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Abstract

The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four
decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such
temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model,
which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the
restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a
combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects
of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by
stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry.
Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and
the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be
reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models
in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.
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Introduction

Cell-to-cell variability in the timing of cell-fate commitment is

widely observed in biological settings [1–4]. In particular, the

variable timing of transition from the quiescent to the proliferative

state is a well-documented phenomenon [5–8]. In a population of

proliferating cells, such variability is reflected in the partitioning of

the population into subpopulations at various phases of the cell

cycle. This phenomenon is observed even in a population of

isogenic cells that have been synchronized by serum starvation.

Upon growth stimulation, cells reenter the cell cycle from

quiescence and undergo the G1/S transition, but not all cells in

the population proceed at the same rate. This rate also differs

among different cell types [9,10] and can be modulated by

external conditions [11].

To account for the variable transition timing in cell cycle

progression, two major types of models have been proposed: the

transition probability (TP) models [11–15] and the growth-

controlled (GC) models [16–18]. The TP models attributed

temporal variability to random state transitions through different

phases of the cell cycle. One of the earliest TP models was proposed

to account for the inter-mitotic variability by assuming a single

random transition from a non-proliferative A-state to a proliferative

B-phase [15]. It was subsequently extended to account for the

timing variability in cell cycle reentry starting from quiescent (G0)

cells [11,14]. In this case, the exponential drop in the fraction of G0

cells over time was suggested to indicate a probabilistic nature of the

transition. The original model and its subsequent variants have

provided excellent fits to various types of experimental data [11–

15]. However, a major criticism of the TP models is that the

transition probability from the A-state was assumed to be time-

invariant, despite uneven cell division at mitosis and obvious cell

growth or metabolism through the cell cycle [19]. As an alternative,

the GC models proposed that the observed temporal variability

arises from growth rate heterogeneity within a cell population,

rather than random state transitions. Remarkably, this line of

models has been able to provide equally good fits to various

experimental data [16,20]. Integrating these two lines of thinking,

hybrid models proposed cell-size control and random transitions as

regulatory elements for progression to cell division [21,22].

However, understanding of the underlying mechanisms for cell-

size control and random transitions was limited at the time.

Consequently, although they provided excellent fits to experimental

data, these models remain descriptive to date.

There has been an active debate between these two lines of

thinking since their initial propositions. While never fully resolved,
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the debate gradually faded as the focus in the field of cell cycle

studies moved to identifying the dynamical basis for various cell

cycle regulations, including the restriction point (R-point) [23],

which we have shown to be controlled by a bistable Rb-E2F switch

[7]. We also showed that activation of this switch is correlated with

the cell’s reentry from quiescence into the cell cycle. Interestingly,

cell cycle reentry was explored by both the TP and GC models,

which were originally developed to describe actively growing cells.

For example, the TP models ascribe quiescence and proliferation

to low and high transition probabilities, respectively [11,14]. In

addition, the GC models have recently been proposed as an

alternative explanation for the ‘‘R-point’’ [18].

The temporal variability described by the GC and TP models is

based on the distribution of inter-mitotic times and may differ

from temporal variability in E2F activation from quiescence.

However, we suggest that the stochastic Rb-E2F model embodies

the concepts assumed in the TP models and the GC models. Our

model predictions and experiments suggest that stochastic

activation of E2F can account for temporal variability in cell

cycle entry, and the degree of such variability is determined by

environmental cues and the regulatory network parameters. These

results suggest that the TP and GC models are not mutually

exclusive but rather reflect different aspects of the same temporal

dynamics in cell cycle entry, as has been speculated [21,24]. In

addition, we show that stochastic activation of the Rb-E2F bistable

switch under various environmental conditions can readily be

mapped into both TP and GC models with a small number of

parameters (Figure 1). We propose that these parameters can

potentially serve as concise, quantitative phenotypes of cell states.

Results

Our recent work has shown that traverse of the R-point is

regulated by the Rb-E2F bistable switch [7]. This bistability results

from interlocked positive feedback loops embedded in the Myc-

Rb-E2F network (Figure S1, see Text S1 for further details). Given

the bistable switching property of the Myc-Rb-E2F network, we

hypothesized that this network, when subjected to noise, might

demonstrate variable timing in E2F activation, which in turn

might account for the temporal variability observed in cell cycle

entry. This hypothesis is based on the strong correlation we

previously observed between E2F activation and DNA synthesis

[7]. To test this hypothesis, we developed a stochastic model for

the Myc-Rb-E2F network using the chemical Langevin formula-

tion [25,26] as detailed in Materials and Methods. This

formulation allows for implementation of intrinsic and extrinsic

noise while retaining the deterministic framework. In this

stochastic model, the intrinsic noise arises from the stochastic

nature of the biochemical interactions among small numbers of

signaling molecules. The extrinsic noise results from heterogeneity

in cell size and shape, cell division, or cell cycle stage [27–32].

Modulation of E2F Activation by Serum Stimulation
The fluctuations in the bistable switch result in significant

discrepancies between stochastic and deterministic simulations [33–

36]. Given a set of initial conditions and parameters in the Myc-Rb-

E2F network, the simulated time-courses from a deterministic

model are fixed (black line in Figure 2A), but those from a stochastic

model show drastically variable trajectories (gray lines in Figure 2A).

For example, the stochastic Rb-E2F model can generate two modes

of E2F at Time = 50 h when stimulated with weak input as shown in

Figure 2A. We define a switching threshold (horizontal red line in

Figure 2A) to distinguish the low E2F mode, which corresponds to a

non-activated subpopulation of cells, from the high E2F mode,

which represents an activated population. This threshold can be

used to calculate the percentage of activated cells over time. The

minimum time required for E2F to reach the switching threshold is

defined as the switching time (vertical red line in Figure 2A, for the

deterministic simulation). Similarly, for strong input, the determin-

istic time-course simulations are fixed and stochastic time-course

simulations again show variable trajectories (unpublished data). The

distribution of E2F activity in stochastic simulations, however,

exhibits a single mode (high E2F level) at strong inputs, rather than

two modes as with weak inputs.

Based on our simulations and definitions in Figure 2A, we

obtained G0 exit curves for weak and strong input conditions as

shown in Figure 2B. These G0 exit curves are analogous to the a-

curve in the TP model, which represents the frequency distribution

of inter-mitotic times [15]. Both a G0 exit curve and an a-curve can

be fitted by an exponential curve with two parameters (black dotted

curve in Figure 2B, see Text S2 for further details): transition rate

(KT) and time delay (TDP). This is because both exhibit an initial

time delay followed by an exponential drop [11,14,15]. The

transition rate of the G0 exit curve is inversely proportional to the

temporal variability of the cell population. For example, a

population of cells with more-synchronous E2F activation would

have a higher transition rate than that of a population with less-

synchronous E2F activation. If cells were completely synchronized,

the G0 exit curve would have an infinite transition rate.

Author Summary

Mammalian cells enter the division cycle in response to
appropriate growth signals. For each cell, the decision to
do so is critically dependent on the interplay between
environmental cues and the internal state of the cell and is
influenced by random fluctuations in cellular processes.
Indeed, experimental evidence indicates that cell cycle
entry is highly variable from cell to cell, even within a
clonal population. To account for such variability, a
number of phenomenological models have been previ-
ously proposed. These models primarily fall into two types
depending on their fundamental assumptions on the
origin of the variability. ‘‘Transition probability’’ models
presume that variability in cell cycle entry originates from
the fact that entry in each individual cell is random but
also governed by a fixed probability. In contrast, ‘‘growth-
controlled’’ models assume that the growth rates across a
population are variable and result in cells that are out of
phase developmentally. While both kinds of models
provide a good fit to experimental data, their lack of
mechanistic details limits their predictive power and has
led to unresolved debate between their practitioners. In
this study, we developed a mechanistically based stochas-
tic model of the temporal dynamics of activation of the
E2F transcription factor, which is used here as a marker of
the transition of cells from quiescence to active cell
cycling. Using this model, we show that ‘‘transition
probability’’ and ‘‘growth-controlled’’ models can be
reconciled by incorporation of a small number of basic
cellular parameters related to protein synthesis and
turnover, protein modification, stochasticity, and the like.
Essentially our work shows that each kind of phenome-
nological model holds true for describing a particular
aspect of the cell cycle transition. We suggest that
incorporation of basic cellular parameters in this manner
into phenomenological models may constitute a broadly
applicable approach to defining concise, quantitative
phenotypes of cell physiology.

Reconciling Phenomenological Cell-Cycle Models
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Our simulated E2F activation dynamics predict serum-depen-

dence of both transition rate and time delay. For a weak input

(KT = 0.02960.0014 h21 and TDP = 18.061.2 h, blue line in

Figure 2B), most cells were expected to remain inactivated and the

percentage of G0 cells would decrease slowly. This is because the

impact of noise acting on the Rb-E2F bistable switch was only

significant enough to activate E2F in some cells, but not in other

cells. This would lead to a bimodal distribution of E2F activity

(Figure S2A), which is consistent with previous experimental

observations in mouse fibroblasts [13,37,38]. In contrast, the

impact of noise was negligible in the case of strong input and all

cells were predicted to be activated at a high transition rate

(KT = 0.1660.0076 h21 and TDP = 7.760.27 h, red curve in

Figure 2B).The response of the Rb-E2F bistable switch to noise

would cause an increase in KT with increasing input strength

(Figure 2C) as the population moves from a bimodal to a

monomodal distribution at the high mode (Figure S2A). At

sufficiently high input strength, further increase in input strength

may have a negligible effect on KT (Figure 2C). In contrast, TDP

may decrease as the population transitions from a bimodal to a

monomodal distribution, and TDP may bottom out at sufficiently

high input strength (Figure 2D). The dependence of KT and TDP

on input strength can be recapitulated with a minimal bistable

model (Figure S2B–D), suggesting that such dependence may be

an intrinsic property of bistable systems.

To validate our model predictions, we measured E2F activity in

the E2F-d2GFP cell line, which is derived from a rat embryonic

fibroblast REF52 cell line and carries a destabilized green

fluorescent protein reporter (d2GFP) under the E2F1 promoter.

We have shown that this reporter system can be used to monitor

E2F activity in response to serum stimulation previously [7]. Prior

to serum stimulation, the E2F-d2GFP cells were synchronized at

quiescence by serum-starvation (0.02% bovine growth serum,

BGS) with basal E2F-GFP expression (Figure 3A). Upon weak

serum stimulation (0.3% BGS), only a subpopulation of the cells

switched to the high E2F mode over time. At earlier time points

Figure 1. Temporal variability in cell cycle reentry. A population of quiescent cells can undergo the G1/S transition with serum stimulation. The
timing of cell cycle entry is highly variable in a cell population, characterized by an exponential drop in the percentage of G0 cells over time (G0 exit
curve). To account for such temporal variability, two groups of phenomenological models have been previously proposed: the transition probability
(TP) model, which describes the dynamics of cell cycle entry by a transition rate (KT) and a time delay of the cell population (TDP), and the growth-
controlled (GC) model with a mean growth rate ( ) and a variance of the growth rate (s). We recently demonstrated that the G1/S transition dynamics
are governed by a bistable Rb-E2F switch, whose stochastic activation may also account for the G0 exit curve. Here, we propose that the two
phenomenological models in essence reflect different aspects of cell cycle reentry dynamics and can be recast into the framework of the mechanistic
model.
doi:10.1371/journal.pbio.1000488.g001

Reconciling Phenomenological Cell-Cycle Models
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(0,15th h), the difference in E2F level between the non-activated

and activated cells was small. The difference between the two

modes became increasingly clear, resulting in distinctive bimodal-

ity starting at 18th h. In contrast, upon strong serum stimulation

(5% BGS), E2F activation was more synchronous. The whole cell

population gradually switched to the high mode with greater

temporal synchrony without demonstrating detectable bimodality

at any tested time point (Figure 3A). It is possible that noise may

partition the cell population into two subsets (active and inactive

towards proliferation) temporarily even at high serum stimulation.

However, simulations suggest that accumulation of E2F in the

activated cells at earlier time points may not be significant enough

to result in any detectable difference between the two subsets

(Figure S2A).

Based on the distribution of E2F in Figure 3A, we calculated the

percentage of non-activated cells and obtained a G0 exit curve for

each serum condition (Figure 3B). Consistent with predictions in

Figure 2B, we observed an increase in KT and decrease in TDP for

increasing serum concentration (KT = 0.03160.0036 h21 and

TDP = 5.161.1 h at 0.3% serum, and 0.1660.011 h21 and

1.160.27 h at 5% serum), reminiscent of modulation of the a-

curve by serum [11,15]. Consistent with model predictions in

Figure 2C–D, we observed increase in KT and decrease TDP for

increasing serum concentrations (Figure 3C and 3D). An indepen-

dent experiment under the same conditions on a different day

exhibited similar dependence of KT and TDP on serum (Figure S3).

Modulation of Stochastic E2F Activation by Strength of
CycE-Mediated Feedback

The temporal dynamics of biological systems often depend

strongly on network parameters [39].Consequently, the transition

rate of cell cycle entry may be modulated by nodal perturbations.

This is exemplified in a recent study on the yeast cell cycle [40],

which demonstrated that a positive feedback by G1 cyclins is

responsible for temporal coherence in gene expression and proper

division timing of yeast cells. Loss of this feedback control in the

cell cycle machinery was shown to promote incoherent gene

expression and abnormal delays of yeast budding. Interestingly, a

Figure 2. Simulated temporal dynamics in E2F activation using the stochastic Rb-E2F model. (A) Stochastic simulations (25 events)
exhibit variable time delays in E2F activation, as shown in gray lines. Two distinct modes of E2F (low and high) are clear and can be separated by a
switching threshold (horizontal dotted red line). The inset shows the distribution of E2F at the end of 5,000 simulations (time = 50 h). The minimum
time required to reach this threshold is defined as the switching time (vertical dotted red line). In contrast to the stochastic simulations, the
deterministic simulation has the same trajectory for a given set of parameters (black line). (B) The percentage of G0 cells over time (G0 exit curve) is
plotted for a population of 5,000 simulated cells stimulated at strong (red line, S = 5) and weak (blue line, S = 0.5) input concentrations. The G0 exit
curve for the strong input is fitted with an exponential function (black dotted line), N tð Þ~N0e{KT� t{TDPð Þ ; N tƒTDPð Þ~N0 , where N0 ( = 100%) is the
initial percentage of cells in G0, KT is the transition rate, and TDP is the population time delay (see Text S2). For increasing input strength, the transition
rate was predicted to increase (KT = 0.02960.0014 h21 for weak input and 0.1660.0076 h21 for strong input) and the time delay was predicted to
decrease (TDP = 18.061.2 h for weak and TDP = 7.760.27 h for strong input). (C) KT was predicted to increase with increasing input strength and reach
a plateau at sufficiently strong input. The error bars in KT and TDP represent the Monte-Carlo standard deviation of the estimated TP model
parameters (see Text S2 for more details). (D) TDP was predicted to decrease with increasing input strength.
doi:10.1371/journal.pbio.1000488.g002

Reconciling Phenomenological Cell-Cycle Models
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similar feedback module through a G1 cyclin (CycE) can be found

in the Myc-Rb-E2F network also, suggesting its potential role in

the control of temporal dynamics.

To investigate modulation of the transition rate by nodal

perturbations in the Myc-Rb-E2F network, we introduced in silico

perturbations of one particular node: the CycE/Cdk2 complex, which

forms the CycE-mediated positive feedback loop. Our bifurcation

analyses predict that weakening of the CycE-mediated positive

feedback loop will desensitize the Rb-E2F bistable switch to serum

stimulation, requiring a higher critical serum concentration (Figure 4A)

for E2F activation. Similarly, we predict desensitization to serum when

CycD is down-regulated or when Rb is up-regulated (unpublished

data). Such desensitization is expected to modulate the temporal

dynamics of E2F activation. When the positive-feedback strength by

CycE is weakened, our simulations in Figure 4B (corresponding

simulated distributions in Figure S4) predicted increase in the time

delay and decrease in the transition rate. For strong feedback strength,

KT was estimated to be 0.1760.0090 h21. This value was reduced to

0.1560.006 h21 and 0.1260.0054 h21 for intermediate and weak

feedback strength, respectively. In contrast, TDP for strong feedback

input ( = 7.460.25 h) was predicted to increase to 8.560.53 h for

intermediate feedback strength, and to extend further to 10.860.15 h

for weak feedback strength. Similar dependence of KT and TDP on the

feedback strength was predicted for all serum concentrations

(Figure 4C and 4D).

To test these predictions experimentally, we perturbed the Myc-

Rb-E2F network by applying varying concentrations of a cyclin-

dependent kinase inhibitor (CVT-313), which has a much higher

affinity towards Cdk2 than to other Cdks (Figure S5) [41,42]. In

the context of the current study, which focuses on the cellular

dynamics leading to E2F activation, the impact of the Cdk2

inhibitor is primarily the inhibition of the CycE/cdk2 complex.

We note that the inhibitor would also affect other components of

cell cycle regulation, (e.g., the CycA/cdk2 complex), which were

not considered in the model due to their activity mainly

downstream of the cell cycle entry point. When the CycE node

was perturbed experimentally, we observed inhibitor dose-

dependent changes in E2F activity, as measured by GFP

fluorescence in the E2F-d2GFP cells. As shown in Figure 5A,

increasing dose of the inhibitor drug reduced the fraction of cells in

the high E2F mode at 24 h. For example, without the Cdk2

inhibitor, less than 1% serum was required for E2F activation in

Figure 3. Experimental validation of the predicted temporal dynamics. (A) The temporal dynamics of a cell population depends on serum
concentration. At 0th h E2F-d2GFP cells were synchronized in quiescence by serum-starvation (24 h at 0.02% serum). These cells were then
stimulated with either 0.3% or 5% serum, and corresponding GFP levels (reporting E2F activity) were determined by flow cytometry. The cell
population treated with 0.3% serum exhibited a bimodal distribution of GFP at the 24th h . In contrast, a monomodal distribution was observed at
24th h in the cell population treated with 5% serum. The dotted lines represent switching threshold, which is used to distinguish the low and high
modes of E2F. Here, the switching threshold was defined as 2.5 times the variance from the mean of the GFP distribution of serum-starved cells (or
GFP distribution at time 0). (B) Serum concentration modulates the temporal dynamics of E2F activation. The thresholds shown as dotted blue lines in
(A) were used to calculate the percentage of cells in the low mode of E2F. The two G0 exit curves showed that transition rate increased
(KT = 0.03160.0036 h21 at 0.3% serum and 0.1660.011 h21 at 5% serum) and time delay decreased (TDP = 5.161.1 h at 0.3% and 1.160.27 h at 5%
serum) with increasing serum concentration. (C) The transition rate increased with serum concentration. (D) The time delay decreased with serum
concentration. Data in panels A and B and those in panels C and D were from two independent experiments.
doi:10.1371/journal.pbio.1000488.g003

Reconciling Phenomenological Cell-Cycle Models
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half of the cell population. With 2 mM Cdk2 inhibitor, 2% serum

was required to achieve a similar fraction of E2F activation. Such

desensitization to serum stimulation was seen for all inhibitor

concentrations tested (Figure 5A).

Next, we tested modulation of temporal dynamics by the Cdk2

inhibitor. At 2% serum, we applied the Cdk2 inhibitor (CVT-313,

2 mM) to monitor its effect on E2F activation over time. Our results

in Figure 5B show that the transition rate of the cell population

decreased (from KT = 0.07860.0073 to 0.05860.0070 h21) and

time delay increased (from TDP = 9.160.70 to TDP = 12.060.86 h)

with addition of the Cdk2 inhibitor. Such a decrease in KT with the

inhibitor drug is consistent with our model predictions in Figure 4

and was observed for all serum concentrations tested, as shown in

Figure 5C (distributions of E2F in Figure S6). As predicted, time

delay generally decreased with increasing serum concentrations and

it increased in the presence of the Cdk2 inhibitor (Figure 5D). It is

noteworthy that the estimated time delay has a large error at low

serum concentrations, leading to a non-monotonic dependence of

TDP on serum concentrations. This is most likely due to the small

number of E2F-activated cells at low serum at earlier time points.

This makes estimation of parameters using least squares challeng-

ing, giving rise to large errors. We conducted another experiment

on a different day under the same experimental conditions and

observed similar trends in KT and TDP, as shown in Figure S7.

Mapping Simulated Stochastic E2F Activation into TP and
GC Model

Throughout this study, we have analyzed the temporal

dynamics of E2F activation by extracting a set of parameters

Figure 4. Nodal perturbation at CycE alters temporal dynamics of E2F activation. (A) The strength of the CycE-mediated positive feedback
determines the sensitivity of the system to serum stimulation. Bifurcation analyses of the Rb-E2F switch with weak (Rb phosphorylation rate constant
kP4 = 9 h21, blue), intermediate (kP4 = 14 h21, black), and strong strength (kP4 = 18 h21, red) of the positive feedback were performed. For decreasing
strength of the positive feedback, the system became less sensitive to the input strength, requiring greater critical input strength for E2F activation.
(B) The temporal dynamics can be modulated by adjusting the feedback strength. At the saturating input level (S = 10), the Rb-E2F switch was
subjected to varying degrees of feedback strength mediated by CycE. G0 exit curves from 5,000 simulations were constructed for strong (red line,
kP4 = 18 h21), intermediate (black line, kP4 = 14 h21), and weak (blue line, kP4 = 9 h21) feedback strengths. For decreasing strength of the positive
feedback, our simulations predicted a decrease in the transition rate (KT = 0.1760.0090 h21 for strong, 0.1560.006 h21 for intermediate, and
00.1260.0054 h21 for weak feedback strength), and increase the time delay (TDP = 7.460.25 h for strong feedback, 8.560.53 and 10.860.15 h for
intermediate and weak feedback strength, respectively). (C) Increase in KT for increasing strength of the positive feedback was predicted for all input
strengths. (D) Decrease in TDP for increasing strength of the positive feedback was predicted for all input strengths.
doi:10.1371/journal.pbio.1000488.g004

Reconciling Phenomenological Cell-Cycle Models
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defining the TP model (transition rate and time delay). This

parameter extraction establishes a connection with the mechanistic

Rb-E2F model. Similarly, the GC model parameters (mean

growth rate r and its variance s, see Text S2 for further details)

can be extracted from the stochastic dynamics of E2F activation,

and a connection between the GC model and the mechanistic Rb-

E2F model can also be established. The GC parameters were

estimated from both simulation results in Figure 2 and

experimental data in Figure 3, as shown in Table 1. These results

show increasing mean growth rate and decreasing variance

(normalized to the mean) with increasing input strength.

In addition, we predicted the dependence of the strength of the

CycE-mediated positive feedback on the GC model parameters, as

shown in Figure 6. Consistent with Table 1, our results predicted

increasing growth rate (Figure 6A) and decreasing normalized

variance (Figure 6B) for increasing input strength. However,

decreasing the strength of the CycE-mediated positive feedback

was predicted to reduce mean growth rate without affecting its

normalized variance significantly. Such parameter extraction

defining the phenomenological models provides a quantitative

mapping between the phenomenological models and the mech-

anistic Rb-E2F model. It is noteworthy that both TP and GC

Figure 5. Experimental desensitization of the Rb-E2F switch to serum by a Cdk2 inhibitor drug. (A) E2F activity, measured by the GFP
signal in the E2F-d2GFP cells, was assayed under varying concentrations of Cdk2 inhibitor CVT-313 (0.5, 1, 2, 3, and 5 mM) and serum (0.2%, 0.3%,
0.5%, 0.7%, 1.0%, 2.0%). After 24 h of the inhibitor drug treatment in DMEM supplemented with varying serum concentrations, the E2F-d2GFP cells
were collected and their GFP signals were assayed by flow cytometry. For each serum and inhibitor drug condition, the fraction of cells with GFP
signals above a threshold level was counted and plotted. For a given serum concentration, increasing drug dose led to a decreasing fraction of cells
at the high E2F mode. Increasing serum concentration resulted in an increasing fraction of cells at the high E2F mode. (B) The temporal dynamics of
E2F activation is altered when CycE-mediated positive feedback is weakened. At 2% serum, we applied Cdk2 inhibitor CVT-313 at 2 mM (blue curve)
and monitored the effect on E2F activation over time by flow cytometry. Compared to the case without drug (red curve), the transition rate
decreased from 0.07860.0073 to 0.05860.0070 h21and the time delay increased from TDP = 9.160.70 to TDP = 12.060.86 h. (C) Targeting the CycE-
mediated positive feedback modulates the transition rate. In an independent set of experiments, time-courses of cell populations treated with
varying serum concentrations were obtained for a given drug dose, and the transition rate was calculated for each serum condition. The transition
rate increased with serum concentration and reached a plateau at saturating serum concentrations in the absence of the inhibitor, but it continued to
increase in the presence of the inhibitor. Overall, KT was greater without the inhibitor than with it. (D) Time delay decreased with increasing serum
concentration in the absence of the inhibitor and reached a plateau at the saturating serum concentration. In the presence of the inhibitor, however,
TDP continued to decrease. Overall, TDP was greater with the inhibitor than without it.
doi:10.1371/journal.pbio.1000488.g005
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models fit the data with comparable levels of uncertainty in the

estimated parameters, suggesting that both models may provide

similarly good fits to the stochastic dynamics of E2F activation.

Discussion

Focusing on E2F activation, we have shown that the temporal

variability in cell cycle entry from quiescence can be quantitatively

modeled by stochastic activation of a bistable Rb-E2F switch [7].

In addition, we have shown that the degree of such variability can

be modulated by varying the input strength or by perturbing the

network parameters.

Our model predictions are overall consistent with experimental

measurements. In particular, our analysis indicates that serum and

a Cdk2 inhibitor drug exert opposite influences on the temporal

dynamics of E2F activation: transition rate increases and time

delay decreases with increasing serum, but transition rate

decreases and time delay increases with increasing Cdk2 inhibitor

concentrations. We suggest that such a well-calibrated stochastic

model for the Rb-E2F switch may guide further experimental

analyses to gain insights into the system-level dynamics underlying

cell cycle entry. For example, our model predicts that reducing the

CycD/Cdk4,6 activity may have similar effects on temporal

dynamics of E2F activation as the Cdk2 inhibitor, while knocking

down Rb may increase transition rate (unpublished data). In

addition, we can predict stochastic dynamics of E2F activation

under combinatorial perturbations including growth factors,

inhibitor drugs targeting the Myc-Rb-E2F network, or mutations

within this network.

Throughout this study, we have focused on a single transition

during cell cycle progression (quiescence to proliferation) due to its

experimental and computational tractability. To further simplify

analysis, we have chosen not to model cell division or growth

explicitly. Instead, the variability associated with these processes is

lumped into the extrinsic noise terms in our SDE model. More

explicit mechanisms to account for such variability may further

Table 1. Extraction of GC and TP model parameters from simulated and experimentally measured G0 exit curves.

TP Model Parameters GC Model Parameters

Serum (%) KT (h21) TDP (h) r (h21) s=r (h21)

Simulations 0.5 0.02960.0013 1861.3 0.2160.034 0.5660.067

1 0.07360.0037 9.760.49 0.8260.12 0.4960.053

2 0.1260.0053 8.560.35 2.560.31 0.4060.037

5 0.1660.0076 7.760.27 4.460.72 0.3660.044

Experiments 0.5 0.05060.0054 9.860.99 0.2560.19 0.3660.067

1 0.0960.0089 9.360.62 1.960.45 0.8060.13

2 0.1460.011 8.960.46 4.160.92 1.460.24

5 0.1660.011 6.560.40 3.260.70 1.360.21

In both simulations and experiments, we varied serum concentration only, while keeping all else the same. For each G0 exit curve, we extracted the TP and GC model
parameters.
doi:10.1371/journal.pbio.1000488.t001

Figure 6. Mapping the stochastic dynamics of E2F activation with the GC model. Simulation results from the stochastic Rb-E2F model are
fitted to the GC model with two parameters (adapted from the G1-rate model [16]), which is defined as T~1=R, where R*N r,sð Þ. R is a random
variable normally distributed with the mean growth rate r over the entire cell population and s is the standard deviation of the growth rate. The two
parameters of the GC model were approximated using least squares, and their error bars represent the Monte-Carlo standard deviations (see Text S2).
(A) Our simulations predicted increasing growth rate for increasing input strengths and positive feedback strengths (kP4 = 9, 14, and 18 h21 for blue,
black, and red lines, respectively). (B) No significant change in the normalized variance was predicted.
doi:10.1371/journal.pbio.1000488.g006
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improve the quantitative agreement between the modeling and the

experiment. For example, our simulation results suggest that the

major source of noise is extrinsic noise, while variability in the

initial conditions can lead to minor yet discernable change in the

temporal dynamics of E2F activation. This is evident when E2F

activation dynamics are compared under two conditions: varying

initial conditions and varying variance of the extrinsic noise (v) in

the stochastic model (see Materials and Methods). At a fixed

variance of the extrinsic noise, increasing variability in the initial

conditions (Gaussian-distributed with the mean being the base

initial conditions and various variance values, Var) is predicted to

decrease transition rate and time delay (Figure S8A–B). Similarly,

increasing v without any variability in the initial conditions

(Var = 0) is predicted to decrease transition rate and time delay

(Figure S8C–D), but these changes by extrinsic noise are predicted

to be significantly greater than those by initial conditions. These

decreases in KT and increases in TDP reflect the loss of synchrony

in E2F activation due to increasing extrinsic noise or initial

condition variability. This may explain reduced time delay in

actively growing cells compared to that in quiescent cells [14].

Equally important, we further show that these predicted

stochastic dynamics of the Rb-E2F model can be quantitatively

mapped into two lines of phenomenological models reflecting

seemingly conflicting views: the TP model and the GC model. For

a given set of parameters defining the stochastic model, the

simulated stochastic E2F activation at the population level can be

uniquely described by a set of parameters defining the TP model

or the GC model (compare Figure 4C–D and Figure 6A–B).

Furthermore, different sets of parameters in the stochastic model

would lead to different parameters in the TP or the GC models.

We propose that this mapping provides a simple conceptual

framework that reconciles the different views reflected in the TP

and GC models, which have been a source of unresolved debate

over the last several decades. In other words, the stochastic model

can be considered as a common mechanistic basis for the two

seemingly different models.

During the mapping from our stochastic model to the TP or GC

models, details associated with individual signaling reactions are

necessarily lost in the resulting TP or GC models, pointing to their

limitations in offering mechanistic insights. However, a by-product

of this mapping is a potential, unappreciated utility of the TP and

GC models. On one hand, these phenomenological models are

simple and are able to provide quantitative description of the

population-level dynamics associated with variable cell cycle entry.

On the other, specific changes in the underlying reaction networks

can be manifested in changes in the parameters in these simple

models. As such, together with a mechanistically based model, the

TP and GC models can serve as a concise platform to define

quantitative phenotypes that facilitate classification of cell types or

cell states.

This utility may be particularly useful for cancer diagnosis, since

most cancers have defects in the Myc-Rb-E2F signaling pathway

[43,44]. Recent approaches for cancer classification involve

microarray-based gene expression profiling to develop cancer

signatures [45], which have been used to reveal the activation

status of oncogenic signaling pathways [46]. Here we suggest that

oncogenic phenotypes resulting from deregulation in these

pathways may also serve as cancer signatures. Using the mapping

technique defined in this work, we can develop a library of

predicted phenotypes (defined as TP or GC model parameters)

based on the Myc-Rb-E2F network under various nodal mutations

or stimulatory inputs. This library can be correlated with the

oncogenic phenotypes (defined as TP or GC model parameters) of

an unknown cancer cell type. In principle, this correlation can be

used to infer the activation status of the Myc-Rb-E2F network of

the cancer cell type. For a small number of test conditions, this

may be challenging owing to the stochastic dynamics of cell cycle

entry. However, increasing the number of test conditions may

enhance the diagnostic potential of this approach.

Materials and Methods

Development of a Stochastic Rb-E2F Model
The deterministic version of the Rb-E2F model, developed in

our previous work [7], served as a basis for the stochastic Rb-E2F

model. To capture stochastic aspects of the Rb-E2F signaling

pathway, we adopt the chemical Langevin formulation [25,26,47]

as shown in Eqn (1).

dXi tð Þ
dt

~
XM
j~1

vjiaj X tð Þ½ �z
XM
j~1

vjia
1=2

j X tð Þ½ �Cj tð Þzvj tð Þ

where Xi(t) represents the number of molecules of a molecular

species i (i = 1, …, N) at time t, and X(t) = (X1(t), …, XN(t)) is the

state of the entire system at time t. X(t) evolves over time at the rate

of aj[X(t)] (j = 1, …, M), and the corresponding change in the

number of individual molecules is described in vji. Cj tð Þ and vj tð Þ
are temporally uncorrelated, statistically independent Gaussian

noises. This formulation retains the deterministic framework (the

first term), and reaction-dependent and reaction-independent

noise. The concentration units in the deterministic model were

converted to molecule numbers, so that the mean molecule

number for E2F would be approximately 1,000. We assumed a

mean of 0 and variance of 1 for Cj (t), and a mean of 0 and

appropriately determined variance for vj (t) (see Text S1 for more

details). The resulting stochastic differential equations (SDEs) were

implemented and solved in Matlab.

Cell Culture Conditions
Actively growing E2F-d2GFP cells [7] were serum-starved in

Dulbecco’s modified Eagle’s medium (DMEM) with 0.02% of

bovine growth serum (BGS). After 24 h of serum starvation, they

were stimulated with varying serum concentrations for cell cycle

entry in the presence or absence of Cdk2 inhibitor CVT-313 (from

Calbiochem: Cat #238803). Cell cycle progression was blocked at

the DNA synthesis stage by hydroxyurea (HU block), which we

have shown has insignificant impact on the GFP signal [7]. At

various time points, these cells were collected and fixed in 1%

formaldehyde for fluorescence assay.

Fluorescence Assay with Flow Cytometry
E2F-d2GFP rat embryonic fibroblasts were assayed for a

destabilized green fluorescent protein reporter (d2GFP) for E2F

activity. The intensity of d2GFP was measured with a flow

cytometry system (BD FACSCanto II).

Western Blots
E2F-d2GFP cells were serum-starved (BGS = 0.02%) for 24 h

before they were treated with varying concentration of the Cdk2

inhibitor (CVT-313, EMD # 238803) and serum. After 24 h of

serum/inhibitor drug treatment, cell lysates were collected and

Western blotting was conducted with primary antibodies recog-

nizing Rb phosphorylation at Cdk4-specific serine 780 (Santa

Cruz, #sc-12901-R) and at Cdk2-specific threonine 821 (Santa

Cruz, #sc-16669-R). These were conjugated with anti-rabbit

secondary antibodies (GE Healthcare, #NA934) for detection. As

a loading control, actin was measured with actin-recognizing
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primary antibodies (Santa Cruz, #sc-8432) conjugated with anti-

mouse secondary antibodies (GE Healthcare, #NA9310).

Supporting Information

Figure S1 A schematic of the Rb-E2F bistable switch.
Here, Rb represents the entire Rb family (pRB, p107, and p130)

and E2F represents all activating E2Fs (E2F1, E2F2, and E2F3a).

In quiescent cells E2F is bound by Rb and its transcriptional

activities are repressed. Growth stimulation removes the Rb

repression by upregulating cyclin D (CycD), which, in complex

with Cdk4,6, phosphorylates Rb to release E2F. In addition,

growth stimulation induces a transcription factor Myc that

upregulates CycD. The free form of E2F synergizes with Myc to

induce its own transcription, forming feed-forward and positive

feedback loops. Subsequently, E2F activates the transcription of

Cyclin E (CycE), which forms a complex with Cdk2 to further

remove Rb repression by phosphorylation, constituting another

positive feedback loop.

Found at: doi:10.1371/journal.pbio.1000488.s001 (0.39 MB TIF)

Figure S2 Simulated temporal dynamics of E2F activation
by the full model and a minimal model. (A) The Rb-E2F

bistable switch was stimulated with weak (S = 0.5) and strong (S = 5)

input strengths. E2F distributions from 1,000 simulations were sampled

at various time points for both conditions. For weak input strength,

bimodality was predicted to emerge at around 16th hour. At strong

input strength, however, bimodality was expected to be less clear. (B) A

minimal model can be used to recapitulate the temporal dynamics of

the bistable Rb-E2F switch. The model describes activity of a molecule

X:
dX

dt
~ka

S½ �
1z S½ �

� �
X½ �2

1z X½ �2

 !
{ X½ �zkb, where S is the input

strength, ka ( = 5) is the lumped rate term for synthesis and feedback

strength, and kb ( = 0.1) is a basal synthesis term. Bifurcation analysis of

the minimal bistable model shows hysteresis. (C) This minimal model

was converted to a stochastic model using the chemical Langevin

formulation. The transition rates were calculated for cell populations

stimulated at various input strengths. The transition rate increased with

input strength and reached a plateau at sufficiently high input strength.

(D) In the minimal bistable model, the time delay decreased with

increasing input strength and reached a plateau at sufficiently high

input strength.

Found at: doi:10.1371/journal.pbio.1000488.s002 (0.71 MB TIF)

Figure S3 Independent time-course measurements of
GFP signal reporting activity. GFP signal under the same

experimental conditions as Figure 3 was measured at varying time

points with flow cytometry. (A) For 0.3% serum, the transition rate

and time delay were estimated to be 0.02260.0041 h21 and

10.061.8 h, respectively. At high serum concentration ( = 5%), the

transition rate increased to 0.1160.0099 h21 and time delay

decreased to 7.960.55 h. (B) KT increased with serum concen-

tration. (C) TDP decreased with serum concentration.

Found at: doi:10.1371/journal.pbio.1000488.s003 (0.28 MB TIF)

Figure S4 Predicted modulation of the temporal dy-
namics of E2F activation. Temporal dynamics of E2F

activation were simulated at varying input strengths

(weakRS = 0.5, intermediateRS = 1, and strongRS = 5) and

varying CycE-mediated positive feedback strengths

(strongRkP4 = 18 h21 and weakRkP4 = 9 h21). With strong

positive feedback (PFB), bimodality was predicted for weak input

while monomodality (E2F ON) was predicted for intermediate and

strong stimulations. With weak positive feedback, the percent-

age of E2F activation was predicted to decrease for weak and

intermediate input strengths. For strong input, however, the effect

of the positive feedback strength was minor.

Found at: doi:10.1371/journal.pbio.1000488.s004 (0.54 MB TIF)

Figure S5 Specificity of the Cdk2 inhibitor. To demon-

strate the effect of the Cdk2 inhibitor on Cdk2 kinase activity, we

measured Rb phosphorylation at the Cdk2-specific and Cdk4-

specific residues for varying inhibitor concentrations. An isogenic

population of serum-starved E2F-d2GFP cells was used for

Western blotting. In serum-starvation condition (serum = 0.02%),

Rb phosphorylation at either residue was negligible. With serum

stimulation (serum = 10%), a significant increase in Rb phosphor-

ylation at both residues was observed. For increasing Cdk2

inhibitor concentration, Rb phosphorylation efficiency decreased

at the Cdk2-specific residue, but no significant change was

observed at the Cdk4-specific residue.

Found at: doi:10.1371/journal.pbio.1000488.s005 (0.48 MB TIF)

Figure S6 Experimentally measured E2F time courses
for varying serum concentrations, in the absence or
presence of the Cdk2 inhibitor drug (at 2 mM). At 0th h

E2F-d2GFP cells were synchronized in quiescence by serum-

starvation (24 h at 0.02% serum), stimulated with varying serum

concentrations (with or without the Cdk2 inhibitor drug), and

measured for GFP (reporting E2F activity) by flow cytometry at

the indicated time points.

Found at: doi:10.1371/journal.pbio.1000488.s006 (1.62 MB TIF)

Figure S7 E2F time-courses under varying serum
concentrations in the absence or presence of Cdk2
inhibitor (at 2 mM) performed on a separate day. (A)

G0 exit curves in the absence and presence of the Cdk inhibitor

(2% BGS). Addition of the inhibitor reduced the transition rate

from 0.1060.0081 to 0.09060.0091 h21 and increased the time

delay from 7.760.55 to 9.160.67 h. (B) Transition rate as a

function of serum concentration in the absence or presence of the

Cdk2 inhibitor. (C) Time delay as a function of serum con-

centration in the absence or presence of the Cdk2 inhibitor. (D)

E2F distribution over time in the presence or absence of the Cdk2

inhibitor.

Found at: doi:10.1371/journal.pbio.1000488.s007 (0.80 MB TIF)

Figure S8 Variability in the initial conditions versus in
the rates of the chemical reactions. The effects of variability

in the initial conditions and in the rates of the chemical reactions

were evaluated on the temporal dynamics of E2F activation. With

all else the same, our simulation results predicted that transition

rate (A) and time delay (B) would decrease significantly as v was

increased from 25 to 50. To describe variability in the initial

condition, we assumed that the initial concentrations for Rb and

the Rb-E2F complex were Gaussian-distributed with the mean

being their base value and varying variance levels. At a fixed

variance of extrinsic noise (v= 50), our simulation results

predicted that transition rate (C) and time delay (D) would

decrease slightly with increasing variance of the initial conditions.

Overall, the activation dynamics of E2F is much more sensitive to

changes in extrinsic variability than those in the initial condition.

Found at: doi:10.1371/journal.pbio.1000488.s008 (0.25 MB TIF)

Text S1 Model development.

Found at: doi:10.1371/journal.pbio.1000488.s009 (0.27 MB

DOC)

Text S2 Calculation of metrics: TP and GC model
parameters.

Found at: doi:10.1371/journal.pbio.1000488.s010 (0.04 MB

DOC)
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