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Investigation of sequential outbreaks of Burkholderia cepacia 
and multidrug-resistant extended spectrum β-lactamase 
producing Klebsiella species in a West African tertiary 
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Summary
Background Sick newborns admitted to neonatal units in low-resource settings are at an increased risk of developing 
hospital-acquired infections due to poor clinical care practices. Clusters of infection, due to the same species, with a 
consistent antibiotic resistance profile, and in the same ward over a short period of time might be indicative of an 
outbreak. We used whole-genome sequencing (WGS) to define the transmission pathways and characterise 
two distinct outbreaks of neonatal bacteraemia in a west African neonatal unit.

Methods We studied two outbreaks of Burkholderia cepacia and multidrug-resistant extended spectrum β-lactamase 
(ESBL)-producing Klebsiella pneumoniae in a neonatal unit that provides non-intensive care on the neonatal ward in 
the Edward Francis Small Teaching Hospital, Banjul, The Gambia. We used WGS to validate and expand findings 
from the outbreak investigation. We retrospectively sequenced all clinical isolates associated with each outbreak, 
including isolates obtained from swabs of ward surfaces, environmental fluid cultures, intravenous fluids, and 
antibiotics administered to newborns. We also sequenced historical B cepacia isolates associated with neonatal sepsis 
in the same ward.

Results Between March 1 and Dec 31, 2016, 321 blood cultures were done, of which 178 (55%) were positive with a 
clinically significant isolate. 49 episodes of neonatal B cepacia bacteraemia and 45 episodes of bacteraemia due to 
ESBL-producing K pneumoniae were reported. WGS revealed the suspected K pneumoniae outbreak to be 
contemporaneous outbreaks of K pneumoniae (ST39) and previously unreported Klebsiella quasipneumoniae subspecies 
similipneumoniae (ST1535). Genomic analysis showed near-identical strain clusters for each of the three outbreak 
pathogens, consistent with transmission within the neonatal ward from extrinsically contaminated in-use intravenous 
fluids and antibiotics. Time-dated phylogeny, including retrospective analysis of archived bacterial strains, suggest 
B cepacia has been endemic in the neonatal ward over several years, with the Klebsiella species a more recent 
introduction.

Interpretation Our study highlights the emerging threat of previously unreported strains of multidrug-resistant 
Klebsiella species in this neonatal unit. Genome-based surveillance studies can improve identification of circulating 
pathogen strains, characterisation of antimicrobial resistance, and help understand probable infection acquisition 
routes during outbreaks in newborn units in low-resource settings. Our data provide evidence for the need to regularly 
monitor endemic transmission of bacteria within the hospital setting, identify the introduction of resistant strains 
from the community, and improve clinical practices to reduce or prevent the spread of infection and resistance.

Funding Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, 
The Gambia.

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 
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Introduction
Globally, in 2018, an estimated 2·5 million newborns 
died within the first 28 days of birth, and almost 80% of 
these deaths occurred in south Asia and sub-Saharan 
Africa.1 Infections (especially sepsis, meningitis, and 
pneumonia) were among the leading causes of these 
deaths.2 The risk of hospital-acquired infection is 
particularly high for newborns admitted to hospital in 

low-resource settings, and is associated with over
crowding and understaffing, as well as weak infection 
control protocols.3 Gram-negative bacterial infections are 
increasingly common in neonatal units, especially 
multidrug-resistant Klebsiella spp, which are implicated 
in outbreaks.4 Burkholderia cepacia complex organisms 
are also associated with hospital outbreaks but less 
commonly reported in sub-Saharan Africa. Members of 
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the B cepacia complex are opportunistic gram-negative 
nosocomial pathogens that can cause serious infections 
in immunocompromised patients and newborns. Often 
found in liquid reservoirs, they can survive for long 
periods in water or disinfectants, and are intrinsically 
resistant to several antimicrobial agents. Identifying an 
outbreak in a neonatal unit can be challenging, but 
one indicator is when multiple infants are infected by the 
same species with a consistent antibiotic resistance 
profile over a short period.

In high-income settings, whole-genome sequencing 
(WGS) is now the reference tool for investigating 
bacterial transmission patterns and characterising 
outbreaks; it provides the resolving power to disprove 
transmission events indicated by conventional methods 
(such as antibiotic resistance profile), and can also reveal 
unsuspected strain clusters consistent with nosocomial 
transmission.5–7 WGS can also be coupled with temporal 
and other epidemiological information to model 
transmission pathways and identify outbreaks.8 These 
approaches have been applied in neonatal intensive and 
non-intensive units in the USA9 and Europe,10 but there 

is paucity of genome-based studies from sub-Saharan 
Africa.11 We describe two distinct outbreaks of B cepacia 
and extended spectrum β-lactamase (ESBL)-producing 
Klebsiella pneumoniae bacteraemia occurring between 
March and December, 2016, in The Gambia’s largest 
hospital and only neonatal unit. We did a retrospective 
genomic analysis to understand the phylogenetic 
relationships between isolates in each outbreak and to 
detect the presence of resistance genes and plasmids.

Methods
Setting
This study was done in the neonatal unit of the 
Edward Francis Small Teaching Hospital (EFSTH), 
Banjul, The Gambia—a tertiary referral hospital with 
640 beds and about 6000 births each year. Annually, 
approximately 1400 neonates are admitted to the non-
intensive care neonatal unit, which has 31 cots and four 
incubators.12 During peak admission periods, the unit is 
highly congested, with cots arranged in close proximity, 
often with multiple neonates sharing Resuscitaires 
(Dräger, Lübeck, Germany) and incubators.

Research in context

Evidence before this study
Hospital-acquired infections are a major burden and safety issue 
for newborns globally, and particularly in low-resource settings, 
where they are responsible for up to half of all neonatal deaths 
among hospital-born babies. In such settings, hospital-acquired 
infections are endemic across all levels of neonatal care—both 
intensive and non-intensive—and relate to poor standards of 
care. Apart from endemic infections, outbreaks of bacterial, viral, 
and fungal infections are also often reported. Extended 
spectrum β-lactamase-producing Enterobacteriaceae (notably 
Klebsiella pneumoniae), Staphylococcus aureus (meticillin resistant 
and meticillin sensitive), Serratia spp, Acinetobacter spp, and 
Enterobacter spp have emerged as the major bacterial pathogens 
implicated in outbreaks of infection in neonatal units of 
developing countries. Whole-genome sequencing (WGS) is 
increasingly used to complement traditional epidemiological 
surveillance for outbreak monitoring.

We searched OVID (appendix p 2) and PubMed (appendix p 3) 
databases up to Feb 3, 2020, without date or language 
restrictions, with the search terms [neonat* OR newborn*] 
AND [infection* OR sepsis OR septic* OR “nosocomial 
infection”] along with [center(s) OR unit(s) OR nursery OR 
nurseries OR hospital(s) OR NICU] AND [outbreak* OR epidemic* 
OR cluster*] AND [“whole genome sequencing”]. This search 
strategy identified 35 studies that reported the use of WGS to 
investigate neonatal outbreaks, only one of which was from 
sub-Saharan Africa. This study reported the identification of 
multidrug-resistant New Delhi metallo-β-lactamase 
(NDM-5)-containing Klebsiella quasipneumoniae subspecies 
similipneumoniae from isolates recovered during a neonatal 
bacteraemia outbreak at a tertiary hospital in Nigeria in 2016, 

and surveillance isolates from 2013 from the same hospital. 
The prevalence of NDM-5 in Klebsiella spp had been limited to 
K pneumoniae, with only one isolate collected from Africa.

Added value of this study
Our phylogenetic data demonstrated the endemicity of 
Burkholderia cepacia in the neonatal ward up to 8 years before the 
outbreak, suggesting that there were additional, undiscovered 
cases before the onset of microbiological screening, and that the 
spread of the pathogen remained undetected over several years. 
Our data also show that the second outbreak previously thought 
to be solely due to multidrug-resistant Klebsiella pneumoniae, 
was actually simultaneous, but distinct outbreaks due to 
K quasipneumoniae subsp similipneumoniae and K pneumoniae. 
Our findings show, for the first time in sub-Saharan Africa, 
the presence of the virulence factor yersiniabactin in 
K quasipneumoniae subsp similipneumoniae.

Implications of all the available evidence
Correct classification of neonatal infections as nosocomial 
outbreaks, and not community-acquired infections, is 
important to inform successful infection prevention and 
control strategies. These data highlight the need for precise 
identification of bacterial species, molecular characterisation of 
antimicrobial resistance, and regular microbiological 
surveillance in the hospital environment to detect both 
endemic infections and independent introduction of pathogens 
from the community. Infection control policies to combat 
hospital-acquired infections should also delineate the relative 
contributions of within-hospital transmission of resistant 
bacterial pathogens, and the introduction of resistant strains 
from the community.
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The onsite paediatric laboratory provides some haema
tology services; microbiological investigations are not 
routine, but most newborns receive antibiotics during 
admission (appendix p 4).12 Between March, 2015, and 
January, 2017, neonatal blood samples were cultured at 
the Medical Research Council Unit The Gambia (MRCG) 
clinical microbiology laboratory as part of efforts to 
improve diagnostic capacity. At admission, a minimum of 
1 mL of peripheral blood was obtained for culture from 
neonates with possible serious bacterial infection (pSBI; 
appendix p 5), and from neonates already receiving 
treatment for pSBI who either did not show signs of 
improvement after 48–72 h or deteriorated on treatment.

The outbreak investigation, environmental surveil
lance, and shipment of samples for sequencing received 
ethical approval from the management of the EFSTH 
and Joint MRC/Gambia Government Ethics Committee. 
Informed consent from the neonate’s carers was not 
required because of the retrospective nature of the study.

Outbreak investigation
We defined a confirmed case for each outbreak as a 
neonate from whom B cepacia or ESBL-producing 
K pneumoniae was isolated from blood culture during the 
two clusters of infection, respectively. Where available, 
we reviewed clinical records of cases retrieved from the 
neonatal ward or records department. Infection control 
measures, environmental surveillance, and epidemio
logical investigations were initiated as soon as the first 
outbreak was suspected. Investigators collected 90 envi-
ronmental specimens and product samples, targeting 
high-touch surfaces, and shared equipment, as well as 
intravenous fluids and medications (in-use and from 
ward stock). Staff clinical procedures and practices were 
observed to identify potential sources of infection.

Microbiological methods
Clinical and environmental fluid samples were inoculated 
in BACTEC Peds plus F blood culture bottles and 
processed using an automated culture system (BACTEC 
9050 [Becton Dickinson Microbiology Systems, Sparks, 
MD, USA]). Surface swabs were inoculated on blood, 
chocolate, and MacConkey agar plates and incubated at 
37°C for 24–48 h. Growth of B cepacia and K pneumoniae 
was identified morphologically and biochemically 
(bioMérieux API 20NE/E [bioMérieux, Marcy l’Etoile, 
France]). Isolates were numbered chronologically, and a 
prefix of B or K was assigned for Burkholderia or Klebsiella, 
respectively. Antimicrobial susceptibility testing was done 
for both organisms using the Kirby Bauer disc diffusion 
method, and interpreted according to the 2016 Clinical and 
Laboratory Standards Institute guidelines. The following 
antibiotics were tested: ampicillin, sulfamethoxazole-
trimethoprim, tetracycline, ciprofloxacin, chloramphenicol, 
gentamicin, ceftazidime, cefotaxime, cefoxitin, amoxicillin-
clavulanate, cefepime, imipenem, and meropenem. 
Isolates were screened for ESBL production by the double 

disc synergy test using the antibiotics amoxicillin and 
clavulanate (20 µg and 10 µg, respectively) in combination 
with cefotaxime (30 µg) and ceftazidime (30 µg) according 
to the manufacturer’s guidelines. Strains of Escherichia coli 
ATCC 25922 and K pneumoniae ATCC 700603 were used 
as reference strains.

Molecular methods
DNA extracted from pure single colonies was frozen and 
sent to the Wellcome Sanger Institute (Hinxton, UK) 
for sequencing on an Illumina HiSeq (Illumina, San 
Diego, CA, USA) as previously described.13 For both 
bacterial species, comparison to all publicly available 
genomes failed to identify any closely related reference 
genome (>1000 single nucleotide polymorphisms [SNPs]); 
hence for each species, one study isolate was designated as 
the reference and de novo assemblies were constructed 
using SPAdes, version 3.13.0, with kmer sizes 21, 33, 55, 
77, 99, and 127.14 Sequencing reads from the remaining 
genomes were mapped onto the reference genome for 
each species using BWA, version 0.7.17, and SNPs in the 
core genome were inferred as previously described.15 
Briefly, variable sites (SNPs or indels) were called based on 
at least five reads mapping to the site and at least 
75% agreement among reads. SAMtools, version 1.10, 
generated a consensus sequence, from which SNP alleles 
were extracted from core genome sites using the SNP sites 
program.16 A maximum likelihood phylogeny was recon
structed from core genome SNPs for each species using 
RAxML, version 8.28,17 based on the general time reversible 
model and 100 bootstrap replications. Core genome 
pairwise distances were computed using Molecular 
Evolutionary Genetics Analysis, version 7.18 Phylogenetic 
trees were visualised and annotated using the interactive 
tree of life software, version 5.19 We used the Bayesian 
inference method, BactDating,20 to determine the ancestral 
dates on the B cepacia phylogenetic tree. The resulting 
time-dated phylogeny was used to reconstruct the 
transmission and within host evolution that led to the 
outbreak with the TransPhylo package, version 1.2.21

For both B cepacia and K pneumoniae genomes, ARIBA, 
version 2.12.1,22 was used to scan genomic read sets for 
resistance genes present in the ResFinder database,23 
plasmids present in the PlasmidFinder database,24 and 
virulence genes in the virulence finder database.25 
Additionally, for the K pneumoniae genomes, Kleborate 
was used to screen assemblies to confirm species desig
nation, multilocus sequence types, genotype virulence 
factors (yersiniabactin, colibactin, and other siderophore 
loci) and antibiotic resistance genes.26–28 Resistance 
genotypes from both tools were reported and multidrug 
resistance was defined as predicted resistance to at least 
three antibacterial classes (excluding penicillin).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 

See Online for appendix
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Figure 1: Timing of reported Burkholderia cepacia and of MDR ESBL Klebsiella pneumoniae outbreak cases
The outbreaks occurred at the Edward Francis Small Teaching Hospital (Banjul, The Gambia) neonatal ward; infection prevention and control procedures undertaken 
between March and December, 2016, are shown with subsequent environmental surveillance and control measures instituted in response to the identified B cepacia 
and K pneumoniae cases. MDR ESBL=multidrug-resistant extended spectrum β-lactamase.

Pre-outbreak infection prevention and control procedures 
Cleaning of cots and incubators on admission and after the discharge or death of a 
newborn; fumigation of the ward every 3–6 months (during which the newborns 
are moved to another room); handwashing; and disinfection and reuse of oxygen 
prongs

Antibiotic treatment shortened to 72 h 
in babies classified as high risk of sepsisThree cases of B cepacia infection reported

Intravenous cannula to be replaced 
after 5 days of continuous use or 
when signs of phlebitis evident

Daily disinfection of incubators and 
cribs by nurses and nurse attendants 
initiated

B cepacia outbreak suspected and investigation team set-up

Access to neonatal ward during rounds restricted to mothers of critically ill newborns

K pneumoniae outbreak suspected
Environmental surveillance intensified

Mothers instructed not to use a sponge when bathing their infant; instituted the 
use of two wash cloths for each newborn: one for the face and the other for the 
trunk and limbs

Instituted storage of all 
drugs and intravenous 
fluids (used and unused) 
in the ward refrigerator

Moved drug 
trolley away 
from ward 
sink

One case of B cepacia infection reported

One case of B cepacia infection reported

14 cases of B cepacia infection reported

Eight cases of B cepacia infection reported

Implementation of 
handwashing according to 
WHO guidelines; introduced 
use of hand towels 

Introduced health education talks to 
mothers emphasising on infection control

Monthly environmental surveillance commenced

Control of visitors to the 
newborn ward improved 

Discontinued use of 
single syringe to mix 
intravenous fluids 

Discontinued dilution of gentamicin with 
intravenous fluids; water for injection to be used 
for reconstituting antibiotics and dilution of 
injections where needed; 1 mL syringes to be used 
for small newborns 

22 cases of B cepacia infection reported

Continued monthly environmental surveillance

One case of MDR ESBL K pneumoniae 
reported

21 cases of MDR ESBL K pneumoniae 
reported

No case of B cepacia infection reported

Six environmental isolates of B cepacia 
reported

Cots and incubators to be changed 
after 5 days of admission

23 cases of MDR ESBL K pneumoniae 
reported

Three environmental isolates of
K pneumoniae reported

March, 2016

April, 2016

May, 2016

June, 2016

July, 2016

August, 2016

September, 2016

October, 2016

November, 2016

December, 2016
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the Article. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results
Between March 1, and Dec 31, 2016, 321 blood cultures 
were done on the EFSTH neonatal ward, of which 
178 (55%) were positive with a clinically significant isolate 
(appendix p 6). 49 episodes of B cepacia bacteraemia from 
47 newborns were reported in the neonatal ward between 
March 8 and Aug 29 (figure 1). The index B cepacia case, 
patient B1, was referred from a private clinic to the critical 
care ward of the neonatal unit in March (appendix p 7). 
This isolate (B1) was sensitive to recommended anti
biotics. Patient B2 was admitted a day after patient B1, 
and patient B3 was admitted the day after patient B2; both 
patients B2 and B3 were referred from the same 
government hospital to the critical care ward, but both 
died after 24 h of admission. All three isolates (B1, B2, 
and B3) had the same antibiogram. An outbreak was not 
suspected at this time, but basic infection control was 
initiated and prolonged antibiotic use curbed (figure 1). 
With the identification of a fourth case (patient B4) in 
April, enhanced cleaning of cots and incubators was 
introduced. Between May 16 and July 27, 2016, 23 episodes 
of B cepacia bacteraemia (patients B5–B27) were reported 
in the critical care ward, each with similar antibiogram to 
previous isolates. Further infection control measures 

were introduced as a result. When 22 more cases (patients 
B28–B49) were identified in the critical care ward in 
August (isolates B32, B34, and B47 corresponding to 
patients 32, 34, and 47, were later identified as three 
separate episodes of infection in the same neonate), an 
outbreak was suspected and environmental samples were 
collected to rule out a reservoir (appendix p 8). Samples 
from randomly selected sponges used on the ward by 
mothers to bath their newborns, each grew multiple 
pathogens, including K pneumoniae, but not B cepacia 
(appendix p 9). B cepacia (isolates B50–B55) with identical 
antibiogram-to-clinical isolates were found in intravenous 

Figure 2: A time-dated phylogeny of all Burkholderia cepacia isolates annotated with patient age, sex, and a timeline of when isolates were collected
Isolate generic identifications are shown and coloured by source: patient, environmental, historical, or reference genome. Where applicable, sex is shown, and age is 
given as a categorical variable of early onset (0–7 days) and late onset (8–27 days). SNP=single nucleotide polymorphism.

Sample source
Patient
Environmental
Reference genome
Historical patient

Sex
Male
Female
Unknown

Age (days)
Early (0–7)
Late (8–24)
Unknown

Collection week
Isolate collected (2015)
Isolate collected (2016)
No isolates

B18

B31

B46

REF
B35

B55

B17

B44

B39

B54

B4

B27
B28

B51

B42

B26

B25

B41

B15

B47

B11

B5

B59

B45

B30

B53

B9

B7

B8

B6

B16

B37

B19

B3

B38

B29

B58

B50

B21

B40

B1

B48

B23

B2

B61

B52

B24

B57

B33

B12
B10

B56

B34

B20

B14

Sex
Age

2015

Week 11

Week 14

Week 17

Week 20

Week 23

Week 26

Week 29

Week 32

Week 35

Week 38

Tree scale:
1 SNP

Clade IV

Clade I

Clade II

Clade III

Mean pairwise SNP 
distance

Pairs

Burkholderia

2016 only 2·18 (2·08–2·29) 1225

2015 only 7·33 (3·10–11·57) 6

2015 vs 2016 13·55 (13·27–13·82) 200

Klebsiella

ST1535 (Klebsiella 
quasipneumoniae subspecies 
similipneumoniae)

0·82 (0·70–0·93) 528

ST39 (Klebsiella pneumoniae) 0·48 (0·24–0·71) 21

Data are n (95% CI) or n. SNP=single nucleotide polymorphism.

Table 1: Summary of the genetic distances between isolates in the 
clusters computed as mean pairwise SNP distance
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fluid supplements and antibiotics (appendix p 10). On the 
neonatal ward, intravenous infusion mixtures were 
prescribed by doctors, mixed and administered by nurses 
in the ward areas, from a narrow selection of intravenous 
fluids and single-dose vials of parenteral electrolyte 
supplements. Multiple vials of antibiotics were simul
taneously reconstituted or diluted with fluid drawn from 
a single bottle of intravenous fluid before being admin
istered to the newborns; residual volumes of these 
reconstituted or diluted antibiotics were then pooled and 
reused. Procedural lapses observed included repeated 
insertion of a single syringe into an infusion bottle, 
storage of in-use injections and intravenous fluids on an 
open medicine trolley next to the sink, and poor hand 
hygiene. Of the 36 newborns with outcome data, 18 (50%) 
died on admission (appendix p 7). No further cases were 
detected between September and December.

We sequenced the B cepacia patient isolates B1–B49, as 
well as six environmental B cepacia isolates (B50–B55). We 
sequenced clinical isolates from six patients not thought to 
be associated with the outbreak: five historical isolates 
(B56–B60) from five newborns in the neonatal ward 
between May and August, 2015, and one isolate (B61) from 
a boy aged 4 years admitted to the general paediatric ward 
during the neonatal unit outbreak. Sequence reads from 
four patient isolates (B13, B22, B32, and B49), and one 
historical isolate (B60) were unavailable because of failed 
DNA extraction or sequencing library preparation. The 
historical isolates from 2015 formed a monophyletic clade, 
and the outbreak isolates from 2016 formed four 
subclades (I–IV) with short branches (figure 2). The initial 
three outbreak isolates from week 11 (B1, B2, and B3) 
clustered on separate branches on the phylogenetic tree. 
Subsequent isolates B4, B6, and B61 were closer to B1 than 
isolates B2 and B3. Isolate B5, an early isolate from 
week 21, was also placed on a separate subclade (IV), which 
encompassed three environmental isolates (B50, B51, and 
B55). Other environmental isolates were placed on 
subclades I (B53) and II (B52 and B54). Two isolates from 
a neonate (patient 32) with recurrent positive cultures were 
placed on subclades iv (B34) and II (B47). The average 
genetic distance between the outbreak isolates from 2016 
of 2·18 SNPs (95% CI 2·08–2·29, range 0–9) was 

Figure 3: Evolutionary timelines of outbreak Burkholderia cepacia isolates and 
the putative transmission routes that contributed to the evolution of the 
outbreak B cepacia strain
(A) Time-dated phylogenetic tree with internal nodes annotated. Bars indicate 
the 95% highest posterior density intervals. (B) A root-to-tip analysis to estimate 
the time since the most recent common ancestor. The blue nodes indicate 
isolates from 2015, and the red nodes are isolates from 2016. (C) The time-dated 
phylogenetic tree annotated with transmission routes inferred using TransPhylo, 
shows the final iteration of 1000 Markov chain Monte Carlo iterations assuming 
a gamma distribution of generation times: branches are coloured to represent 
hosts (both sampled and inferred unsampled hosts). Changes in branch colour 
correspond to changes in host (ie, inferred transmission), and are marked with an 
asterisk. The timescale on the x-axis indicates the estimated timescale for the 
evolution of the strains. MRCA=most common recent ancestor.
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significantly lower (p<0·0001) than the average genetic 
distance between isolates recovered in 2015 (7·33 SNPs, 
3·10–11·57, 0–12; table 1). On average, the 2016 isolates 
differed from the 2015 isolates by 13·55 SNPs (13·27–13·82, 
10–20). The historical isolates from 2015 provided a 
timescale to attempt a phylogenetic dating of this dataset 
using a Bayesian approach. A time-dated phylogeny was 
generated and a root-to-tip analysis was done to estimate 
the time since the most recent common ancestor. The 
dating suggests that the 2015 and 2016 isolates might have 
diverged from a common recent ancestor as early as 2009 
(95% highest posterior density interval 2001–2013) and 
evolved separate lineages over time (figure 3). The dating 
suggests that each of the four subclades (I–IV) had a com
mon recent ancestor around 2015 (figure 3). B cepacia was 
probably an endemic contaminant in the neonatal ward, 
and there might have been at least four separate 
introductions in the ward and the hospital at large, which 
eventually gave rise to outbreaks. However, a single 
introduction of reservoir with a diverse inoculum cannot 
be ruled out. The time-dated phylogeny was used with 
Markov chain Monte Carlo methods to inform the potential 

transmission patterns that shaped the outbreak. This 
analysis gave insights into the potential timescales for the 
evolution of the outbreak strains and highlighted the 
potential contribution of unsampled hosts in the trans
mission chain (figure 3).

The index K pneumoniae case (K1) was a neonate aged 
6 days admitted in October, 2016 (appendix p 11). The 
isolate from this index case (K1) was ESBL producing 
and resistant to gentamicin, ciprofloxacin, ceftazidime, 
cefuroxime, and cefepime, but sensitive to meropenem 
and imipenem. Within 11 days of the index case, three 
other newborns (patients K2, K3, and K4) acquired 
K pneumoniae with the same antibiogram as patient K1, 
prompting fears of an outbreak. 41 additional patients 
(K5–K45) were identified between Nov 8, and the end of 
December. Although infection prevention and control 
measures introduced earlier were still in place, environ
mental sampling detected three K pneumoniae isolates 
(K46, K47, and K48) from samples of intravenous fluids 
in use on the neonatal ward, all with the same 
antibiogram as those from the cases. No further cases 
were detected in January 2017.

Figure 4: The phylogeny of the Klebsiella quasipneumoniae subspecies similipneumoniae (A) and Klebsiella pneumoniae (B) outbreak isolates annotated with 
patient age, sex, a timeline of when isolates were collected, and antibiotic resistance patterns
Isolate generic identifications are shown and coloured by source: patient, environmental, or reference genome. Where applicable, sex is shown, and age is given as a 
categorical variable of early onset (0–7 days) or late onset (8–27 days). The presence of resistance genes conferring resistance to common classes of antibiotics are 
given alongside the phenotypic antibiotic resistance patterns. SNP=single nucleotide polymorphism. *Cephalosporins and carbapenems (excluding imipenem and 
meropenem). †Imipenem and meropenem only.
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The genomic analysis of the K pneumoniae outbreak 
included isolates from 39 patients and one environ
mental sample (K46). The genome data identified 
contemporaneous Klebsiella outbreaks due to two related 
but distinct species—sequence type 1535 (ST1535) 
Klebsiella quasipneumoniae subspecies similipneumoniae 
(n=33, capsule locus type KL114) and ST39 K pneumoniae 
(n=7, capsule locus type KL23). Each genotype consisted 
of closely related variants of the same strain: ST1535 
isolates differed from one another by mean 0·82 core 
genome SNPs (95% CI 0·70–0·93, range 0–5) and the 
ST39 isolates differed from one another by mean 
0·48 SNPs (0·24–0·71, 0–1; table 1; figure 4). The low 
sequence diversity suggests each of these clusters has a 
very recent common ancestor, consistent with the short 
timeframe; however, precise dating was not possible 
because of the low diversity.

Among the Klebsiella isolates, we observed appreciable 
concordance between the multidrug phenotypic resis
tance pattern and the genotypic resistance, except for 
chloramphenicol, to which strains were classed as 
susceptible despite the presence of the catB4 resistance 
allele. Both STs harboured multiple bla genes conferring 
resistance to β-lactams, including that encoding for the 
ESBL CTX-M-15, which was conserved in all strains 
(table 2). The combination of virulence genes differed 
between the two strain clusters. The acquired siderophore 
yersiniabactin (allele ybt 15, ICEKp11) was present in 
ST1535 strains, but absent in ST39. The colibactin 
genotoxin and other acquired siderophores were absent 
from both outbreak strains.

Discussion
We report sequential hospital-acquired outbreaks of 
B cepacia and multidrug-resistant, ESBL-producing 
Klebsiella bacteraemia in The Gambia’s only newborn unit 
over a 10-month period. WGS and a time-dated phylogeny 

suggest that B cepacia has been endemic in the neonatal 
ward, potentially for several years. Similar sustained 
endemicity has been described in other countries,29 
and might be linked to the low mutation rate of 
Burkholderia spp.30 Genomic analysis also revealed existence 
of two contemporaneous outbreaks due to K pneumoniae 
(ST39) and a related species, K quasipneumoniae subsp 
similipneumoniae (ST1535). The highly conserved nature of 
both species suggests a more recent introduction into the 
hospital environment than B cepacia. K quasipneumoniae is 
often misidentified as K pneumoniae by routine clinical 
microbiological diagnostics and the two species are difficult 
to distinguish without genome data.31 An outbreak of 
New Delhi metallo-β-lactamase (NDM-5) containing 
K quasipneumoniae subsp similipneumoniae neonatal bac
teremia with different ST (ST476) was reported in Nigeria 
in 2019.11 Both ST1535 and ST39 were resistant to β-lactam 
antibiotics, excluding carbapenems, because of ESBL 
expression, and resistant to other important classes of 
antibiotics such as aminoglycosides and fluroquinolones. 
Unlike the Nigerian NDM-5 variant, which showed 
elevated carbapenem resistance, K quasipneumoniae subsp 
similipneumoniae isolates identified during our outbreak 
were sensitive to carbapenems. To the best of our 
knowledge, this is the second report of the virulence factor 
yersiniabactin (ICEKp) in K quasipneumoniae subsp 
similipneumoniae (a single ST477 KL15 carrying ICEKp2 
was reported in Singapore in 201932). Our limited clinical 
outcome data demonstrate high case fatalities among 
newborns in both outbreaks. The high fatality of infants 
infected with B cepacia despite treatment and susceptible 
antibiograms supports existing evidence that there is poor 
agreement between in vitro testing for B cepacia antibiotic 
susceptibility patterns and in-vivo response.

The observation that most patients received 
intravenous fluids and bacteria with identical or nearly 
identical genotypes were isolated from in-use parenteral 
preparations implicate contamination of intravenous 
fluids. Unopened fluids and antibiotic solutions were 
determined to be sterile, suggesting the contamination 
occurred extrinsically because of procedural lapses. 
Similar extrinsic contamination of intravenous fluids 
has been described in other sub-Saharan African 
countries.33 Intrinsic contamination of medicinal 
products during manufacture can also lead to outbreaks.34 
Although intravenous fluids and antibiotics form part of 
the standard care provided to most newborns admitted 
in our unit, and are an epidemiological link between 
most of the outbreak cases, other routes of acquisition 
could not be ruled out. The K pneumoniae outbreak 
coincided with the peak admission period (September to 
December) in the neonatal ward, during which cot 
occupancy increases 100-fold.12 High rates of neonatal 
gastrointestinal colonisation with ESBL-producing 
K pneumoniae and high stool bacterial loads provide a 
reservoir for spread from baby to baby via the hands of 
mothers and staff,35 and some of the cases might have 

ST39 ST1535

Aminoglycosides Resistant: aac(3”)II, aac(6’)Ib, aadA, 
aph(3’’)Ia, aph(3’’)Ib, aph(6)-Id, strA, strB

Resistant: aac(3’)IIa, aac(6’)Ib, 
aph(3’’)Ia, aph(6)-Id, strA, strB

β-lactam (excluding 
carbapenems)

Resistant: blaCTX-M-15, blaOXA-5, blaTEM-30, 
blaAMPH, blaSHV-187, bla7

Resistant: blaCTX-M15, blaOXA-5, blaTEM-30, 
blaAMPH, blaOKP-B-5

Trimethoprim Resistant: dfrA14, dfrA12 Resistant: dfrA14

Tetracycline Resistant: tetD Resistant: tetA

Quinolones or 
fluoroquinolones

Resistant: qnrB Resistant: qnrB

Fosfomycin Sensitive Sensitive

Sulfonamide Resistant: sul1, sul2 Resistant: sul2

Macrolide Resistant: mphA Sensitive

Chloramphenicol Resistant: catb4 Resistant: catb4

Yersiniabactin lineage ·· ybt 15; ICEKp11

*The known resistance genotypes shown were present in at least 90% of isolates belonging to each respective genotype.

Table 2: Summary of the predicted genotypic resistance patterns and yersiniabactin alleles in the outbreak 
Klebsiella pneumoniae and Klebsiella quasipneumoniae subspecies similipneumoniae sequence types
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occurred because of cross-contamination from intesti
nally colonised babies.

Outbreaks of B cepacia are strongly associated with 
contaminated hospital tap water, when B cepacia is 
dislodged from the biofilm of distribution lines and tank 
surfaces and released into the water supply on increased 
water demand,36 whereas K pneumoniae outbreaks have 
been associated with severe water shortages.37 Despite 
having sinks in the neonatal ward, there was no running 
water when both outbreaks occurred—water collected 
from the central hospital tank was drawn from a single 
bucket and used for handwashing and bathing of 
patients. Given the proximity of the medicine trolley to 
the ward sink and poor hand hygiene, we hypothesise 
that the hospital water might have been the source of 
infection, although none of the water samples were 
positive for any of the outbreak organisms because of the 
common difficulties in pathogen recovery resulting from 
inadequate sampling or variations in pathogen load 
within the water system.38 Interestingly, during 
investigation of the B cepacia outbreak, we isolated 
K pneumoniae from a random selection of sponges used 
to bath babies (appendix p 9), but these isolates were not 
stored and therefore could not be sequenced for 
comparison with later outbreak isolates. It is thus 
possible that both pathogens were introduced through 
different sources and were able to proliferate and spread 
because of neonatal vulnerability and lapses in infection 
control.

Although the outbreaks reported in this study were 
eventually brought under control by a review and change 
in hand hygiene and infection prevention and control 
measures on the neonatal ward, they drew attention to 
three important issues. First was the multiple use of 
singe-dose antibiotics and insufficiency of commercially 
manufactured volume-appropriate premixed intravenous 
fluids for neonatal use in countries of low and middle 
income. The small volumes of dextrose and electrolyte 
solutions necessitate mixing and handling of these fluids 
from several multidose vials during preparation, thereby 
increasing the probability of extrinsic contamination. 
Second was the absence of policies, standards, and 
protocols to support decision-making or the prevention 
and control of infection. Studies in Zambia39 and in 
Senegal40 have demonstrated that a low-technology, 
hospital-acquired infection control bundle can be 
implemented in a hospital neonatal unit with limited 
resources. In addition to educating staff and mothers on 
hand hygiene, assignment of cleaning responsibilities 
and antibiotic stewardship, bundles should include 
proper standards for handling parenteral fluids, including 
written procedures for admixture of intravenous fluids, a 
central pharmacy area for manipulation of fluids and 
drugs, and laminar flow hoods for management of 
parenteral fluids.41,42 Last was the need to improve the 
quality of infection prevention and control procedures, 
particularly environmental cleaning. The potential for 

contaminated environmental surfaces to facilitate 
nosocomial infection depends on several factors, 
including frequency with which organisms contaminate 
environmental surfaces, ability of pathogens to remain 
viable on surfaces, location of pathogen reservoirs, hand-
touch frequency of surfaces, adequate level of contami_
nation required to pose a transmission risk, and pathogen 
infectivity index.43 We assumed that imple_mentation of 
hand washing, fumigation, disinfection, and cleaning 
would lead to a sudden halt in the occurrence of both 
outbreaks, but this was not the case. Unlike Klebsiella spp, 
which can survive for months on dry surfaces, B cepacia 
does not survive on dry surfaces for more than 1 week, 
but can survive for many months in water or respiratory 
droplets on environmental surfaces.44 Visual assessment 
is insufficient for defining cleanliness; equally important 
are the cleaning agent, frequency of cleaning, methods, 
equipment, monitoring, and implementation of stan
dards for surface cleanliness.45

Our study has some limitations. Many newborns were 
referred for hospitalisation who did not have blood 
cultures done, and we might have missed some episodes 
of bacteraemia. Our inference might have been limited 
by the fact that we only picked and sequenced single 
colonies, which precludes our ability to account for 
within-host diversity and multistrain infection. Although 
the outbreak investigation identified the likely transmis
sion route of the reported hospital-acquired infections, 
the original sources remain unclear. This absence of the 
original source is important, given that the Burkholderia 
outbreak apparently ended before the outbreak investi
gation occurred, and the Klebsiella outbreak occurred 
despite the infection control measures. Nevertheless, 
this is the first reported use of WGS to support an 
infection-control investigation in sub-Saharan Africa. 
Using WGS to the infection-control investigation allowed 
us to classify the B cepacia and Klebsiella infections as 
nosocomial outbreaks and not community-acquired 
infections, and enabled more precise identification of 
bacterial species and transmission pathways than with 
standard microbiological techniques. In the future, the 
required sequencing technologies might become more 
rapidly available also in low-income and middle-income 
countries, with the aim to rapidly identify transmission 
dynamics and inform control efforts. Our study has 
important implications for preventing newborn deaths 
from hospital-acquired infections in countries of low and 
middle income, where even the supportive treatments 
administered might be leading to infection transmission.
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