 66	63.1%	34 6	%2.99	15 55.	55.6% 277		53.7% 7	72 63.7%	2%
History of STI ^c in the last year																			H		H							
No^b	1,747	83.3%	477	85.8%	704	75.5%	189	80.4%	1,216	71.6%	428	72.5%	547	85.5%	189	85.5%	578 8	89.5%	140 89	89.2%	42 8	82.3%	23 85.	85.2% 47	476 92.	92.2% 105	5 92.9%	%6
Yes	349	16.7%	79	14.2%	228	24.5%	46	19.6%	482	28.4%	162	27.5%	93	15.5%	32	14.5%	68 1	10.5%	17 10	10.8%	9 1	17.7%	4 14.	14.7% 4	40 7.	7.8%	8 7.	7.1%
HIV status																												
Negative or unknown ^b	2,010	95.9%	520	93.5%	798	85.6%	195	83.0%	1,678	98.8%	577	%8'.66	889	%2'66	220	99.5%	639 9	98.9% 1	151 90	96.2%	\vdash		-	26	509 98.	98.6% 1111	1 98.2%	5%
Known positive	98	4.1%	36	6.5%	134	14.4%	40	17.0%	20	1.2%	13	2.2%	2	0.3%	-	0.5%	7	1.1%	9	3.8%	-		_		7	1.4%	2 1.	1.8%
Residential area-level deprivation 2015 ^d	921	46.2%	269	50.7%	88	38.8%	414	46.1%	699	40.7%	250	43.7%	325	23.6%	133	63.3%	262 4	42.4%	69 40	46.0%	19 3	38.8%	6 26.	26.1% 19	191 39.	39.1% 4	45 42.	42.5%
1 (most deprived) ^b	588	29.5%	157	29.6%	72	31.7%	260	28.9%	529	34.3%	175	30.6%	183	30.2%	54	25.7%	174 2	28.2%	44 29	29.3%	17 3	34.7%	11 47.	47.8% 15	151 30.	30.9% 3	37 34.	34.9%
2	295	14.7%	79	14.9%	49	21.6%	137	15.3%	237	14.6%	101	17.7%	69	11.4%	18	8.6%	107	17.3%	23 15	15.3%	8	16.3%	6 26.	26.1%	78 15.	15.9%	15 14.	14.1%
3	144	7.2%	∞	1.5%	12	5.3%	59	%9.9	116	7.1%	34	2.9%	21	3.5%	4	1.9%	49	7.9%	6	%0.9	4	8.2%	0.	0.0%	50 10.2%	5%	6 5.	5.7%
4	48	2.4%	18	3.4%	, 6	2.6%	28	3.1%	53	3.3%	12	2.1%	8	1.3%	1	0.5%	79	4.2%	5	3.4%	1	2.0%	0 0.	0.0%	19 3.	3.9%	3 2.	2.8%
5 (least deprived)																												

^aThe list of countries and territories included in the Caribbean region were Antigua and Barbuda, Aruba, The Bahamas, Barbados, Cuba, Dominica, Dominican Republic, Grenada, Haiti, Jamaica, Netherland Antilles, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, and Trinidad and Tobago.

genitalium, Molluscum contagiosum, Non-pecific genital infection, Pediculosis pubis, PID & epididymitis: Unspecified, Scabies, Syphilis: Primary Syphilis: Secondary Syphilis: Early latent and History of being diagnosed in the last year with any STI (Chlamydia, Chancroid, Donovanosis, Genital herpes: First episode, Genital warts: First episode, Gonorrhoea, LGV, Mycoplasma Frichomoniasis).

https://doi.org/10.1371/journal.pone.0228654.t002

First line is the baseline of the analysis.

Residential area-level deprivation is defined using the Index of Multiple Deprivation (IMD) for each lower super output area (LSOA) of residence. LSOAs are small areas designed to be of a similar population size, with an average of approximately 1,500 residents or 650 households.

https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015.

IMD was not available for those diagnoses reported with LSOAs older than the 2011 Census Super Outputs Areas.

In bold, associations statistically significant (p<0.05).

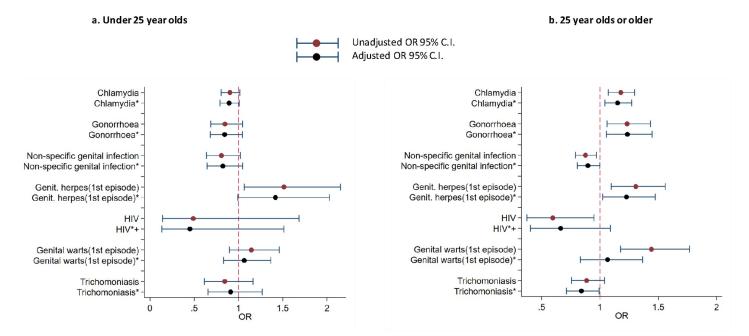


Fig 1. Unadjusted and adjusted associations with being diagnosed with selected STIs by region of birth and age-group, England, 2015. ¹The reference group (1) is Caribbean-born. *Adjusted for gender/sexual-orientation, London residence, area-level deprivation, history of STI diagnosis in the last year and HIV status. ⁺Not adjusted for HIV status.

https://doi.org/10.1371/journal.pone.0228654.g001

between region of birth and chlamydia and gonorrhoea diagnoses differed by age-group. This might suggest that the sexual networks of UK-born vs. Caribbean-born BCs may be similar until the age of 25 and then changes occur in BCs aged ≥25 potentially due to change in partnership type and sexual mixing patterns, considered key determinants of STI transmission, with respect to demographic characteristics, general health, health behaviours and sexual history[24]. This also could be due to the length of time those born in the Caribbean had spent in the UK (i.e. those <25 years may have, on average, spent less time in the UK and might have had Relationship and Sexual Education in the UK with different sexual health outcomes compared to those who were older). Further investigation of behavioural factors may explain the differences in STI risk by region of birth. The potential role of partnership concurrency in maintaining high rates of bacterial STIs in BC populations has been documented[25–27]. It is possible that the differences in the risk of STIs by region of birth are related to different background prevalence of different STIs in different countries[10], and perhaps Caribbean-born who are residents in the UK travel more frequently to the Caribbean than the UK-born BC people, therefore more likely to be exposed there.

While GUMCAD is vast in scale and includes all attendances made at specialist SHSs in England, a limitation is that it does not yet collect detailed data on sexual behaviour (e.g. condom use, number of partners, or partnership concurrency), as well as broader health-related factors, such as alcohol and drug use, which may confound the observed associations. Furthermore, there is no information on factors that might play a role in the risk of STIs such as the length of time Caribbean-born people have lived in the UK and their frequency of travel to the Caribbean.

Historically, many Caribbean-born people were of working age when they migrated with their children to the UK after the British Nationality Act of 1948[28,29]. This pattern of migration may have changed over time[30], and differences between those migrating to the UK as a child or an adult might help to explain differences in STI risk factors. This information has

been collected as part of the work of the National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections[31] and will be explored in future analyses. Another limitation of this study is that, despite the socio-cultural differences and varying levels of development that exist among Caribbean countries, all Caribbean-born people were included in a single category for analysis as there were insufficient observations for each of the 15 countries and territories considered in this group.

This study offers insights into disparities in STIs by region of birth among BC people living in England. These disparities are partially explained by differences in demographics between UK- and Caribbean-born people but also explained by region of birth. However, future research should examine behavioural differences, including the role of sexual networks, concurrency, partnership type and numbers, condom use, and sexual healthcare-seeking behaviour to better understand ethnic disparities in STI diagnoses.

Acknowledgments

We acknowledge the members of the National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Blood Borne and Sexually Transmitted Infections Steering Committee: Caroline Sabin (Director), John Saunders (PHE Lead), Catherine H. Mercer, Gwenda Hughes, Greta Rait, Jackie Cassell, William Rosenberg, Tim Rhodes, Kholoud Porter, Sema Mandal and Samreen Ijaz; and the members of Theme-A of the NIHR HPRU in Blood Borne and Sexually Transmitted Infections Steering Committee: Catherine Mercer, Gwenda Hughes, Hamish Mohammed, Jackie Cassell, Fiona Burns, Makeda Gerressu, Jonathan Elford, David Phillips, Gary Brook, Nicola Low, Anthony Nardone, Sarika Desai, Adamma Aghaizu, Alison Rodgers, and Paul Crook.

Author Contributions

Conceptualization: Ana K. Harb, Hamish Mohammed, Martina Furegato.

Data curation: Ana K. Harb. **Formal analysis:** Ana K. Harb.

Funding acquisition: Catherine H. Mercer, Gwenda Hughes.

Methodology: Ana K. Harb, Hamish Mohammed, Martina Furegato.

Project administration: Ana K. Harb.

Software: Ana K. Harb.

Supervision: Hamish Mohammed, Martina Furegato.

Validation: Martina Furegato. Visualization: Ana K. Harb.

Writing - original draft: Ana K. Harb.

Writing – review & editing: Ana K. Harb, Hamish Mohammed, Martina Furegato, Sonali Wayal, Catherine H. Mercer, Gwenda Hughes.

References

 Fenton KA, Korovessis C, Johnson AM, McCadden A, McManus S, Wellings K, et al. Sexual behaviour in Britain: reported sexually transmitted infections and prevalent genital Chlamydia trachomatis infection. The Lancet. 358(9296):1851–4.

- PHE. Sexually transmitted infections (STIs): annual data tables. Table 3: STI diagnoses by ethnic group, world region of birth and patient group, 2014 https://www.gov.uk/government/statistics/sexuallytransmitted-infections-stis-annual-data-tables. Access date:08.02.2017
- Fenton KA, Mercer CH, McManus S, Erens B, Wellings K, Macdowall W, et al. Ethnic variations in sexual behaviour in Great Britain and risk of sexually transmitted infections: a probability survey. Lancet. 2005; 365(9466):1246–55. https://doi.org/10.1016/S0140-6736(05)74813-3 PMID: 15811458
- Furegato M, Chen Y, Mohammed H, Mercer CH, Savage EJ, Hughes G. Examining the role of socioeconomic deprivation in ethnic differences in sexually transmitted infection diagnosis rates in England: evidence from surveillance data. Epidemiol Infect. 2016; 144(15):3253–62. https://doi.org/10.1017/S0950268816001679 PMID: 27511704
- Adimora AA, Schoenbach VJ. Social Context, Sexual Networks, and Racial Disparities in Rates of Sexually Transmitted Infections. Journal of Infectious Diseases. 2005; 191(Supplement 1):S115–S22.
- Agyemang C, Bhopal R, Bruijnzeels M. Negro, Black, Black African, African Caribbean, African American or what? Labelling African origin populations in the health arena in the 21st century. J Epidemiol Community Health. 2005; 59(12):1014

 –8. https://doi.org/10.1136/jech.2005.035964 PMID: 16286485
- Sastre F, Rojas P, Cyrus E, De La Rosa M, Khoury AH. Improving the Health Status of Caribbean People: Recommendations from the Triangulating on Health Equity Summit. Global health promotion. 2014; 21(3):19–28. https://doi.org/10.1177/1757975914523455 PMID: 24642594
- International Organization for Migration. Jamaica: Mapping exercise" (PDF). London: IOM. July 2007. Archived from the original (PDF) on 11 May 2011.
- Reynolds T. Friendship Networks, Social Capital and Ethnic Identity: Researching the Perspectives of Caribbean Young People in Britain2007. 383–98 p.
- 10. WHO. Report on global sexually transmitted infection surveillance http://apps.who.int/iris/bitstream/handle/10665/249553/9789241565301-eng.pdf;jsessionid = 26E3F870FF109911AA1651D-FEA5A83EF?sequence = 1. Access date: 18.10.2018.
- Savage EJ, Mohammed H, Leong G, Duffell S, Hughes G. Improving surveillance of sexually transmitted infections using mandatory electronic clinical reporting: the genitourinary medicine clinic activity dataset, England, 2009 to 2013. Eurosurveillance. 2014; 19(48):20981. https://doi.org/10.2807/1560-7917.es2014.19.48.20981 PMID: 25496573
- BASHH. Standards for the management of sexually transmitted infections (STIs). April 2019. https://www.bashh.org/about-bashh/publications/standards-for-the-management-of-stis/ Access date: 18.11.2019.
- Sebastian J. Goerg. Nonparametric testing of distributions—the Epps—Singleton two-sample test using the empirical characteristic function. Max Planck Institute for Research on Collective Goods. Kurt-Schumacher-Straße 10. The Stata Journal (2009), 9, Number 3, pp. 454–465.
- 14. Hamish Mohammed BS, Stephen Duffell, Anthony Nardone, and Gwenda Hughes. Increase in Sexually Transmitted Infections among Men Who Have Sex with Men, England, 2014 Emerging Infectious Diseases 2016; 22(1):88–91 https://doi.org/10.3201/eid2201.151331
- PHE. Spotlight on sexually transmitted infections in London, 2016 data. https://www.gov.uk/ government/uploads/system/uploads/attachment_data/file/645635/Spotlight_on_STIs_in_London_ 2016_data.pdf. Access date: 20.10.2018. 2017.
- 16. Malek R, Mitchell H, Furegato M, Simms I, Mohammed H, Nardone A, et al. Contribution of transmission in HIV-positive men who have sex with men to evolving epidemics of sexually transmitted infections in England: an analysis using multiple data sources, 2009–2013. Euro Surveill. 2015; 20(15).
- Hughes G, Nichols T, Peters L, Bell G, Leong G, Kinghorn G. Repeat infection with gonorrhoea in Sheffield, UK: predictable and preventable? Sexually Transmitted Infections. 2013; 89(1):38. https://doi.org/10.1136/sextrans-2012-050495 PMID: 22717472
- ONS. The English Indices of Deprivation 2015. https://www.gov.uk/government/uploads/system/ uploads/attachment_data/file/465791/English_Indices_of_Deprivation_2015_-_Statistical_Release. pdf. Access date: 18.10.2018.
- Hughes G, Field N. The epidemiology of sexually transmitted infections in the UK: impact of behavior, services and interventions. Future Microbiol. 2015; 10(1):35–51. https://doi.org/10.2217/fmb.14.110
 PMID: 25598336
- Aicken CRH, Wayal S, Blomquist PB, Fabiane SM, Gerressu M, Hughes G, et al. Pathways to, and use
 of, sexual healthcare among Black Caribbean sexual health clinic attendees in England: evidence from
 cross-sectional bio-behavioural surveys. BMC Health Services Research. 2019; 19(1):668. https://doi.
 org/10.1186/s12913-019-4396-3 PMID: 31533716
- Aicken CRH WW, Blomquist PB, Fabiane SM, Gerressu M, Hughes G, Mercer CH. Variations in sexual mixing and in the numbers and types of partnerships reported by heterosexual sexual health clinic

- attendees: do these explain the elevated STI risk among Black Caribbean people? Sexually Transmitted Infections, 2019; https://doi.org/10.1136/sextrans-2018-053739
- ECDC. Migrant health: Sexual transmission of HIV within migrant groups in the EU/EEA and implications for effective interventions. 2013.
- Low N, Sterne JA, Barlow D. Inequalities in rates of gonorrhoea and chlamydia between black ethnic groups in south east London: cross sectional study. Sex Transm Infect. 2001; 77(1):15–20. https://doi.org/10.1136/sti.77.1.15 PMID: 11158686
- 24. Prah P, Copas AJ, Mercer CH, Nardone A, Johnson AM. Patterns of sexual mixing with respect to social, health and sexual characteristics among heterosexual couples in England: analyses of probability sample survey data. Epidemiology and infection. 2015; 143(7):1500–10. https://doi.org/10.1017/S0950268814002155 PMID: 25167088
- 25. Gerressu M, Mercer CH, Cassell JA, Brook G, Dave S. The importance of distinguishing between black Caribbeans and Africans in understanding sexual risk and care-seeking behaviours for sexually transmitted infections: evidence from a large survey of people attending genitourinary medicine clinics in England. Journal of Public Health. 2012; 34(3):411–20. https://doi.org/10.1093/pubmed/fds007 PMID: 22408067
- 26. Wayal S, Hughes G, Sonnenberg P, Mohammed H, Copas AJ, Gerressu M, et al. Ethnic variations in sexual behaviours and sexual health markers: findings from the third British National Survey of Sexual Attitudes and Lifestyles (Natsal-3). The Lancet Public Health. 2(10):e458–e72. https://doi.org/10.1016/S2468-2667(17)30159-7 PMID: 29057382
- 27. Wayal S, Aicken CRH, Griffiths C, Blomquist PB, Hughes G, Mercer CH. Understanding the burden of bacterial sexually transmitted infections and Trichomonas vaginalis among black Caribbeans in the United Kingdom: Findings from a systematic review. PLoS One. 2018; 13(12):e0208315. https://doi.org/10.1371/journal.pone.0208315 PMID: 30532145
- Rendall M SJ. The foreign-born population. In: Chappell R, ed. Focus on people and migration. Basingstoke: Palgrave Macmillan, 2005. 2005.
- UK L. British Nationality Act 1948. Available at: http://www.legislation.gov.uk/ukpga/Geo6/11-12/56/introduction. Access date: 18.10.2017. 1948.
- ONS. Immigration Patterns of Non-UK Born Populations in England and Wales in 2011. Office for National Statistics, 17 December 2013. http://webarchive.nationalarchives.gov.uk/20160105160709/ http://www.ons.gov.uk/ons/dcp171776_346219.pdf. Access date:09.06.2019. 2013.
- Wayal S, Reid D, Blomquist PB, Weatherburn P, Mercer CH, Hughes G. The Acceptability and Feasibility of Implementing a Bio-Behavioral Enhanced Surveillance Tool for Sexually Transmitted Infections in England: Mixed-Methods Study. JMIR Public Health Surveill. 2018; 4(2):e52. https://doi.org/10.2196/publichealth.9010 PMID: 29728348