Outcome of Coronavirus spectrum infections (SARS, MERS, COVID 1 -19) during pregnancy: a systematic review and meta-analysis

Daniele Di Mascio, Asma Khalil, Gabriele Saccone, Giuseppe Rizzo, Danilo Buca, Marco Liberati, Jacopo Vecchiet, Luigi Nappi, Giovanni Scambia, Vincenzo Berghella, Francesco D'Antonio

PII: S2589-9333(20)30037-9

DOI: https://doi.org/10.1016/j.ajogmf.2020.100107

Reference: AJOGMF 100107

To appear in: American Journal of Obstetrics & Gynecology MFM

Please cite this article as: Di Mascio D, Khalil A, Saccone G, Rizzo G, Buca D, Liberati M, Vecchiet J, Nappi L, Scambia G, Berghella V, D'Antonio F, Outcome of Coronavirus spectrum infections (SARS, MERS, COVID 1 -19) during pregnancy: a systematic review and meta-analysis, *American Journal of Obstetrics & Gynecology MFM* (2020), doi: https://doi.org/10.1016/j.ajogmf.2020.100107.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Inc. All rights reserved.

Title Page with Author Information

Outcome of Coronavirus spectrum infections (SARS, MERS, COVID 1 -19) during pregnancy:

- 2 a systematic review and meta-analysis
- 3 Daniele Di Mascio, 1 Asma Khalil, 2-3 Gabriele Saccone, 4 Giuseppe Rizzo, 5-6 Danilo Buca, 7 Marco Liberati, 7
- 4 Jacopo Vecchiet,8 Luigi Nappi,9 Giovanni Scambia,10 Vincenzo Berghella,11 Francesco D'Antonio9 5
- 6 1: Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Italy
- 7 2: Fetal Medicine Unit, Saint George's Hospital, London, United Kingdom
- 8 3: Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's
- 9 University of London, United Kingdom
- 10 4: Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of
- 11 Naples Federico II, Naples, Italy
- 12 5: Division of Maternal and Fetal Medicine, Ospedale Cristo Re, University of Rome Tor Vergata, Rome, Italy
- 13 6: Department of Obstetrics and Gynecology The First I.M. Sechenov Moscow State Medical University
- 14 Moscow Russia
- 15 7: Centre for High Risk Pregnancy and Fetal Care, Department of Obstetrics and Gynecology, University of
- 16 Chieti, Italy
- 17 8: Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University 'G. d'Annunzio'
- 18 Chieti-Pescara, Chieti, Italy
- 19 9: Department of Obstetrics and Gynecology, Department of Medical and Surgical Sciences, University of
- 20 Foggia, Italy
- 21 10: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Fondazione Policlinico
- 22 A. Gemelli, Rome, Italy
- 23 11: Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical
- 24 College of Thomas Jefferson University, Philadelphia, USA

1	Outcome of Coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy:
2	a systematic review and meta-analysis
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18 19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

29	Disclosure : The authors report no conflict of interest
30	
31	Financial Support: No financial support was received for this study
32	
33	Condensation: Pregnancy in the setting of COVID-19 disease secondary to SARS-COV-2
34	infection is associated with higher rates of miscarriage, preterm birth, preeclampsia, cesarean and
35	perinatal death. There were no reported cases of vertical transmission.
36	
37	Short title: Coronavirus infections in pregnancy
38	
39	

40	AJOG AT A GLANCE
41	
42	A. Why was this study published?
43	COVID-19 disease secondary to SARS-COV-2 infection is a worldwide pandemic with an
44	increasing number of confirmed cases everyday. Little is known about the effect of CoV
45	(coronavirus)-related infections during pregnancy.
46	B. What are the key findings?
47	C. Pregnancy in the setting of CoV infection is associated with higher rates of miscarriage,
48	preterm birth, preeclampsia, cesarean delivery and perinatal death (7-11%). There were no
49	reported cases of vertical transmission.
50	D. What does this study add to what is already known?
51	This is the first systematic review exploring pregnancy and perinatal outcomes of CoV
52	infections occurring during pregnancy. Although limited, these data can guide and enhance
53	prenatal counselling of women with COVID-19 infection occurring during pregnancy.
54	Evidence is accumulating rapidly, so these data may need to be updated soon.
55	

- 58 ABSTRACT
- 59 **Objective:** The aim of this systematic review was to report pregnancy and perinatal outcomes of
- 60 Coronavirus (CoV) spectrum infections, and particularly COVID-19 disease due to SARS-COV-2
- 61 infection during pregnancy.
- 62 Data sources: Medline, Embase, Cinahl and Clinicaltrials.gov databases were searched
- electronically utilizing combinations of word variants for "coronavirus" or "severe acute respiratory
- 64 syndrome" or "SARS" or "Middle East respiratory syndrome" or "MERS" or "COVID-19" and
- 65 "pregnancy". The search and selection criteria were restricted to English language.
- 66 **Study eligibility criteria:** Inclusion criteria were pregnant women with a confirmed Coronavirus
- 67 related illness, defined as either SARS, MERS or COVID-19.
- 68 Study appraisal and synthesis methods: We used meta-analyses of proportions to combine data
- and reported pooled proportions. The pregnancy outcomes observed included miscarriage, preterm
- birth, pre-eclampsia, preterm prelabor rupture of membranes, fetal growth restriction, and mode of
- 71 delivery. The perinatal outcomes observed were fetal distress, Appar score < 7 at five minutes,
- 72 neonatal asphyxia, admission to neonatal intensive care unit, perinatal death, and evidence of
- vertical transmission.
- Results: 19 studies including 79 women were eligible for this systematic review: 41 pregnancies
- 75 (51.9%) affected by COVID-19, 12 (15.2%) by MERS, and 26 (32.9%) by SARS. An overt
- diagnosis of pneumonia was made in 91.8% and the most common symptoms were fever (82.6%),
- cough (57.1%) and dyspnea (27.0%). For all CoV infections, the rate of miscarriage was 39.1%
- 78 (95% CI 20.2-59.8); the rate of preterm birth < 37 weeks was 24.3% (95% CI 12.5-38.6); premature
- prelabor rupture of membranes occurred in 20.7% (95% CI 9.5-34.9), preeclampsia in 16.2% (95%
- 80 CI 4.2-34.1), and fetal growth restriction in 11.7% (95% CI 3.2-24.4); 84% were delivered by
- 81 cesarean; the rate of perinatal death was 11.1% (95% CI 84.8-19.6) and 57.2% (95% CI 3.6-99.8) of
- 82 newborns were admitted to the neonatal intensive care unit. When focusing on COVID-19, the most
- common adverse pregnancy outcome was preterm birth < 37 weeks, occurring in 41.1% (95% CI

84	25.6-57.6) of cases, while the rate of perinatal death was 7.0% (95% CI 1.4-16.3). None of the 41
85	newborns assessed showed clinical signs of vertical transmission.
86	Conclusion: In mothers infected with coronavirus infections, including COVID-19, >90% of whom
87	also had pneumonia, PTB is the most common adverse pregnancy outcome. Miscarriage,
88	preeclampsia, cesarean, and perinatal death (7-11%) were also more common than in the general
89	population. There have been no published cases of clinical evidence of vertical transmission.
90	Evidence is accumulating rapidly, so these data may need to be updated soon. The findings from
91	this study can guide and enhance prenatal counseling of women with COVID-19 infection
92	occurring during pregnancy.
93	
94	Keywords: Coronavirus; SARS; MERS; COVID-19; SARS-COV-2; infection; pregnancy
95	
96	
97	

98	INTRODUCTION
99	Coronavirus (CoV) is an enveloped, positive-stranded ribonucleic acid (RNA) virus of the family of
100	Coronaviridae and belonging to the Nidovirales order, generally causing respiratory and
101	gastrointestinal infections that might range from mild, self-limiting conditions to more serious
102	disorders, such as viral pneumonia with systemic impairment. ²
103	In the last two decades, CoV has been responsible for two large epidemics: the Severe Acute
104	Respiratory Syndrome (SARS) that infected 8098 people with a case-fatality rate of about 10.5%, ³
105	and the Middle East Respiratory Syndrome (MERS) with a total of 2519 laboratory-confirmed
106	cases and a case–fatality rate of 34.4%. ⁴
107	Towards the end of 2019, a novel mutation of CoV (labelled as SARS-COV-2) was identified as the
108	cause of a severe respiratory illness - called COVID-19 - that typically presents with fever and
109	cough. ⁵ Infected people show abnormal findings at diagnostic imaging, suggestive for pneumonia.
110	After beginning as an epidemic in China, COVID-19 infection has rapidly spread in many other
111	countries and the number of affected cases continues to increase significantly on a daily basis. The
112	overall mortality rate ranges from 3% to 4% according to the World Health Organization reports, ⁶
113	but a higher rate of patients require admission to the intensive care unit (ICU). ⁷
114	It is well known that physiologic maternal adaptations to pregnancy predispose pregnant women to
115	a more severe course of pneumonia, with subsequent higher maternal and fetal morbidity and
116	mortality, 1,8 but there is a lack of data in the literature about the effect of CoV infections during
117	pregnancy, thus limiting both counseling and management of these patients.
118	Objective
119	The aim of this systematic review was to report pregnancy and perinatal outcomes of CoV spectrum

infections and particularly COVID-19 during pregnancy.

121

120

123 **METHODS**

- 124 Search strategy and selection criteria
- 125 This review was performed according to a priori designed protocol recommended for systematic
- 126 reviews and meta-analysis. 9-11 Medline, Embase, Cinahl and Clinicaltrials.gov databases were
- searched electronically on 03/13/2020, utilizing combinations of the relevant medical subject
- heading (MeSH) terms, key words, and word variants for "coronavirus" or "severe acute respiratory
- syndrome" or "SARS" or "Middle East respiratory syndrome" or "MERS" or "COVID-19" and
- 130 "pregnancy". The search and selection criteria were restricted to English language. Reference lists
- of relevant articles and reviews were hand searched for additional reports. PRISMA and MOOSE
- guidelines were followed. 12-14
- 133 Inclusion criteria were pregnant women with a confirmed Coronavirus spectrum illness, defined as
- either SARS, MERS or COVID-19 infection.
- 135 The pregnancy outcomes observed were:
- Preterm birth (PTB) (either before 37 or 34 weeks of gestation)
- Pre-eclampsia (PE)
- Preterm prelabor rupture of membranes (pPROM)
- Fetal growth restriction (FGR)
- Miscarriage, as defined by authors
- Cesarean mode of delivery
- 142 The perinatal outcomes observed were:
- Fetal distress (as defined by original authors)
- Apgar score < 7 at five minutes
- Neonatal asphyxia (as defined by original authors)
- Admission to neonatal intensive care unit (NICU)
- Perinatal death, including both stillbirth and neonatal death

•	Evidence of vertical	transmission,	defined	as the	presence	of clinical	signs	of	mother-to-
	child transmission in	the antenatal c	or perinata	al perio	od				

Furthermore, we aimed to perform a sub-group analysis according to the trimester of pregnancy at infection and the type of Coronavirus.

Data from studies reporting the incidence of these outcomes in pregnancies with CoV spectrum infections were considered eligible for analysis. For the purpose of the analysis, we included only full-text articles with data of pregnant women who already delivered; we excluded data regarding on-going pregnancies. Furthermore, as these are relatively rare infections occurring during pregnancy with the majority of data coming from studies with small sample sizes, case reports and case series were also included in the analysis. Studies reporting cases of infective pneumonia or other respiratory disorders during pregnancy caused by other viral agents were excluded. We also excluded studies pediatric series on newborns and children from which maternal and pregnancy information could not be extrapolated.

Two authors (DDM, GS) reviewed all abstracts independently. Agreement regarding potential relevance or inconsistencies was reached by consensus or resolved by discussion with a third reviewer (FDA). Full text copies of applicable papers were obtained, and the same reviewers independently extracted relevant data regarding study characteristics and pregnancy outcome. If more than one study was published on the same cohort with identical endpoints, the report containing the most comprehensive information on the population was included to avoid overlapping populations.

Data analysis

- We used meta-analyses of proportions to combine data and reported pooled proportions (PP).
- Funnel plots (displaying the outcome rate from individual studies versus their precision (1 per SE))
- were carried out with an exploratory aim. Tests for funnel plot asymmetry were not used when the

174	total number of publications included for each outcome was <10. In this case, the power of the tests
175	is too low to distinguish chance from real asymmetry.
176	Between-study heterogeneity was explored using the I ² statistic, which represents the percentage of
177	between-study variation that is due to heterogeneity rather than chance. A value of 0% indicates no
178	observed heterogeneity, whereas I^2 values $\geq 50\%$ indicate a substantial level of heterogeneity. A
179	random effect model was used to compute the pooled data analyses. All proportion meta-analyses
180	were carried out by using StatsDirect version 2.7.9 (StatsDirect, Ltd, Altrincham, Cheshire, United
181	Kingdom).
182	Quality assessment of the included studies was assessed using the methodological quality and
183	synthesis of case series and case reports described by Murad et al. 15 According to this tool, each
184	study is judged on four broad perspectives: the selection of the study groups, the ascertainment and
185	the causality of the outcome observed, and the reporting of the case. A study can be awarded a
186	maximum of one star for each numbered item within the Selection and Reporting categories, two
187	stars for Ascertainment and four stars for Comparability. 15 Given emergency-need for this
188	guidance, PROSPERO registration was not sought.
189	
190	RESULTS
191	Study selection and characteristics
192	538 articles were identified, 27 were assessed with respect to their eligibility for inclusion and 19
193	studies were included in the systematic review (Table 1, Figure 1, Supplementary Table 1).
194	These 19 studies 16-34 included 79 pregnancies affected by CoV infections. The mean maternal age
195	was 34.6. Out of the 79 pregnancies affected by CoV infections: 41 (51.9%) were affected by
196	COVID-19, 12 (15.2%) by MERS and 26 (32.9%) by SARS.
197	Clinical symptoms and laboratory parameters in the overall population of pregnant with CoV
198	infections are reported in Table 2. An overt diagnosis of pneumonia was made in 91.8% (54/57) of
199	cases (when available, radiological findings suggestive for pneumonia are reported in

- 200 Supplementary Table 2). The most common symptom was fever that affected 82.6% (64/76) of women, followed by cough (57.1%, 44/77) and dyspnea (27%, 21/77). Lymphopenia and elevated 201 202 liver enzymes were found in 79.8% (40/48) and 36.6% (9/26) of cases, respectively. 34.1% (22/70) of pregnant women affected by CoV infections were admitted to ICU and 26.3% (16/69) required 203 204 mechanical ventilation. Maternal death occurred in 12.3% (9/79) of all reported CoV-related 205 diseases cases. Of note, the rates of admission to ICU (9.3% vs 44.6% vs 53.3%), need for mechanical ventilation (5.4% vs 40.9% vs 40%) and maternal death (0% vs 28.6% vs 25.8%) were 206 207 significantly lower in pregnancies affected by COVID-19, compared to MERS and SARS respectively (Supplementary Table 3). 208
- The majority of women affected by CoV infections were usually treated first with broad spectrum antibiotics in 89.3% of cases (49/52) and then with antiviral therapy and steroids in 67.7% (37/51)
- and 29.8% (12/31) of cases (Table 3; Supplementary Table 4).
- 212 The results of the quality assessment of the included studies are presented in Supplementary
- 213 Table 5.

214

215

225

Synthesis of the results

216 In the overall population of pregnancies infected with CoV, The rate of miscarriage for CoV 217 infections was 39.1% (8/21 – 95% CI 20.2-59.8). The rates of PTB < 37 and 34 weeks of gestation 218 were 24.3% (14/56 – 95% CI 12.5-38.6) and 21.8% (11/56 - 95% CI 12.5-32.9), respectively; pPROM occurred in 20.7% (6/34 – 95% CI 9.5-34.9), while the rate of pregnancies experiencing 219 220 PE and FGR was 16.2% (2/19 – 95% CI 4.2-34.1) and 11.7% (2/29 – 95% CI 3.2-24.4), respectively. The rate of CD was 83.9% (50/58 – 95% CI 73.8-91.9) (Table 4; Table 5). The rate of 221 222 perinatal death was 11.1% (5/60 – 95% CI 84.8-19.6) including three stillbirths and two neonatal 223 deaths (further details are provided in Supplementary Table 6). Thirty-four point six percent (15/44 - 95% CI 20.3-49.5) of fetuses suffered from fetal distress and 57.2% (3/12 - 95% CI 3.6-99.8) of 224

newborns was admitted to NICU. The rate of Apgar score < 7 at five minutes was 6.1% (1/48 -

- 226 95% CI 1.3-13.9), but no case of neonatal asphyxia were reported. Finally, none of the newborns
- showed signs of vertical transmission during the follow-up period (Table 6; Table 7).
- 228 *COVID-19*
- 229 Six studies 16-21 reported information on COVID-19 infection during pregnancy. There was no data
- on miscarriage for COVID-19 infection occurring during the first trimester. The rates of PTB < 37
- 231 and 34 weeks of gestation were 41.1% (14/32 95% CI 25.6-57.6) and 15% (4/32 95% CI 3.9-
- 232 31.7), respectively. pPROM occurred in 18.8% (5/31 95% CI 0.8-33.5), while the rate of
- pregnancies experiencing PE was 13.6% (1/12 95% CI 1.2-36.0), with no reported cases of FGR.
- 234 The rate of CD was 91% (38/41 95% CI 81.0-97.6) (Table 5). The rate of perinatal death was 7%
- 235 (2/41 95% CI 1.4-16.3) including one stillbirth and one neonatal death; 43% (12/30 95% CI
- 236 15.3-73.4) of fetuses had fetal distress and 8.7% (1/10 95% CI 0.01-31.4) of newborns were
- 237 admitted to NICU. The rate of Appar score < 7 at five minutes was 4.5% (1/41 95% CI 0.4-12.6)
- and no case of neonatal asphyxia was reported. Finally, none of the newborns showed signs of
- vertical transmission during the follow-up period (Table 7).

- 241 *MERS*
- Seven studies ²²⁻²⁸ reported information on MERS infection during pregnancy. There was no data on
- 243 miscarriage for MERS infection occurring during the first trimester. The rate of PTB was 32.1%
- 244 (3/11 95% CI 10.0-59.8), all occurring before 34 weeks of gestation. Preeclampsia occurred in
- 245 19.1% (1/7 95% CI 1.1-51.3) respectively, while no case of pPROM or FGR was reported in these
- studies. The rate of CD was 61.8% (5/8 95% CI 32.7-86.9) (Table 5). The rate of perinatal death
- was 33.2% (3/10 95% CI 11.2-59.9) including two stillbirths and one neonatal death (four hours
- 248 after birth of an extremely preterm infant). No case of fetal distress, Apgar score < 7 at five
- 249 minutes, neonatal asphyxia, and admission to NICU was reported. Finally, none of the newborns
- showed signs of vertical transmission during the follow-up period (Table 7).

252	SARS
253	Six studies ²⁹⁻³⁴ reported information on SARS infection during pregnancy. The rate of miscarriage
254	for MERS infection was 39.1% (8/21 - 95% CI 20.2-59.8). The rate of PTB < 37 and 34 weeks of
255	gestation was 15% (1/15 - 95% CI 0.3-45.6) and 28.9% (4/15 - 95% CI 10.7-51.6), respectively.
256	pPROM and FGR occurred in 50% (1/2 – 95% CI 0.5-95.3) and 18.5% (2/15 – 95% CI 4.4-39.5)
257	respectively, while no cases of preeclampsia were reported. The rate of CD was 72.2% (7/9 – 95%)
258	CI 44.1-93.1) (Table 5). Fetal distress occurred in 35.9% (3/9 – 95% CI 12.0-64.4) of pregnancies,
259	while no case of perinatal death, Apgar score < 7 at five minutes, and neonatal asphyxia was
260	reported. There were no data on rates of admission to the NICU of infants born to infected mothers.
261	Finally, none of the newborns showed signs of vertical transmission during the follow-up period
262	(Table 7).
263	
264	It was not possible to perform a comprehensive pooled data synthesis on the incidence of pregnancy
265	and perinatal outcomes according to the trimester of pregnancy at infection due to the very small
266	number of included studies for each trimester of pregnancy.
267	

COMMENT

Main findings

The findings from this systematic review show that more than 90% of hospitalized pregnant women affected by CoV infections present radiological signs suggestive for pneumonia, detected either at chest x-ray or computerized tomography and the most common symptoms are fever, cough and lymphopenia. Pregnancies affected by CoV infections have high rates of PTB before 37 and 34 weeks, and miscarriage when the infection is acquired earlier in pregnancy. Preeclampsia and cesarean delivery are also more common than in the general population. The rate of perinatal mortality is about 10%, while the most common adverse perinatal outcome is fetal distress, with more than half of the newborns admitted in NICU. Importantly, clinical evidence of vertical transmission was found in none of the newborns included.

Strengths and limitations

To the best of our knowledge, this is the first systematic review exploring pregnancy and perinatal outcomes of CoV infections occurring during pregnancy. This comprehensive meta-analysis included all series published so far on this topic. The small number of cases in some of the included studies, their retrospective non-randomized design, and the lack of standardized criteria for the antenatal surveillance, management and timing of delivery of pregnancies affected by CoV infections represent the major limitations of this systematic review, thus making it difficult to draw any convincing evidence on this clinical management strategies. Furthermore, there is a possibility that some patients were included in more than one report, although two authors independently reviewed all the included studies, carefully focusing on the different Institutions reporting outcomes. Moreover, when focusing on the outcomes of COVID-19 infection, and particularly perinatal outcomes, reported data are intuitively limited to a very short-term follow-up period and thus infectious that occurred proximate to the delivery. This has the potential to overestimate the magnitude of risks such as PTB and

underestimate more longitudinal risks such as FGR. Additionally, it was not possible to extrapolate data about the rate of both spontaneous and iatrogenic PTB and indications for CD, that was performed in the majority of cases; furthermore, few outcomes, i.e. "fetal distress", were not clearly defined, thus leading to some discrepancies in the results, like the rate of PTB < 34 weeks (15%) and the rate of newborns admitted to NICU (9%), particularly in COVID-19 infection. Another limitation of the present review was the lack of stratification of the analysis according to the gestational age at CoV infection due to the very small number of included studies for each trimester of pregnancy. We cannot assume that the rate of miscarriage and PTB should be attributed solely to the virus / infection, since there are no comparable control groups of uninfected women from the same time. It may be that the stress of the situation in the community contributed to some of these outcomes. Finally, we also included case reports and case series, thus facing a higher risk publication bias and decreasing the level of the evidence of our findings.

306

307

305

294

295

296

297

298

299

300

301

302

303

304

Implications

- COVID-19 is the last CoV infection identified at the end of 2019 in Wuhan, a city in the Hubei 309 Province of China.⁵ Currently, Europe has become the epicenter of the COVID-19 pandemic,⁶ but 310 the infection has spread in more than 150 countries, leading governments to adopt rigorous 311 mitigation measures to reduce both the viral spread and its detrimental effects on healthcare systems 312 and therefore on the whole economy of the countries.³⁵
- Despite the relatively low mortality, one of the main concerns related to COVID-19 infection is the development of an acute respiratory distress syndrome, often requiring invasive ventilation, that is the clinical epiphenomenon of the viral pneumonia.⁶⁻⁷
- The lack of knowledge about COVID-19 infection has raised urgent questions among physicians regarding clinical management and expected outcomes of the affected patients, and therefore, there is currently a compelling need of data to guide clinical decisions.

Regarding pregnancy, the findings from this study found that radiological features suggestive for
pneumonia can be found in almost all of the hospitalized pregnant women, usually presenting with
fever, cough and lymphopenia similar to the non-pregnant population. Of note, serious conditions
requiring admission to ICU and mechanical ventilation are significantly less common when
compared with the two previous CoV infections (MERS and SARS). Similarly, we found no case of
maternal death related to COVID-19 infection, while MERS and SARS infections caused a
mortality rate in pregnant women ranging from 25% to 30%.
In this systematic review, women affected by COVID-19 disease had higher rates of miscarriage,
preterm birth, preeclampsia, while the babies had higher rates of perinatal mortality (7-11%) and of
admission to NICU.
Furthermore, as all the included studies reported data on hospitalized women, the reported rate of
infection-related adverse outcomes, including either pregnancy and perinatal outcomes, might not
reflect the overall population of pregnant when who got infected with SARS-COV-2, and there may
be a cohort of patients with no or mild symptoms whose pregnancy outcome is, as of yet,
unknown. ³⁶
More importantly, it should be emphasized that there are no known neonatal symptoms and
therefore no clinical evidence suggestive for vertical transmission, particularly when COVID-19
infection occurs later in pregnancy. Unfortunately, the lack of data of first and early second
trimester infection does not allow to determine whether in this case the infection may cause more
severe perinatal outcomes and how to monitor the pregnancy once the infection has passed. ¹
Based on the limited information from this study, COVID-19 cannot be considered as an indication
for delivery and therefore the timing and mode of delivery should be individualized according to
maternal clinical conditions or obstetric factors as usual (and not COVID-19 status alone), and the
decision should involve a multidisciplinary team including maternal fetal doctors, neonatologists,
anasthesiologists, and infective disease specialists

α	
Conc	·lusions

In summary, with the limited data reported to date, mothers infected with coronavirus infections, including COVID-19, >90% of whom also had pneumonia, are at increased risks of miscarriage, preterm birth, preeclampsia, cesarean delivery, and their babies at higher risk of perinatal death and admission to the NICU, compared to the general population. There have been no published cases of clinical evidence of vertical transmission. Evidence is accumulating rapidly, so these data may need to be updated soon.

354 **REFERENCES**

- 1. Poon LC, Yang H, Lee JCS et al. ISUOG Interim Guidance on 2019 novel coronavirus
- infection during pregnancy and puerperium: information for healthcare professionals.
- 357 Ultrasound Obstet Gynecol. 2020, doi:10.1002/uog.22013.
- 2. Su S, Wong G, Shi W et al. Epidemiology, Genetic Recombination, and Pathogenesis of
- 359 Coronaviruses. Trends Microbiol. 2016; **24**:490–502.
- 3. World Health Organization guidelines for the global surveillance of severe acute respiratory
- 361 syndrome (SARS). Geneva: World Health Organization; October 2004. Accessed on March
- 362 15, 2020.
- 4. World Health Organization, Regional Office for Eastern Mediterranean: MERS situation
- update. Geneva: World Health Organization; January 2020. Accessed on March 15, 2020.
- 5. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel
- 366 coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30;:].
- 367 Lancet. 2020; **395**:497–506.
- 368 6. Coronavirus disease 2019 (COVID-2019): situation report 54. Geneva: World Health
- Organization; January 2020. Accessed on March 15, 2020.
- 7. Wang D, Hu B, Hu C et al. Clinical Characteristics of 138 Hospitalized Patients With 2019
- Novel Coronavirus-Infected Pneumonia in Wuhan, China [published online ahead of print,
- 372 2020 Feb 7]. JAMA. 2020; e201585.
- 8. Chen YH, Keller J, Wang IT, Lin CC, Lin HC. Pneumonia and pregnancy outcomes: a
- nationwide population-based study. Am J Obstet Gynecol. 2012; **207**:288.e1–288.e2887.
- 9. Henderson LK, Craig JC, Willis NS, Tovey D, Webster AC. How to write a Cochrane
- 376 systematic review. Nephrology (Carlton) 2010; **15**: 617-624.
- 377 10. NHS Centre for Reviews and Dissemination. Systematic reviews: CRD's guidance for
- undertaking reviews in health care. University of York: York (UK), 2009. Available at:
- 379 https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf. Retrieved December 3, 2016.

- 380 11. Welch V, Petticrew M, Petkovic J et al. Extending the PRISMA statement to equity-focused
- 381 systematic reviews (PRISMA-E 2012): explanation and elaboration. J Clin Epidemiol 2016;
- **70**: 68-89.
- 383 12. Moher D, Liberati A, Tetzlaff J, Altman DG, and the PRISMA Group. Preferred Reporting
- 384 Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann Intern Med
- 385 2009; **151**: 264–269.
- 386 13. Zorzela L, Loke YK, Ioannidis JP et al. PRISMA harms checklist: improving harms
- reporting in systematic reviews. BMJ 2016; **352**: i157.
- 388 14. Stroup DF, Berlin JA, Morton SC et al. Meta-analysis of observational studies in
- epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in
- 390 Epidemiology (MOOSE) group. JAMA 2000; **283**: 2008–2012.
- 391 15. Murad MH, Sultan S, Haffar S, Bazerbachi F. Methodological quality and synthesis of case
- series and case reports. BMJ Evid Based Med 2018; 23:60-63.
- 393 16. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission
- potential of COVID-19 infection in nine pregnant women: a retrospective review of medical
- 395 records. Lancet. 2020; **395**:809–815.
- 396 17. Wang X, Zhou Z, Zhang J, Zhu F, Tang Y, Shen X. A case of 2019 Novel Coronavirus in a
- pregnant woman with preterm delivery [published online ahead of print, 2020 Feb 28]. Clin
- 398 Infect Dis. 2020; ciaa200.
- 399 18. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-
- 400 nCoV pneumonia. Transl Pediatr. 2020; 9:51–60.
- 401 19. Li Y, Zhao R, Zheng S, et al. Lack of Vertical Transmission of Severe Acute Respiratory
- Syndrome Coronavirus 2, China [published online ahead of print, 2020 Jun 17]. Emerg
- 403 Infect Dis. 2020; **26**:10.3201/eid2606.200287.

- 20. Liu D, Li L, Wu X et al. Pregnancy and Perinatal Outcomes of Women with COVID-19
- 405 Pneumonia: A Preliminary Analysis (2/29/2020). Available at SSRN:
- 406 https://ssrn.com/abstract=3548758
- 21. Liu Y, Chen H, Tang K, Guo Y. Clinical manifestations and outcome of SARS-CoV-2
- 408 infection during pregnancy [published online ahead of print, 2020 Mar 4]. J Infect. 2020;
- 409 S0163-4453(20)30109-2.
- 410 22. Alfaraj SH, Al-Tawfiq JA, Memish ZA. Middle East Respiratory Syndrome Coronavirus
- 411 (MERS-CoV) infection during pregnancy: Report of two cases & review of the literature. J
- 412 Microbiol Immunol Infect. 2019; **52**:501–503.
- 23. Jeong SY, Sung SI, Sung JH, et al. MERS-CoV Infection in a Pregnant Woman in Korea. J
- 414 Korean Med Sci. 2017; **32**:1717–1720.
- 415 24. Alserehi H, Wali G, Alshukairi A, Alraddadi B. Impact of Middle East Respiratory
- Syndrome coronavirus (MERS-CoV) on pregnancy and perinatal outcome. BMC Infect Dis.
- 417 2016; **16**:105.
- 418 25. Assiri A, Abedi GR, Al Masri M, Bin Saeed A, Gerber SI, Watson JT. Middle East
- 419 Respiratory Syndrome Coronavirus Infection During Pregnancy: A Report of 5 Cases From
- 420 Saudi Arabia. Clin Infect Dis. 2016; **63**:951–953.
- 421 26. Malik A, El Masry KM, Ravi M, Sayed F. Middle East Respiratory Syndrome Coronavirus
- during Pregnancy, Abu Dhabi, United Arab Emirates, 2013. Emerg Infect Dis. 2016;
- **22**:515–517.
- 424 27. Park MH, Kim HR, Choi DH, Sung JH, Kim JH. Emergency cesarean section in an
- 425 epidemic of the middle east respiratory syndrome: a case report. Korean J Anesthesiol.
- 426 2016; **69**:287–291.
- 427 28. Payne DC, Iblan I, Alqasrawi S, et al. Stillbirth during infection with Middle East
- respiratory syndrome coronavirus. J Infect Dis. 2014; **209**:1870–1872.

- 29. Yudin MH, Steele DM, Sgro MD, Read SE, Kopplin P, Gough KA. Severe acute respiratory
- 430 syndrome in pregnancy. Obstet Gynecol. 2005; **105**:124–127.
- 431 30. Wong SF, Chow KM, Leung TN, et al. Pregnancy and perinatal outcomes of women with
- severe acute respiratory syndrome. Am J Obstet Gynecol. 2004; **191**:292–297.
- 433 31. Lam CM, Wong SF, Leung TN, et al. A case-controlled study comparing clinical course and
- outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome.
- 435 BJOG. 2004; **111**:771–774.
- 436 32. Robertson CA, Lowther SA, Birch T, et al. SARS and pregnancy: a case report. Emerg
- 437 Infect Dis. 2004; **10**:345–348.
- 438 33. Schneider E, Duncan D, Reiken M, et al. SARS in pregnancy: this case study
- explores the first documented infection in the U.S.A. WHONN Lifelines 2004; 8:122–
- 440 128.
- 34. Stockman LJ, Lowther SA, Coy K, Saw J, Parashar UD. SARS during pregnancy, United
- 442 States. Emerg Infect Dis.2004; **10**:1689–1690.
- 35. Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-based
- mitigation measures influence the course of the COVID-19 epidemic? [published online
- ahead of print, 2020 Mar 9]. Lancet. 2020; S0140-6736(20)30567-5. doi:10.1016/S0140-
- 446 6736(20)30567-5.
- 36. Royal College of Obstetricians and Gynaecologists. Coronavirus (COVID-19) Infection in
- 448 Pregnancy Information for healthcare professionals. March 2020
- https://www.rcog.org.uk/globalassets/documents/guidelines/coronavirus-covid-19-infection-
- in-pregnancy-v2-20-03-13.pdf

Table 1. General characteristics of the included studies.

Author	Year	Study location	Study period	Study design	Pregnancies (n)	Type of Coronavirus	Mean maternal age
Chen	2020	China	2020	Retrospective	9	Sars-CoV-2	29.9
Wang	2020	China	2020	Case report	1	Sars-CoV-2	28
Zhu	2020	China	2020	Retrospective	9	Sars-CoV-2	30.9
Li	2020	China	2020	Case report	1	Sars-CoV-2	30
Liu*	2020	Hubei, China	2020	Retrospective	11	Sars-CoV-2	32.5
Liu	2020	Guangdong, China	2020	Retrospective	10	Sars-CoV-2	30.5
Alfaraj	2019	Saudi Arabia	2015	Case series	2	Mers-CoV	34
Jeong	2017	South Korea	2015	Case report	01	Mers-CoV	39
Alserehi	2016	Saudi Arabia	NR	Case report	1	Mers-CoV	33
Assiri	2016	Saudi Arabia	2012-2016	Case series	5	Mers-CoV	30.8
Malik	2016	United Arab Emirates	2013	Case report	1	Mers-CoV	32
Park	2016	South Korea	2015	Case report	1	Mers-CoV	39
Payne	2015	Jordan	2012	Case report	1	Mers-CoV	39
Yudin	2005	Canada	NR	Case report	1	Sars-CoV	33
Wong	2004	Hong Kong, China	2003	Retrospective	12	Sars-CoV	30.6
Lam	2004	China	2003	Retrospective	10	Sars-CoV	31.6
Robertson	2004	USA	2003	Case report	1	Sars-CoV	36
Schneider	2004	USA	2003	Case report	1	Sars-CoV	NR
Stockman	2004	USA	2003	Case report	1	Sars-CoV	38

N, numbers; NR, not reported.

^{*:} preliminary data, pre-peer review version.

Table 2. Pooled proportions of the different clinical symptoms and laboratory parameters in the overall population of pregnancies infected with CoV infection.

Outcome	Studies (n)	Pregnancies (n/N)	I^{2} (%)	Pooled proportions (95% CI)
Fever	17	64/76	8.2	82.57 (74.4-90.2)
Cough	18	44/77	7.3	57.10 (45.8-68.0)
Dyspnea	18	21/77	53.2	26.98 (18.2-36.8)
Chest pain	17	3/66	0	8.61 (3.4-16.0)
Pneumonia	16	54/57	0	91.84 (84.0-97.2)
Lymphopenia	10	40/48	49.1	79.87 (60.4-93.9)
Elevated liver enzymes	7	9/26	0	36.59 (20.4-54.5)
Admission to ICU	18	22/70	58.1	34.10 (17.5-53.0)
Need for mechanical ventilation	17	16/69	42.9	26.29 (13.3-41.9)
Maternal death	19	9/79	0	12.30 (6.3-19.9)

n/N, number of cases / total number of included pregnancies; CI, confidence interval; ICU, intensive care unit

Table 3. Pooled proportions of treatment used in the overall population of pregnancies infected with Coronavirus infection.

Outcome	Studies (n)	Pregnancies (n/N)	I ² (%)	Pooled proportions (95% CI)
Antiviral therapy*	14	37/51	50	67.66 (47.2-85.1)
Antibiotic therapy	14	49/52	27.9	89.26 (76.8-97.3)
Steroids**	12	12/31	58.6	29.81 8.2-57.9)

n/N, number of cases / total number of included pregnancies; CI, confidence interval.

*Lopinavir/Ritonavir or Oseltamivir were the most common antiviral agents. Ribavirin was used in Wong et al.

**Maternal (not fetal) indications

Table 4. Pooled proportions of the different pregnancy outcomes in the overall population of pregnancies infected with Coronavirus infection.

Outcome	Studies (n)	Pregnancies (n/N)	I ² (%)	Pooled proportions (95% CI)
PTB <37 weeks	16	14/56	25.5	24.30 (12.5-38.6)
PTB <34 weeks	16	11/56	1.9	21.79 (12.5-32.9)
PE	6	2/19	0	16.21 (4.2-34.1)
PPROM	8	6/34	0	20.72 (9.5-34.9)
FGR	10	2/29	0	11.66 (3.2-24.4)
Miscarriage	2	8/21	0	39.08 (20.2-59.8)
Cesarean delivery	17	50/58	4	83.91 (73.8-91.9)

n/N, number of cases / total number of included pregnancies; CI, confidence interval; PTB, preterm birth; PE, preeclampsia; pPROM, preterm prelabor rupture of membranes; FGR, fetal growth restriction.

Table 5. Pooled proportions of the different pregnancy outcomes explored in the present systematic review according to the type of viral infection.

		Sars	-CoV			Mers-Co	οV			Sars-Co	V-2	
Outcome	Studies	Pregnancies (n/N)	Pooled % (95% CI)	I ² (%)	Studies	Pregnancies (n/N)	Pooled % (95% CI)	I ² (%)	Studies	Pregnancies (n/N)	Pooled % (95% CI)	(%)
PTB <37 weeks	5	1/15	15.03 (0.3-45.6)	31.8	6	0/11	0 (0-28.9)	0	6	14/32	41.11 (25.6-57.6)	0
PTB <34 weeks	5	4/15	28.89 (10.7-51.6)	0	6	3/11	32.11 (10.0-59.8)	9.5	6	4/32	15.03 (3.9-31.7)	22.6
Pre-eclampsia	2	0/2	0 (0-67.0)	0	2	1/7	19.10 (1.1-51.3)	0	3	1/12	13.55 (1.2-36.0)	0
PPROM	2	1/2	50.0 (0.5-95.3)	46	2	0/2	0 (0-54.4)	0	5	5/31	18.78 (0.8-33.5)	0
FGR	5	2/15	18.52 (4.4-39.5)	0	3	0/4	0 (0-48.7)	0	3	0/12	0 (0-21.4)	0
Miscarriage	2	8/21	39.08 (20.2-59.8)	0	-	.0	-	-	-	-	-	-
Cesarean delivery	5	7/9	72.23 (44.1-93.1)	0	6	5/8	61.79 (32.7-86.9)	0	6	38/41	91.04 (81.0-97.6)	0

n/N, number of cases / total number of included pregnancies; CI, confidence interval; PTB, preterm birth; pPROM, preterm premature rupture of membranes; FGR, fetal growth restriction.

Table 6. Pooled proportions of the different perinatal outcomes in the overall population of pregnancies infected with Coronavirus infection.

Outcome	Studies (n)	Fetuses/Newborns (n/N)	I ² (%)	Pooled proportions (95% CI)
Fetal distress	13	15/44	13.6	34.15 (20.3-49.5)
Apgar score < 7	12	1/48	0	6.08 (1.3-13.9)
Neonatal asphyxia	9	0/27	0	0 (0-15.7)
Admission to NICU	4	3/12	76.3	57.16 (3.6-99.8)
Perinatal death	16	5/60	0	11.11 (84.8-19.6)
Vertical transmission	16	0/60	0	0 (0-10.7)

491

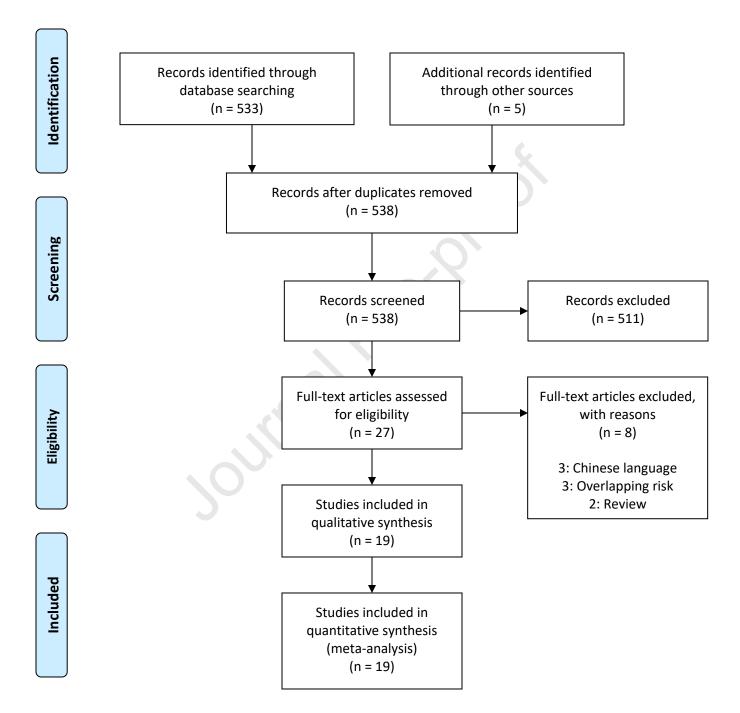
n/N, number of cases / total number of included pregnancies; CI, confidence interval; NICU, neonatal intensive care unit.

Table 7. Pooled proportions of the different perinatal outcomes explored in the present systematic review according to the type of viral infection.

43.

		Sars-CoV				Mers-CoV	/			Sars-CoV-2				
Outcome	Studies	Fetuses/Newborn s (n/N)	Pooled % (95% CI)	I ² (%)	Studies	Fetuses/Newborn s (n/N)	Pooled % (95% CI)	[1 ² (%)	Studies	Fetuses/Newborns (n/N)	Pooled % (95% CI)	I ² (%)		
Fetal distress	5	3/9	35.89 (12.0-64.4)	0	4	0/5	0 (0-44.5)	0	4	12/30	43.02 (15.3- 73.4)	64.7		
Apgar score < 7	4	0/4	0 (0-60.2)	0	3	0/3	0 (0-56.9)	0	5	1/41	4.53 (0.4-12.6)	0		
Neonatal asphyxia	4	0/4	0 (0-60.2)	0	2	0/2	0 (0-67.0)	0	3	0/21	0 (0-13.5)	0		
Admission to NICU	-	-	-	-	2	0/2	0 (0-67.0)	0	2	1/10	8.71 (0.01- 31.4)	81.3		
Perinatal death	5	0/9	0 (0-31.4)	0	6	3/10	33.15 (11.2- 59.9)	0	5	2/41	7.00 (1.4-16.3)	0		
Vertical transmission	6	0/14	0 (0-24-0)	0	4	0/4	0 (0-60.2)	0	6	0/42	0 (0-9.6)	0		

n/N, number of cases / total number of included pregnancies; CI, confidence interval; NICU, neonatal intensive care unit.


509 Figure legend

510 **Figure 1.** Systematic review flowchart

PRISMA 2009 Flow Diagram

Supplementary Table 1. Excluded studies and reason for the exclusion

Author	Year	Title	Reason for the exclusion
Chen	2020	Pregnant Women With New Coronavirus Infection: A	Chinese language;
		Clinical Characteristics and Placental Pathological Analysis	A series of 11 cases from the same institution was published by Liu et al and was included in
		of Three Cases	this systematic review
Zhang	2020	Analysis of the pregnancy outcomes in pregnant women with COVID-19 in Hubei Province	Chinese language
Liu	2020	Coronavirus disease 2019 (COVID-19) during pregnancy: a	Overlapping risk with Liu 2020
		case series	(included with preliminary, pre-peer review data)
Chen	2020	Infant born to mothers with a new Coronavirus (COVID-19)	Same Institution of Zhu 2020 that was included in this systematic review
Li	2005	Severe acute respiratory syndrome in neonates and children	Review about pediatric outcomes
Ng	2004	SARS in newborns and children	Review;
			Data on newborns born from infected mothers are reported in papers already included in this systematic review
Shek	2003	Infant born to mothers with SARS	It is likely that all – or the majority – of the cases presented in this series are also included in Wong 2004, that is already included in this systematic review
Zhang	2003	Clinical analysis of pregnancy in second and third trimesters complicated severe acute respiratory syndrome	Chinese language

Supplementary Table 2. Radiological findings for the diagnosis of pneumonia

Author	Year	Type of CoV	Diagnosis of pneumonia
Chen	2020	Sars-CoV-2	Typical sign of viral respiratory infection at CT
Wang	2020	Sars-CoV-2	Bilateral ground glass opacities at CT
Zhu	2020	Sars-CoV-2	Bilateral ground glass opacities, patchy consolidation, blurred borders at CT
Li	2020	Sars-CoV-2	Patchy infiltrations at CXR
Liu	2020	Sars-CoV-2	Ground glass opacities, crazy paving, consolidations at CT
Jeong	2017	Mers-CoV	Diffuse opacity in the lower lung area at CXR
Alserehi	2016	Mers-CoV	Bilateral infiltrates and lower lobe opacity at CXR
Assiri	2016	Mers-CoV	Bilateral infiltrates and lower lobe opacity at CXR
Malik	2016	Mers-CoV	Bilateral consolidations at CT
Park	2016	Mers-CoV	Patchy opacities in the lower lobes at CXR
Yudin	2005	Sars-CoV	Patchy lobe infiltrates at CXR
Wong	2004	Sars-CoV	Features suggestive for progressive air-space disease at CXR
Lam	2004	Sars-CoV	Features suggestive for atypical pneumonia at CXR
Robertson	2004	Sars-CoV	Bilateral lower lobe infiltrates at CXR
Schneider	2004	Sars-CoV	Progressive pulmonary infiltrates at CXR
Stockman	2004	Sars-CoV	Diffuse infiltrates at CXR

CoV, coronavirus; CT, computerized tomography; CXR, chest x-ray.

Supplementary Table 3. Pooled proportions of the different clinical symptoms and laboratory parameters according to the type of viral infection.

	Sars-CoV					Mers-C	οV			Sars-Co	V-2	
Outcome	Studies	Pregnancies (n/N)	Pooled % (95% CI)	(%)	Studies	Pregnancies (n/N)	Pooled % (95% CI)	I ² (%)	Studies	Pregnancies (n/N)	Pooled % (95% CI)	[1 ² (%)
Fever	6	26/26	100 (86.3-100)	0	5	6/9	64.11 (35.6-88.0)	0	6	32/41	75.56 (61.9-87.0)	0
Cough	6	20/26	74.21 (57.1-88.2)	0	6	7/10	65.59 (38.8-88.0)	0	6	17/41	42.02 (28.0-56.7)	0
Dyspnea	6	11/26	48.79 (27.5-70.3)	17.5	6	7/10	66.85 (40.1-88.8)	0	6	3/41	8.89 (2.4-19.0)	0
Chest pain	6	2/26	12.67 (3.3-27.0)	0	6	1/10	18.58 (3.0-43.2)	0	5	0/30	0 (0-11.9)	0
Pneumonia	6	26/26	100 (86.3-100)	0	6	9/11	76.59 (43.3-97.5)	36.8	4	19/20	91.68 (76.9-99.3)	0
Lymphopenia	4	24/24	100 (87.1-100)	0	2	1/2	50 (0.5-95.3)	46	4	15/22	65.59 (42.0-85.7)	18.6
Elevated liver enzymes	3	5/14	37.91 (14.7-64.5)	4.3	1	1/1	100 (25.0-100)	-	3	3/11	29.55 (8.6-56.6)	0
Admission to ICU	6	14/26	53.32 (35.3-70.9)	0	7	6/12	44.57 (16.8-74.3)	29	5	2/32	9.29 (0.6-26.8)	39.7
Need for mechanical ventilation	6	10/26	39.98 (23.2-58.1)	0	7	5/12	40.85 (17.1-67.1)	9.4	4	1/31	5.38 (0.4-15.5)	0
Maternal death	6	6/26	25.79 (11.8-42.9)	0	7	3/12	28.59 (9.6-52.8)	0	6	0/41	0 (0-9.8)	0

n/N, number of cases / total number of included pregnancies; CI, confidence interval; ICU, intensive care unit

Supplementary Table 4. Pooled proportions of the need for therapy according to the type of viral infection.

		Sars	-CoV			Mers-CoV				Sars-CoV-2			
Outcome	Studies	Pregnancies (n/N)	Pooled % (95% CI)	I ² (%)	Studies	Pregnancies (n/N)	Pooled % (95% CI)	I ² (%)	Studies	Pregnancies (n/N)	Pooled % (95% CI)	I ² (%)	
Antiviral therapy*	5	13/16	66.87 (30.0-94.5)	41.9	4	2/4	50.0 (6.8-93.2)	0	5	22/31	74.83 (41.0-97.0)	70.9	
Antibiotic therapy	6	26/26	100 (86.3-100)	0	4	2/4	50.0 (6.8-93.2)	0	4	21/22	90.29 (63.7-99.9)	50.5	
Steroids**	5	11/16	50.08 (14.8-85.3)	45.4	4	0/4	0 (0-60.2)	0	3	1/11	22.83 (0.9-78.8)	63	

n/N, number of cases / total number of included pregnancies; CI, confidence interval.

^{*}Lopinavir/Ritonavir or Oseltamivir were the most common antiviral agents. Ribavirin was used in Wong et al.

^{**}Maternal (not fetal) indications

Supplementary Table 5. Quality assessment of the included studies

		Case	series		
Author	Year	Selection	Comparability	Outcome	
Chen	2020	**	**	***	
Zhu	2020	**	**	**	
Liu	2020	**	**	***	
Liu	2020	**	**	**	
Alfaraj	2019	**	*	**	
Assiri	2016	**	*	**	
Wong	2003	**	**	*	
Lam	2003	**	**	**	
			reports		
		Case	reports		
	Year	Selection	Ascertainment	Causality	Reporting
Wang	2020		Ascertainment **	***	Reporting ★
Wang	2020 2020	Selection	Ascertainment	***	
Wang Li	2020	Selection ★	Ascertainment **	***	*
Wang Li Jeong	2020 2020	Selection * *	Ascertainment	***	*
Wang Li Jeong Alserehi	2020 2020 2017	Selection ★	Ascertainment	*** ** **	* * *
Wang Li Jeong Alserehi Malik	2020 2020 2017 2016 2016 2016	Selection	Ascertainment	*** ** ** ** **	* * * *
Wang Li Jeong Alserehi Malik Park	2020 2020 2017 2016 2016	Selection ★	Ascertainment	*** ** ** ** ** **	* * * * * * *
Wang Li Jeong Alserehi Malik Park Payne	2020 2020 2017 2016 2016 2016	Selection	Ascertainment	*** ** ** ** ** ** ** **	* * * * * * * * * *
Wang Li Jeong Alserehi Malik Park Payne Yudin	2020 2020 2017 2016 2016 2016 2015	Selection	Ascertainment	*** ** ** ** ** **	*
Author Wang Li Jeong Alserehi Malik Park Payne Yudin Robertson Schneider	2020 2020 2017 2016 2016 2016 2015 2005	Selection	Ascertainment	*** ** ** ** ** ** ** **	* * * * * * * * * * * * * * *

Supplementary Table 6. Details on perinatal deaths

Author	Year	Type of CoV	Details on perinatal deaths
Zhu	2020	Sars-CoV-2	<i>I Neonatal death</i> : The baby was delivered at a gestational age of 34+5 weeks and admitted 30 minutes after delivery due to shortness of breath and moaning. Eight days later, he developed refractory shock, multiple organ failure, and disseminated intravascular coagulation, which were treated by the transfusion of platelets, suspended red blood cells, and plasma; he died on the 9th day.
Liu	2020	Sars-CoV-2	1 stillbirth, no other available details
Assiri	2016	Mers-CoV	I stillbirth: At 34 weeks, the mother complained shortness of breath since 3 days and was admitted for elevated blood pressure and 3+ proteinuria consistent with preeclampsia, and pneumonia was diagnosed by means of chest radiography. Fetal heart tones were absent, and intrauterine fetal demise was suspected. A stillborn infant was delivered the same day. I neonatal death: At 24 weeks gestation, the mother presented to the hospital on 23 October with cough and myalgia, and chest radiography at admission showed a right lower lobe opacity. Her respiratory status deteriorated during hospitalization, and she was admitted to the ICU on 28 October for ARDS requiring intubation and mechanical ventilation. On 31 October, the patient delivered a 240-gram infant by cesarean delivery. The infant died 4 hours after birth.
Payne	2015	Mers-CoV	1 stillbirth: During the outbreak period, the mother's acute respiratory symptoms (fever, rhinorrhea, fatigue, headache, and cough) occurred concurrently with vaginal bleeding and abdominal pain on the seventh day of illness, and she spontaneously delivered a stillborn infant.

NR, not reported.