SORA

Advancing, promoting and sharing knowledge of health through excellence in teaching, clinical practice and research into the prevention and treatment of illness

Acute Spinal Cord Injury: Correlations and Causal Relations Between Intraspinal Pressure, Spinal Cord Perfusion Pressure, Lactate-to-Pyruvate Ratio, and Limb Power.

Hogg, FRA; Kearney, S; Zoumprouli, A; Papadopoulos, MC; Saadoun, S (2021) Acute Spinal Cord Injury: Correlations and Causal Relations Between Intraspinal Pressure, Spinal Cord Perfusion Pressure, Lactate-to-Pyruvate Ratio, and Limb Power. Neurocrit Care, 34 (1). pp. 121-129. ISSN 1556-0961 https://doi.org/10.1007/s12028-020-00988-2
SGUL Authors: Papadopoulos, Marios Saadoun, Samira

[img]
Preview
PDF Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

BACKGROUND/OBJECTIVE: We have recently developed monitoring from the injury site in patients with acute, severe traumatic spinal cord injuries to facilitate their management in the intensive care unit. This is analogous to monitoring from the brain in patients with traumatic brain injuries. This study aims to determine whether, after traumatic spinal cord injury, fluctuations in the monitored physiological, and metabolic parameters at the injury site are causally linked to changes in limb power. METHODS: This is an observational study of a cohort of adult patients with motor-incomplete spinal cord injuries, i.e., grade C American spinal injuries association Impairment Scale. A pressure probe and a microdialysis catheter were placed intradurally at the injury site. For up to a week after surgery, we monitored limb power, intraspinal pressure, spinal cord perfusion pressure, and tissue lactate-to-pyruvate ratio. We established correlations between these variables and performed Granger causality analysis. RESULTS: Nineteen patients, aged 22-70 years, were recruited. Motor score versus intraspinal pressure had exponential decay relation (intraspinal pressure rise to 20 mmHg was associated with drop of 11 motor points, but little drop in motor points as intraspinal pressure rose further, R2 = 0.98). Motor score versus spinal cord perfusion pressure (up to 110 mmHg) had linear relation (1.4 motor point rise/10 mmHg rise in spinal cord perfusion pressure, R2 = 0.96). Motor score versus lactate-to-pyruvate ratio (greater than 20) also had linear relation (0.8 motor score drop/10-point rise in lactate-to-pyruvate ratio, R2 = 0.92). Increased intraspinal pressure Granger-caused increase in lactate-to-pyruvate ratio, decrease in spinal cord perfusion, and decrease in motor score. Increased spinal cord perfusion Granger-caused decrease in lactate-to-pyruvate ratio and increase in motor score. Increased lactate-to-pyruvate ratio Granger-caused increase in intraspinal pressure, decrease in spinal cord perfusion, and decrease in motor score. Causality analysis also revealed multiple vicious cycles that amplify insults to the cord thus exacerbating cord damage. CONCLUSION: Monitoring intraspinal pressure, spinal cord perfusion pressure, lactate-to-pyruvate ratio, and intervening to normalize these parameters are likely to improve limb power.

Item Type: Article
Additional Information: © 2020 The Author(s) Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Keywords: Blood pressure, Intraspinal pressure, LPR, Management, Microdialysis, Monitoring, Spinal cord injury, 1103 Clinical Sciences, 1109 Neurosciences, Neurology & Neurosurgery
SGUL Research Institute / Research Centre: Academic Structure > Molecular and Clinical Sciences Research Institute (MCS)
Journal or Publication Title: Neurocrit Care
ISSN: 1556-0961
Language: eng
Dates:
DateEvent
February 2021Published
20 May 2020Published Online
Publisher License: Creative Commons: Attribution 4.0
PubMed ID: 32435965
Go to PubMed abstract
URI: https://openaccess.sgul.ac.uk/id/eprint/111997
Publisher's version: https://doi.org/10.1007/s12028-020-00988-2

Actions (login required)

Edit Item Edit Item