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Despite intensive ongoing research, key aspects of the spatial-temporal evolution of the 2001 foot and mouth disease (FMD)
epidemic in Great Britain (GB) remain unexplained. Here we develop a Markov Chain Monte Carlo (MCMC) method for
estimating epidemiological parameters of the 2001 outbreak for a range of simple transmission models. We make the
simplifying assumption that infectious farms were completely observed in 2001, equivalent to assuming that farms that were
proactively culled but not diagnosed with FMD were not infectious, even if some were infected. We estimate how transmission
parameters varied through time, highlighting the impact of the control measures on the progression of the epidemic. We
demonstrate statistically significant evidence for assortative contact patterns between animals of the same species. Predictive
risk maps of the transmission potential in different geographic areas of GB are presented for the fitted models.
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INTRODUCTION
The 2001 FMD epidemic in the UK had a substantial cost in

human, animal health and economic terms (Alexandersen et al.

[1], Kao [2]). Understanding the risk factors underlying the

transmission dynamics of that epidemic and evaluating the

effectiveness of the control measures are essential to minimise

the scale and cost of any future outbreak. Epidemic modelling

[3,4,5–7] proved critical to decision making about control policies

which were (in some cases controversially) adopted to control the

2001 epidemic [8–10]. Modelling now has a ‘peace-time’

contingency planning role.

One weakness of the modelling studies undertaken in 2001 was

the relatively ad-hoc nature of the parameter estimation methods

employed. In their first paper, Ferguson et al. [4] used maximum

likelihood methods to fit to the observed incidence time series, but

did not attempt to fit to the spatio-temporal pattern of spread. In

their later work, the same authors developed a more robust

method for estimating species-specific susceptibility and infectious-

ness parameters and spatial kernel parameters (see Supplementary

Information to [3]), but at the time the statistical basis for the

methods developed was lacking. In retrospect, the methods

developed turned out to be closely related to those developed

during the SARS epidemic by Wallinga and Teunis [11], although

the earlier work incorporated population denominator data to allow

for spatial- and species-based heterogeneity in disease transmission.

Nevertheless, the methods employed had the limitation of not being

fully parametric, meaning they could not be extended to fit arbitrary

transmission models to the observed data. Keeling et al. [5] used

maximum likelihood methods to estimate transmission parameters,

but it was also supplemented by more ad hoc least-squares matching

to regional incidence time series.

Therefore there remains a need to develop rigorous modern

statistical approaches for parameter estimation of non-linear

models for the 2001 FMD outbreak. Bayesian Markov Chain

Monte Carlo (MCMC) techniques are the best established such

methods and have been successfully employed in the analysis of

a range of spatiotemporal outbreak data in the past [12–14], as

well as to purely temporal incidence data [15,16]. Here we

develop MCMC-based inference models for the 2001 FMD

epidemic in GB. The models examine: the extent to which

transmission was spatially localised and the temporal variation in

transmission, species-specific variation in susceptibility, infectious-

ness and heterogeneity in contact rates between and within

species.

METHODS

Data
We take the farm as the unit of our study and ignore the possible

impact of within-farm epidemic dynamics. Thus we implicitly

assume disease spread within a farm is so rapid as to be practically

instantaneous, with all animals on a farm becoming infectious at

the same time.

Our data consists of information on all the farms in the UK

listed in the 2000 agricultural census [see http://www.defra.gov.

uk/footandmouth/cases/index.htm ]. There were a total of

134,986 farms listed in that dataset and uniquely identified by

their County/Parish/Holding (CPH) number. Their spatial

coordinates are provided together with the number of animals

by species within each farm. A partition of all GB farms according

to the animal types represented is shown in Figure 1a. Their

geographical distribution is represented in Figure 1b as the

number of farms per 565 km. Notice the high density areas in the

North West (Cumbria), South West (Devon), Wales and Scotland

where the main epidemic foci developed. There is also an area of

high density in the Shetland Islands corresponding to very small

crofter smallholdings. Figure 1c and d show the numbers of sheep

and cattle kept per 565 km square.

During the 2001 FMD outbreak, a total of 2026 infected premises

(IPs) were recorded – farms where FMD was diagnosed, and
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which were subsequently culled. The IP dataset contains, for each

farm, the estimated date of infection (determined by a clinical

evaluation of the age of lesions on affected animals), and the dates

of disease reporting, confirmation and culling.

A total of 7457 other (non-IP) farms were also culled – mostly as

contiguous premises (CPs, about 3103) or dangerous contacts (DCs, about

1287), but some under other local culling policies used in Cumbria

and Scotland. For instance about 1846 (79%) out of a total of 2342

sheep farms in Cumbria had all sheep culled under the ‘‘local

3 km radial sheep cull’’ policy adopted there. Some of the farms

(about 30) were recorded both as DCs and CPs. Multiple records

per farm were often found in the disease control management

system dataset, and it was often unclear whether this was due to

data entry errors or as a result of sequential species-specific culls on

the same farm. In our analysis we therefore considered the whole

farm to be culled at the last recorded date of culling.

The most frequent species are cattle and sheep (see Figure 1a).

There are less than 3% farms with pigs only and only 10 farms

with just pigs were diagnosed as IPs in 2001 (less than 1% of all the

IPs). This indicates a-priori that pigs contributed far less to the

2001 outbreak than many other FMD outbreaks (despite their

high levels of shedding [1,17]), and we therefore decided to discard

pigs-only farms from the current study to simplify the analysis. The

Sensitivity Analysis section shows that this simplification does not

significantly affect estimates of other epidemiological parameters.

We discarded another three IPs due to missing information or

possible mistakes regarding their location or number of animals,

leaving a total of 2013 IPs in our analysed dataset.

Model formulation
We model the epidemic as a space-time survival process [18]. The

total observation time T is the 240 days between 7th February and

5th October 2001. Each farm i at the location (xi, yi) is associated

with an infection time ti (if infected), a removal time ri (if

slaughtered) and two integers nc
i and ns

i representing, respectively,

the number of cattle and sheep on the farm. Sc and Ss represent

per-capita cattle and sheep susceptibility, respectively, while Ic and

Is represent per capita cattle and sheep infectivity. The

susceptibility is a relative measure of animal sensitivity to the

disease whereas infectivity represents the infectious risk posed by

an animal to others. We use a continuous kernel to describe how

the probability of contact between farms scaled with distance.

Transmission is naturally assumed to decrease with the distance

Figure 1. GB livestock population in 2000. (a) GB livestock farms partitioned according to the animal species kept. (b) Map of density of livestock
farms. The number of livestock farms in each 565 km is plotted. (c) As (b) but plotting numbers of sheep kept per 565 km square. (d) As (c) for cattle.
doi:10.1371/journal.pone.0000502.g001
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between farms according to the power law

k dij

� �
~ 1z

dij

a

� �{c

ð1Þ

where dij represents the Euclidian distance between the infected

farm i and the susceptible farm j. The parameters a (kernel offset)

and c (kernel power) are to be estimated. The kernel captures all

forms of movement and contact between farms and as such, the

use of a simple 2 parameter function is inevitably a highly

simplified representation of the true complexity of inter-farm

contacts. We examined other functional forms for the kernel (such

as those used in some other analyses [19]) but the resulting model

fits were much poorer than found using the power-law kernel

above.

Given the susceptibility and infectiousness parameters and the

kernel, the infection hazard from an infected farm j to a susceptible

farm i is then quantified by

bij~ nc
i ns

i

� �|fflffl{zfflffl}
susceptible farm i

ScIc ScIs

SsIc SsIs

 !
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

b

nc
j

ns
j

 !
|fflfflffl{zfflfflffl}

infectious farm j

|k dij

� �

~ Scnc
i zSsn

s
i

� �
Icnc

j zIsn
s
j

� �
k dij

� �

ð2Þ

This model is over-specified as stated, so we arbitrarily assume

Ss = 1 throughout, meaning Sc represents the ratio of cattle-to-

sheep susceptibility. For a constant (distance-independent) kernel

this is just a mass-action closed epidemic model with heteroge-

neous susceptibility and infectiousness. This model assumes

susceptibility and infectiousness parameters scale linearly with

the number of animals of different species on the farm, a relatively

strong assumption imposed for model parsimony reasons. The

mixing matrix embedded in (2) quantifies the 4 species-specific

mixing rates between animals on different farms: cattle-to-cattle

(ScIc) sheep-to-cattle (ScIs), cattle-to-sheep (SsIc) and sheep-to-sheep

(SsIs). This model formulation is identical to that used by Keeling et

al. [5], except for the functional form of kernel used.

The force of infection on a susceptible farm i at time t depends on the

whole history of events and is just

li tð Þ~
P

j

bijLij tð Þ ð3Þ

where

Lij tð Þ~
1, if the farm i is susceptible and the farm j is

infectious at the time t

0, otherwise

8><
>: ð4Þ

By default, we assume a latent period of 1 day (latency is

represented within the function L); i.e. farms are infectious the day

after they are infected. However, we test the sensitivity of our

estimates to the assumption by also examining latent periods of 2

and 3 days.

The probability density function that farm i is infected at time t

is then given by

pinfected
i (t)~li tð Þ exp {

ðt
0

li tð Þdt

2
4

3
5

Hence, the contribution that a farm i, observed to be infected at

time t, makes to the log likelihood is just:

linfected
i ~ log li tð Þð Þ{

ðt
0

li tð Þdt ð5Þ

A farm which is not infected contributes to the overall likelihood

the probability that it escapes infection during the observation

period, i.e. until the time it is culled (ri) or for the duration of the

epidemic T, whichever is shorter. Its contribution to the log

likelihood is therefore

lnon infected
i ~{

ðmin (ri,T )

0

li tð Þdt ð6Þ

The total log likelihood of the model can be written as

l~
X

i

linfected farms
i z

X
i

lnon infected farms
i ð7Þ

We then extend the simple model above by introducing an

additional parameter to understand to what extent the trans-

mission within species is altered by between species transmission.

The parameter r quantifies the degree to which mixing between

species is assortative – with r,1 representing assortative mixing

and r.1 disassortative mixing. The interaction model still

assumes constant parameters with respect to time along the whole

observation period T. The mixing matrix defined in equation (2)

becomes

ScIc rScIs

rSsIc SsIs

� �
ð8Þ

where we again fix Ss to be 1 to avoid model over specification.

The force of infection (3) and model log likelihood equation (7)

change accordingly.

Assuming transmission parameters were constant in time

throughout the epidemic is obviously a crude simplification.

However, allowing infectivity to vary continuously in time results

in an over-specified model and problems of parameter identifica-

tion and confounding. We therefore examined two sets of models

in which changes in transmission parameter were restricted to 2

significant points in time denoted by Tcut, namely 23rd February

(when the national ban on animal movements was introduced) and

31st March (when control measures were intensified and the so

called 24/48 hour IP/CP culling policy was introduced). Models

were respectively fitted to the individual case data from the start of

the epidemic (conditioning on the first infection) or from after 23rd

February (conditioning on the 54 farms that were already infected

by that date). A detailed history of the epidemic is given by Kao

[9].

We separately fitted model variants which assumed a discrete

change in parameters on 23rd February and on 31st March.

Confounding meant that only a very limited number of

parameters could be varied in time, so we examined the effect
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of varying infectiousness and kernel parameters separately. We

fitted four separate time-varying model variants: (i) varying the

cattle infectivity by a factor and keeping sheep infectivity constant

through time (Cattle Infectivity model); (ii) varying sheep in-

fectivity by a factor but not cattle infectivity (Sheep Infectivity

model); (iii) varying both cattle and sheep infectivity by the same

ratio (Cattle & Sheep Infectivity model); (iv) varying the kernel

parameters (Time Varying Kernel model). For the last model

variant we also fitted a version which includes non-assortative

mixing between species (see equation (8)). Hence the most general

mathematical expression of the transmission model is:

bij tð Þ~ nc
i ns

i

� �|fflffl{zfflffl}
susceptible farm i

ScIc tð Þ rScIs tð Þ

rSsIc tð Þ SsIs tð Þ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b

nc
j

ns
j

 !
|fflfflffl{zfflfflffl}

infectious farm j

|k dij ,t
� �

ð9Þ

where

Ic tð Þ~
Ipre

c , if tƒTcut

Ipost
c , otherwise

(
and Is tð Þ~

Ipre
s , if tƒTcut

Ipost
s , otherwise

(

k dij ,t
� �

~ 1z
dij

a tð Þ

� �{c tð Þ
~

1z
dij

apre

� �{cpre

, if i contacts j at time

tƒTcut

1z
dij

apost

� �{cpost

, otherwise

8>>>>>><
>>>>>>:

ð10Þ

The scripts pre and post are self-explanatory for time varying

parameters. When fitting models with time varying infectivity

parameters we actually fit Ipost and the ratio m = Ipre/Ipost we called

infectivity factor. This is a within species ratio, a parameter

directly fitted by the models, unlike the between species infectivity

ratio additionally calculated as explained later in the text (see

Parameter estimates section).

Note that all models above treat the epidemic as fully observed,

i.e. infection times are assumed to be known (when in fact only

estimated infection times are known – see Sensitivity Analysis

section), and only IPs are assumed to be infectious.

Statistical inference and model comparison
We adopt a Bayesian framework for statistical inference and use

MCMC methods for fitting the model to individual case data. This

is not strictly necessary, given our simplifying assumption that the

epidemic was completely observed, but it provides a more

consistent and robust framework within which to relax that

assumption in future work.

We obtained parameter estimates and equal-tailed 95% credible

intervals from the marginal posterior distributions of the fitted

parameters. For the basic model for instance we estimated the

relative cattle susceptibility, Sc, two infectivity parameters (Ic(t);Ic

and Is(t);Is for all t) and two kernel parameters (c(t);cpost;cpre;c
and a(t);apost;apre;a for all t).

We used the posterior mean deviance as a Bayesian measure of

fit or model adequacy as defined by Spiegelhalter et al. [20]. The

posterior density deviance is defined as:

D hð Þ~{2 log P yjhð Þf gzC

where log{P(y|h)} is the log-likelihood function for the observed

data vector y given the parameter vector h and C is a constant

which does not need to be known for model-comparison purposes

(being a function of the data alone). The smaller the mean

posterior deviance, the better the corresponding model fits the

data.

If the posterior deviance distributions for two different models

overlap significantly, it is necessary to use additional criteria to

compare model fit – namely a comparison of the relative

complexity of the models. The Deviance Information Criterion

(DIC) is perhaps the most general of such methods, being

a generalisation of the Akaike information criterion for Bayesian

hierarchical models [20]. We define the complexity of a model by

its effective number of parameters, pD, defined as

pD~E D hð Þ½ �{D E h½ �ð Þ

where E[ ] represents taking expectations (the posterior average).

The DIC is then defined as

DIC~pDzE D hð Þ½ �

A lower value of DIC corresponds to a better model. This

criterion offers flexibility for comparing non-nested models [20]

and it is straightforwardly computed within an MCMC algorithm.

We applied the classic random walk Metropolis Hastings

algorithm [21,22] and a block-sampling of parameters due to

the computationally expensive form of the likelihood [23,24]. A

log scale has been used for sampling as the parameters were all

positive definite and were expected to potentially vary by orders of

magnitude. However, linear scale sampling yielded similar results.

The convergence of the chains was also very much improved (see

Robert [25] for more on perfect sampling and reparameterization

issues) compared with sampling on a linear scale. The model was

coded in C and parallelized using OpenMP 2.0.

The MCMC sampler was allowed to equilibrate with

convergence being evaluated visually from the likelihood and

parameter traces. For the simpler models, 5,000 iterations were

sufficient for equilibration, while this increased to 20,000 for the

most complex models. Also, using log scale sampling, we verified

that the chains were able to converge even if started with initial

parameter values far from the final posterior mean values.

Posterior distributions were estimated from 100,000 iterations.

The rate of the acceptance varies from model to model. For the

baseline model we achieved a 25% rate of acceptance and for the

most complex model (8 parameters), a rate of approx 10%. These

values compare well with the ‘‘golden’’ acceptance rate for

Random Walk Metropolis Hastings of 23% (Roberts [26]).

We did not encounter common problems in MCMC estimation

like slow convergence and slow mixing (O’Neill [27]). There were

some correlations between parameters, mostly having biological

explanations (cattle and sheep infectivity for instance), but a careful

parameterization lowers them. We verified parameter estimates

were not dependent on parameterization choices – e.g. no

difference was seen whether we fitted species infectivity in-

dividually, or just fitted sheep infectivity and then the ratio of

cattle-to-sheep infectivity.

RESULTS

Parameter estimates
Table 1 lists the parameter estimates we obtained for a set of fitted

models conditioned only on the first infection whereas Table 2

presents the estimates for models conditioned on infections
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occurring up to 23rd February. The posterior deviances for each

set of models are plotted in Figure 2a and Figure 2b, respectively.

Figure 2a illustrates some clear conclusions. Of the two models

without time variation in parameters, the interaction model fits

significantly better than the baseline model without heterogeneous

mixing between species. However, fitting the interaction model

broadened the credible intervals of the infectivity parameter

estimates (Table 1), indicating (unsurprisingly) slight confounding

between the 4 infectivity and susceptibility parameters.

Of the models which allowed infectivity to vary on 23rd

February, allowing only cattle infectivity variation gave a slightly

better fit than varying sheep infectivity or both. However, of the

models with parameters which vary on 23rd February, the model

variants which allow the 2 kernel parameters to vary at that time

point fit substantially better (by both deviance and DIC criteria,

see Table 1) than those which just allow a species-specific variation

in infectivity. This is encouraging for the inference procedure, as

the main control measure initiated on that date was the banning of
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Figure 2. Posterior deviances. (a) Models conditioned on the first infection with parameters change at 23rd February. (b) Models conditioned on 23rd

February with parameters change at 31st March.
doi:10.1371/journal.pone.0000502.g002

Table 1. Models conditioned on the first infection and 23rd February time changing point if applicable. (95% equal-tailed credible
intervals).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model
Baseline
model

Interaction
model

Cattle
Infectivity
model

Sheep
Infectivity
model

Cattle & Sheep
Infectivity model

Time Varying
Kernel model

Time Varying
Kernel + Inter-
action model

Estimates Mean (SD)

Equal tailed 95% Credible Interval

Susceptibility Ratio Sc:
Sc

Ss

� �
6.86 (0.44)
(6.04,7.76)

5.95 (0.57)
(4.93, 7.09)

6.83 (0.44)
(6.02, 7.76)

6.81 (0.46)
(5.99, 7.77)

6.80 (0.45)
(5.97, 7.73)

6.74 (0.45)
(5.97, 7.73)

5.71 (0.55)
(4.62, 6.78)

Cattle Inf (Ic) (6108) (Overall or Post 23 Feb) 8.60 (1.06)
(6.69, 10.8)

11.9 (1.88)
(8.68, 15.90)

8.29 (0.99)
(6.47, 10.40)

8.55 (1.07)
(6.57, 10.80)

8.29 (0.99)
(6.63, 10.50)

8.31 (0.98)
(6.63, 10.50)

11.7 (1.89)
(8.64, 16.00)

Sheep Inf (Is) (6108) (Overall or Post 23 Feb) 1.43 (0.18)
(1.11, 1.82)

2.16 (0.31)
(1.65, 2.82)

1.37(0.17)
(1.05, 1.71)

2.47 (0.55)
(6.63, 10.50)

1.34 (0.17)
(1.05, 1.71)

1.30 (0.17)
(1.04, 1.7)

2.00 (0.28)
(1.52, 2.62)

Assortativity Factor (r) 0.47 (0.075)
(0.33, 0.63)

0.45 (0.075)
(0.31, 0.61)

Inf factor (m) Pre:Post 23rd Feb 3.17 (0.58)
(2.11, 4.38)

2.47 (0.55)
(1.54, 3.71)

2.11 (0.29)
(1.57, 2.70)

Kernel power (Pre 23rd Feb) 1.72 (0.098)
(1.54, 1.93)

1.69 (0.10)
(1.51, 1.92)

Kernel offset (Pre 23rd Feb) 690 (160)
(414, 1066)

694 (166)
(376, 1035)

Kernel power (Overall or Post 23rd Feb) 2.58 (0.05)
(2.49, 2.67)

2.56 (0.05)
(2.47, 2.66)

2.56 (0.05)
(2.50, 2.68)

2.58 (0.05)
(2.49, 2.68)

2.58 (0.05)
(2.50, 2.67)

2.68 (0.05)
(2.58, 2.78)

2.67 (0.05)
(2.56, 2.77)

Kernel offset (Overall or Post 23rd Feb) 1190 (104)
(1006,1412)

1175 (106)
(978, 1389)

1212 (102)
(1030, 1432)

1203 (108)
(1014, 1434)

1207 (97)
(1029, 1407)

1329 (118)
(1098, 1560)

1317 (116)
(1103, 1151)

Posterior deviance 29687 29662 29668 29684 29672 29555 29529

Complexity 4.6 5.1 5.7 5.7 5.7 6.5 7.2

DIC 29691 29667 29674 29689 29678 29561 29536

doi:10.1371/journal.pone.0000502.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

Britain 2001 FMD Epidemic

PLoS ONE | www.plosone.org 5 June 2007 | Issue 6 | e502



all animal movements – which would be expected to have a major

impact on the spatial component of the transmission. We found

strong evidence for the kernel decaying much more rapidly with

distance after 23rd February, with cpre = 1.72 (1.54, 1.93) before

23rd February and cpost = 2.68 (2.58, 2.78) after that date (Figure 3a

and Figure 3b). The parameter estimates are less precise before

23rd February (Table 1) due to the relatively small number of IPs

(about 57) before that date.

Looking at the most complex model (namely the interaction

model with time varying kernel), cattle were estimated to be 5.7-

fold (4.6, 6.8) more susceptible than sheep (see Figure 3c and

Table 1). Rather than mentioning animals’ specific infectivity (see

Figure 3d and Table 1), it is more informative to comment on the

cattle:sheep infectivity ratio parameter for the most complex fit

(this ratio does dot appear in the tables as it is not a model

parameter). We calculated it within the MCMC algorithm as the

ratio of the two species infectiousness for each sampled parameter

point. The most complex model suggests that cattle are 5.95-fold

(4.54, 7.63) more infectious than sheep (Figure 3e).

The parameter quantifying assortativity in mixing was estimated

at r = 0.45 (0.31, 0.61) – well below 1, the level at which mixing

between species is random (Figure 3f). By comparison with the

model with a time varying kernel but random mixing between

species, the effect of heterogeneous mixing between species

modified the between-species transmission as given by matrix
(1.9) as indicated below.

56:01 8:76

8:31 1:30

 !
?

66:81 5:14

5:26 2:00

 !

random mixing assortative mixing

ð11Þ

Cattle-to-cattle and sheep-to-sheep transmission is higher (by 19%

and 54% respectively) for the model with non-random mixing,

whereas the sheep-to-cattle and cattle-to-sheep transmissions

dropped by 41% and 37 % respectively.

Conditioned on 23rd February, 7 model variants have been

considered (Table 2 and Figure 2b). We examined the baseline

and interaction models (no change in parameters over time),

allowing cattle infectivity to vary on 31st March and both cattle

and sheep infectivity to vary by the same factor after 31st March

(with and without heterogeneity in mixing) and allowing both

kernel parameters to vary on 31st March.

Unsurprisingly, the kernel parameters were not significantly

different if allowed to be different before and after 31st March,

neither did this model prove to be the best fit. Overall, while the

variations in mean deviance (Figure 2b) seen between model

variants were much smaller than for the models conditioned on

the first infection (Figure 2a), the interaction model allowing for

time varying cattle infectivity gave the most adequate fit (measured

by both mean deviance and DIC, see Table 2).

We cannot statistically compare the two sets of models in

Table 1 and Table 2, as the data used are different for the two

cases. However, the parameter estimates from the best-fitting

models of each table are largely consistent. Each post-23rd

February estimated value from the best-fit model in Table 1 is

included in the corresponding pre-31st March 95% credible

interval of the best fit model in Table 2 (and vice-versa).

The most important message from the second set of models is

that all models with cattle time varying infectivity (best fit)

indicated higher values of infectivity after 31st March than before

(m = 0.73 (0.63, 0.83)) (Table 2). This may seem paradoxical but

reflects the fact that while culling (the effect of which is explicitly

included in the input data) dramatically reduced case incidence in

Table 2. Models conditioned on 23rd February and 31st March time changing point if applicable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Models
Baseline
model

Interact
model

Cattle
Infectivity
model

Cattle & Sheep
Infectivity
model

Cattle &Sheep
Infectivity +Inter
model

Cattle Infectivity
+ Interaction
model

Time Varying
Kernel model

Estimates Mean (SD)

Equal tailed 95% Credible Interval

Susceptibility Ratio Sc:
Sc

Ss

� �
7.24 (0.47)
(6.37, 8.21)

6.36 (0.57)
(5.25, 7.50)

7.35 (0.49)
(6.46, 8.34)

7.34 (0.49)
(6.44, 8.35)

5.95 (0.54)
(4.95, 7.03)

6.08 (0.6)
(4.95, 7.30)

7.35 (0.54)
(6,32, 8.49)

Cattle Inf (Ic) (6108) (Overall or Post 31st Mar) 7.64 (1.0)
(5.86, 9.75)

10.30(1.60)
(7.55, 13.7)

8.9 (1.17)
(6.8, 11.4)

8.41 (1.1)
(6.46, 10.8)

12.1 (1.81)
(9.02, 16.1)

13.5 (2.21)
(9.73, 18.2)

7.81 (0.54)
(6.32, 8.49)

Sheep Inf (Is) (6108) (Overall or Post 31st Mar) 1.31 (0.18)
(0.98, 1.70)

1.93 (0.27)
(1.45, 2.51)

1.32 (0.18)
(1.01, 1.71)

1.43 (0.19)
(1.07, 1.86)

2.24 (0.3)
(1.71, 2.91)

2.27 (0.3)
(1.71, 3)

1.33 (0.17)
(1.04, 1.72)

Assortativity Factor (r) 0.49 (0.08)
(0.34, 0.67)

0.51 (0.08)
(0.36, 0.68)

0.45 (0.08)
(0.3, 0.6)

Infectivity factor (m) Pre:Post 31st March 0.73 (0.05)
(0.63, 0.83)

0.85 (0.04)
(0.77, 0.92)

0.88 (0.04)
(0.81, 0.97)

0.72 (0.05)
(0.62, 0.82)

Kernel power (Pre 31st Mch) 2.61 (0.06)
(2.50, 2.73)

Kernel offset (Pre 31st March) 1216 (115)
(1015, 1464)

Kernel power (Overall or Post 31st March) 2.68 (0.06)
(2.58, 2.8)

2.67 (0.06)
(2.57, 2.78)

2.69 (0.06)
(2.58, 2.7)

2.68 (0.05)
(2.58, 2.7)

2.67 (0.05)
(2.57, 2.78)

2.67 (0.05)
(2.57, 2.78)

2.74 (0.07)
(2.62, 2.89)

Kernel offset (Overall or Post 31st March) 1344 (131)
(1114, 1617)

1334 (123)
(1116,1601)

1353 (128)
(1114, 1629)

1339 (123)
(1117, 1630)

1308 (114)
(1092, 1543)

1312 (120)
(1078, 1552)

1437 (130)
(1192, 1709)

Posterior deviance 28144 28122 28128 28136 27981 27968 28140

Complexity 4.6 4.9 5.6 5.4 6.3 6.5 6.9

DIC 28149 28128 28134 28142 27987 27975 28148

doi:10.1371/journal.pone.0000502.t002..
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Figure 3. Posterior densities for the estimated parameters from the most complex models conditioned on the first infection allowing for
parameter changes on 23rd Feb and interaction. (a) Spatial kernel powers c pre and post 23rd February. (b) Pre and post 23rd February estimated
kernels, a log-log scale plot. (c) Susceptibility ratios cattle:sheep and (d) Animals infectivity parameters as modified by interaction in time varying
kernel model. (e) Infectivity ratio cattle:sheep as calculated from the most complex model. (f) Assortativity parameter.
doi:10.1371/journal.pone.0000502.g003
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April, from May to September 2001, case incidence maintained

itself at a low level – but almost entirely within cattle farms. This

increase in cattle infectivity may therefore really reflect the impact

of reduced biosecurity and/or increased non-compliance with

movement controls.

Risk maps
It is informative to examine what our parameter estimates imply in

terms of geographic variation in transmission potential. Given the

parameter estimates for each model, we can define the relative risk

of transmission an infectious farm j would pose to all susceptible

farms in the country rj:

rj~ Icnc
j zIsn

s
j

� �P
i=j

Sc

Ss
nc

i zns
i

� �
|k dij

� �
ð12Þ

This quantity multiplied by the average duration of infectiousness

of a farm (time from end of latency to culling) gives the

reproduction number R0j of the farm j. We divided the UK into

5 km squares and then calculated the average transmission risk of

all farms in each square (local R0). Figure 4 shows how geographic

risk changed before and after 23rd February for our best fit model

conditioned on the first infection. The kernel shape has a major

influence on the average risk distribution throughout the country.

Figure 5 shows the corresponding risk maps for the estimates

inferred from our best fit model conditioned on 23rd February. A

slightly higher risk is predicted after 31st March by the model

conditioned on 23rd February due to the increase in the cattle

infectivity after this date. The risk estimates after 23rd February

from the first set of models appear consistent with those obtained

from the models conditioned on 23rd February, though a rigorous

statistical comparison is not appropriate.

Figure 4. Maps of transmission risk (potential R0) before 23rd February (a) and after (b) as predicted from the interaction model with time
varying kernel conditioned on the first infection (Table 1 and text).
doi:10.1371/journal.pone.0000502.g004

Figure 5. Transmission risk map (a) before 31st March and (b) after 31st March calculated from the interaction model with time varying cattle
infectivity conditioned on 23rd February (Table 2 and text).
doi:10.1371/journal.pone.0000502.g005
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Infections in proactively culled farms
We have made the strong assumption for this study that the only

infected farms during the 2001 epidemic were the reported IPs,

and hence that any farms which were infected but culled before

clinical diagnosis were not responsible for causing any infections. It

is therefore interesting to calculate how many of the proactively

culled farms our model predicts might have been infected (but, by

definition, not diagnosed).

To calculate the probability pi that a particular proactively

culled farm i was infected, we need to adjust the infection hazard

by the probability that the farm would have not been reported as

a clinical case before its culling date Ti
c. From the outbreak data,

we calculate the probability density of the time from infection to

report for reported IPs and hence the cumulative probability

distribution of the time from infection to report, denoted by F.

Then, with li(t) being the force of infection on a proactively culled

farm i at time t (from the best fit model conditioned on 23rd

February), the probability that that farm gets infected and escapes

reporting between its potential infection time and culling time Ti
c is

pi~1{ exp {
ÐTi

c

0

li tð Þ 1{F Ti
c{t

� �� 	
dt

 !
: ð13Þ

We calculate the expected number of infections in different classes

(e.g. DCs, CPs) of proactively culled farms culled within

a particular time interval (Ti
c[ T0,T1½ �). For instance, the expected

number of CPs culled at the time Ti
c[ T0,T1½ � which are predicted

to have been infected can be formally written as

P
i[CP,Ti

c[ T0,T1½ �
pi ð14Þ

This is a simplification, as in reality the delay from infection to

report almost certainly depends on the size and species mix on

a farm, but the result is nevertheless indicative of the expected level

of infection in proactive culling. Also, at this stage, the calculations

are made as if culling was a non-informative censoring process.

This is a reasonable assumption for all proactively culled farms

except for DCs (which by definition had been identified by

veterinarian as having had a high risk of exposure) but our method

may underestimate the infection rate. In calculating the infection

to report delay distributions, we divided the epidemic after 23rd

February into 3 time periods: 23rd February–31st March, 31st

March–1st May and 1st May–5th October. In these intervals a total

of 1332, 4498 and 1627 farms were slaughtered, respectively. Our

best fit model conditioned on 23rd February predicts different

infectivity regimes before and after 31st March (see Parameter

Estimates and Table 2) but we split further the second period of

time due to different delays in reporting to culling. The infection to

report delay is 8.6 and 8.8 days for the last two periods of time

respectively but the infection to cull delay drops from 9.4 and 8.8

days respectively.

Applying this approach to the interaction model with time

varying cattle infectivity which conditioned on the 23rd of

February, we calculated the expected proportion of proactively

culled farms which were infected. We estimate that approximately

1.3% (1%, 1.6%) of 7457 culled non-IP farms may have been

infected – 97 in total (Figure 6a). Of the 1332 farms culled between

23rd February and 31st March, 1.7% (1%, 2.4%) may have been

infected (23 farms). Of the 4498 farms culled between 31st March

and 1st May, we estimate 0.7% (0.5%, 1%) were infected (34

farms). In the period 1st May to 5th October, we estimate that

1.6% (1%, 2.3%) of 1627 farms culled were infected (27 farms).

The proportion of CPs estimated to have been infected is 2%

(1.5%, 2.5%), equating to 62 farms (Figure 6b). Over the whole

epidemic, we estimated 1.5% (0.8%, 2.1%) of farms designated as

DCs were infected (19 farms). This estimate (Figure 6c) does not

allow for higher risk of infection implied by the veterinary

judgement that led to those DCs being identified, which may

mean that a higher proportion were in fact infected. If we assume

that DCs were 3 times more likely to be infected due to their status

than the model would predict, then the incidence of infection in

DCs goes up accordingly, i.e. to 4.6% or 59 farms.

Farms culled neither as DCs or CPs (typically those culled under

the 3 km and local sheep cull policies in the Cumbria, Dumfries

and Galloway areas) had the lowest estimated rate of infection –

a mere 0.5 % (0.2%, 0.8%) or 16 out of 3067 farms.

Sensitivity Analysis
In this section we examine the sensitivity of our results to a number

of factors: leaving pigs out of the analysis, possible errors in the

estimated IP infection dates, and the assumed latent period.

To justify the simplification of the analysis by discarding the

number of pigs in a farm, we present some more detailed statistics

regarding this variable. We also fit the simplest model conditioned

on the first infection including it into the analysis. Out of all

reportedly infected farms 2026, 95% (approx. 1921 farms) of them

have no pigs, 3% (about 80 farms) have less than 100 pigs and only

0.7% (about 14) have between 100 and 1000 pigs. There are only

4 big farms with 1110, 1400, 2000 and 4500 pigs from which only

(a) (b) (c)

0.0%

1.0%

2.0%

3.0%

4.0%

1 2 3 4  538     490       259   1287
0.0%

1.0%

2.0%

3.0%

4.0%

1 2 3 4379    1528    1196    3103
0.0%

1.0%

2.0%

3.0%

4.0%

1 2 3 4
1332    4498    1627    7457

Figure 6. The estimated proportions of infections and their 95% CI for proactively culled farms. (a) Total number of proactively culled farms. (b)
CPs culled farms (c) DCs culled farms. The first 3 figures on x-axis represent, in order, the numbers of farms culled within each epidemic stage we
considered whereas the last figure represents the total number of culled farms after 23rd Feb onwards.
doi:10.1371/journal.pone.0000502.g006
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the last two farms are exclusively pig farms. We denote by n
p
i ,Sp,Ip

the number of pigs in farm i, pigs susceptibility and pigs infectivity

respectively. The simplest model similar to (1.2) conditioned on the

first infection has been fitted, reducing the number of parameters

in the same manner.

l t,xi,yið Þ~ Sc

Ss

nc
i zns

i z
Sp

Ss

n
p
i

� �
|

X
j

Icnc
j zIsn

s
j zIpn

p
j

� �
k dij

� �
Lij tð Þ

ð15Þ

In addition we estimated pig:sheep susceptibility ratio and pig

infectivity, assuming all parameters constant through time. We

found that cattle:sheep susceptibility ratio is 6.8 (sd 0.44), 95% CI

(5.99, 7.72). Cattle and sheep infectivity estimates are 8.44 (sd 0.1)

95%CI (6.68, 10.6) and 1.38 (sd 0.18) 95% CI (1.08, 1.77)

respectively (the last two are scaled by a factor of 108). The kernel

estimates are 2.58 (sd 0.05) 95%CI (2.49, 2.67) and 1186 (sd 100)

95% (999, 1392) for power and offset, respectively. We learned

from this model that pigs are less susceptible than sheep, i.e.

pigs:sheep susceptibility ratio is estimated at 0.27 (sd 0.09) 95%CI

(0.14, 0.48). Also, cattle are more infective than pigs by a factor of

1.89 (sd 0.49) 95%CI (1.18, 3.07), but pigs are more infective than

sheep by a factor of 3.43 (sd 0.85) 95%CI (1.95, 5.27). A quick

comparison with Table 1 shows parameter estimates for cattle and

sheep are largely unaffected by ignoring the pig population, with

none of the estimates from the two analyses being significantly

different. We conclude that including pigs would not change the

conclusions presented in Table 1 regarding cattle and sheep (given

the very small number of IPs which had pigs) but it would decrease

the power of the analysis and increase model complexity.

To understand to what extent our estimates are affected by the

assumption that the infection dates have been accurately observed,

we randomized the estimated infection dates by adding a Gaussian

noise with zero mean and a standard deviation of 2 days. This is

motivated by the substantial proportion in the observed standard

deviation (73.5% less or equal than 2 days) of the distribution time

from the estimated infection date to the report date of IPs. We

then fitted the simplest model (conditioned on both first infection

and 23rd February) to 10 such randomised datasets. The average

estimates across them are given in Table 3. They lie well within

the confidence intervals we predicted in Table 1. The average

cattle:sheep infectivity ratio is also very close to the values

estimated using the original data.

The average estimates across 10 randomized datasets using the

most appropriate model conditioned on 23rd February (i.e. cattle

infectivity and interaction model) are also in Table 3. The values

are within the 95%CI presented in Table 2. We assessed a sensitivity

analysis for the estimated proportion of infections in proactively

culled farms (see the previous section) with respect to infection times.

Using the predicted parameters for each dataset, we calculated the

average proportions across all of them, for each category of

proactively culled farms. The average proportion of infections

between DC farms is 1.37% (2%, 0.78% and 0.72% for each period

of time, respectively). For CP farms, the same quantities evaluate to

1.9% with 1.8%, 1.3% and 1.98%, respectively. Overall proactively

culled farms, we obtained an average percentage of 1.25% with

1.64%, 0.81% and 1.6% for each considered period of time. All the

values are well within the 95%CIs predicted by the original data (see

the previous section and Figure 6).

All the results presented above assume a fixed latent period of 1

day. We tested the sensitivity of parameter estimates to this

assumption by examining latent periods of 2 and 3 days. Overall,

we would expect infectiousness parameters to increase to

compensate for the shorter infectious period, and thus slightly

increased generation time (namely the mean time from infection of

one case and the time of infection of the cases that case generates).

Interestingly, however, it is the kernel parameter estimates which

are altered as the latent period is varied with the kernel becoming

slightly less local with increasing latent period. For two and three

days latent period, pre 23rd February, the values of c dropped from

1.69 (Table 1) to 1.51 and 1.46 respectively. After this date the

same parameter estimate dropped from 2.67 (Table 1) to 2.64 and

2.59 respectively. This may reflect the fact that increasing the

latent period decreases the prevalence and therefore density of

infectious farms, thereby increasing the expected mean distance

over which infection events occur.

DISCUSSION
This paper has presented a statistical analysis of the spatiotemporal

evolution of the 2001 foot and mouth outbreak in GB.

Qualitatively, the results agree with those obtained by Keeling et

al. [5] in identifying cattle as being the key species in the 2001

epidemic. Using the interaction model conditioned on 23rd

February with time varying cattle infectivity, we estimated that

88% of IPs between 23rd Feb–31st March were infected by cattle

and only 12% by sheep. Sheep-to-sheep transmission only

accounts for 3.1% of IPs in that period. After 31st March (when

we estimated that cattle infectivity increased slightly, see Table 2)

Table 3. Average estimates from 10 datasets with randomized infection times (see text).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Models
Baseline model (cond on
the first infection)

Baseline model (cond on
23rd Feb)

Cattle Infectivity + Interaction
(cond on 23rd Feb)

Average estimates Mean

Susceptibility Ratio Sc:
Sc

Ss

� �
6.94 7.23 6.24

Cattle Inf (Ic) (6108) (Overall or Post 31stMar) 7.15 6.69 11.58

Sheep Inf (Is) (6108) (Overall or Post 31stMar) 1.27 1.19 2.02

Cattle:Sheep Infectivity (additionally calculated) 5.68 5.64

Assortativity Factor (r) 0.46

Infectivity factor (m) Pre:Post 31st March 0.70

Kernel power 2.62 2.72 2.71

Kernel offset 1327 1471 1445

doi:10.1371/journal.pone.0000502.t003..
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91% of the IPs were infected by cattle and 8.9% by sheep, with

sheep-to-sheep transmission accounting for only 2.3% of infec-

tions. While these levels of transmission from sheep farms are even

smaller than previously thought [5], they are consistent with the

results of experimental analysis [28] which indicate sheep cannot

sustain an epidemic of the Pan O Asian strain of FMD virus.

Allowing for non-random mixing between species indicates

contacts between farms are assortative on the basis of species

composition of the farm; i.e. like species mix with like. This agrees

with intuition about the nature of farming practices (e.g. sharing of

personnel and equipment is likely to be more common if 2 farms

have the same livestock species). The implications of the moderate

degree of assortativity we found for control measures remains to be

explored.

We did not use data collected during the epidemic on traced

contacts between farms to fix the spatial kernel function in our

analysis, since in the final version of the FMD epidemic data

warehouse [http://www.defra.gov.uk/footandmouth/cases/in-

dex.htm] very few of the contacts apparently identified early in

the epidemic remain confirmed. Also we shared the concern of

earlier work that the distribution of contact distances in traced

contacts may well be biased [3]. We therefore estimated the kernel

function, using an offset power-law functional form. The higher

value of the kernel power parameter we estimated after 23rd

February (2.67 vs. 1.70 before – Figure 3a) is consistent with the

expected dramatic shortening in the typical contact distance

following the national movement ban. This localized spread

together with the higher estimated level of infectivity in cattle after

31st March explains the long tail of the epidemic seen in 2001.

In estimating the transmission risk between farms, we assumed

a dependence on the Euclidian distance between them. In reality,

other metrics (e.g. the time required to travel between two farms)

might be more reasonable, and should be examined in future

work. We also did not include information on landscape (e.g.

height above sea-level, location of rivers, trees etc).

The estimated risk maps (Figure 4 and Figure 5) match the areas

of the country where highest case incidence rates were seen – with

the notable exception of Wales. The discrepancy between the high

predicted risk in Wales and the small number of cases observed

may reflect inaccuracies in the input data set - Keeling et al. [5]

reduced farm-level sheep population numbers by 30% in Wales

and obtained a better geographic match to the data (Matt Keeling,

personal communication). However, the discrepancy may also

reflect model inadequacy. We have not here allowed for other

farm-level risk factors, such as the farm fragmentation index

considered by Ferguson et al. [3]. We have not explored more

complex non-linear models of the dependence of susceptibility and

infectiousness on the number of animals on a farm or relaxed our

implicit assumption that contact rates between farms scale linearly

with the local density of farms. All these assumptions are being

relaxed in ongoing work.

The most important issue to be revised in future work is to allow

for proactively culled farms which were not diagnosed as IPs to be

potentially infected and infectious to other farms. This requires

modification of the inference model used to allow for an arbitrary

number of unobserved infections. The very low numbers of

proactively culled farms we estimated as infected suggested that

the effect of this model refinement may be limited. It should be

noted though that these infection prevalence estimates are in part

a result of the relatively non-local kernel estimated simultaneously.

If kernel estimates change in a refined analysis – and if DCs were

attributed a much higher risk of infection than estimated here due

to their status – then it is possible that estimated infection rates in

DCs and other proactively culled farms may increase somewhat.

However, even if these factors increased our estimated infection

prevalence among proactively culled farms 5 fold (which seems

unlikely from ongoing work), it would still mean that only a small

proportion (,10%) of DCs and CPs culled were infected. This

does not imply that proactive culling had no effect on the epidemic

– as the largest expected effect of such culling is via the targeted

depletion of susceptible animals. In this regard, proactive culling

has the same epidemiological impact as vaccination. Future work

will revisit past estimates of exactly how important such culling was

for the control of the 2001 FMD epidemic.
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