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Fgf-driven Tbx protein activities directly induce myf5 and myod
to initiate zebrafish myogenesis
Daniel P. S. Osborn¶,*, Kuoyu Li¶,‡, Stephen J. Cutty, Andrew C. Nelson§, Fiona C. Wardle, Yaniv Hinits and
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ABSTRACT
Skeletal muscle derives from dorsal mesoderm formed during
vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling
cooperates with Tbx transcription factors to promote dorsal
mesoderm formation, but their role in myogenesis has been unclear.
Using zebrafish, we show that dorsally derived Fgf signals act through
Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at
distinct dorsoventral positions. Tbx16 binds to and directly activates the
myf5 and myod genes, which are required for commitment to
myogenesis. Tbx16 activity depends on Fgf signalling from the
organiser. In contrast, Tbxta is not required for myf5 expression, but
binds a specific site upstream ofmyod that is not bound by Tbx16 and
drives (dependent on Fgf signals) myod expression in adaxial slow
precursors, thereby initiating trunk myogenesis. After gastrulation,
when similar muscle cell populations in the post-anal tail are generated
from tailbud, declining Fgf signalling is less effective at initiating adaxial
myogenesis, which is instead initiated by Hedgehog signalling from
the notochord. Our findings suggest a hypothesis for ancestral
vertebrate trunk myogenic patterning and how it was co-opted during
tail evolution to generate similar muscle by new mechanisms.

This article has an associated ‘The people behind the papers’
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INTRODUCTION
Sarcomeric muscle arose early in animal evolution and is today
regulated by similar gene families inDrosophila and vertebrates e.g.
mef2 genes (Taylor and Hughes, 2017). Skeletal myogenesis is
initiated during gastrulation. Yet conserved bilaterian pathways
leading specifically to skeletal (as opposed to cardiac or visceral)

muscle have been hard to discern, perhaps because new regulatory
steps have evolved in each phylum since their divergence.

A key step in vertebrate evolution was the chordate transition
through which animals acquired notochord, post-anal tail, gill slits
and dorsal neural tube, facilitating swimming (Brunet et al., 2015;
Gee, 2018; Gerhart, 2001; Satoh et al., 2012). Throughout
vertebrates, the notochord patterns the neural tube and paraxial
mesodermal tissue by secreting Hedgehog (Hh) signals that promote
motoneuron and early muscle formation (Beattie et al., 1997;
Blagden et al., 1997; Du et al., 1997; Münsterberg et al., 1995;
Roelink et al., 1994). Nevertheless, in the absence of either
notochord or Hh signalling, muscle is formed in vertebrate somites
(Blagden et al., 1997; Dietrich et al., 1999; Du et al., 1997; Grimaldi
et al., 2004; Zhang et al., 2001). How might deuterostome muscle
have formed prior to evolution of the notochord?

A change in function of the Tbxt gene, a T-box (Tbx) family
paralogue, occurred during chordate evolution such that Tbxt now
directly controls formation of posterior mesoderm, notochord and
post-anal tail in vertebrates (Chiba et al., 2009; Showell et al., 2004).
Hitherto, Tbxtmay have distinguished ectoderm from endoderm and
regulated formation of the most posterior mesendoderm (Arenas-
Mena, 2013; Kispert et al., 1994; Woollard and Hodgkin, 2000;
Yasuoka et al., 2016). In zebrafish, Tbxt genes also promote slow
myogenesis (Coutelle et al., 2001; Halpern et al., 1993; Martin and
Kimelman, 2008; Weinberg et al., 1996). Other Tbx genes, such as
Tbx1, Tbx4, Tbx5, Tbx16 and Tbx6, also influence sarcomeric muscle
development in both fish and amniotes (Chapman and Papaioannou,
1998; Griffin et al., 1998; Hasson et al., 2010; Kimmel et al., 1989;
Manning and Kimelman, 2015; Nandkishore et al., 2018; Weinberg
et al., 1996; Windner et al., 2015). For example, the Tbx6 family is
implicated in early stages of paraxial mesoderm commitment, somite
patterning and myogenesis (Bouldin et al., 2015; Chapman and
Papaioannou, 1998; Kimmel et al., 1989; Manning and Kimelman,
2015; Nikaido et al., 2002; White et al., 2003; Windner et al., 2012).
It is unclear, however, whether the Tbx genes promote myogenesis
directly, and/or are required for earlier events in mesoderm
development that are necessary for myogenesis.

In vertebrates, a key essential step in skeletal myogenesis is
activation of myogenic regulatory factors (MRFs) encoded by the
myf5 and myod genes (Hinits et al., 2009, 2011; Rudnicki et al.,
1993). In mice, distinct myogenic cell populations initiate myf5 and
myod expression in different ways, the genes being induced by
distinct signals through different cis-regulatory elements in different
skeletal muscle precursor cells. Once expressed, these MRF proteins
have two functions: to remodel chromatin and directly enhance
transcription of muscle genes (reviewed by Buckingham and Rigby,
2014). In zebrafish, as the anteroposterior axis forms and extends,
de novo induction ofmyf5 andmyodmRNAs in slow and fast muscle
precursors occurs in tissue destined to generate each successive
somite (Coutelle et al., 2001). Zebrafish myogenesis begins at about
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75% epiboly stage when adaxial cells that flank the shield/organiser/
nascent notochord (hereafter called pre-adaxial cells; see schematic in
Fig. 1A), begin MRF expression (Hinits et al., 2009; Melby et al.,
1996). Pre-adaxial cells express both myf5 and myod, converge to
form two rows of adaxial cells flanking the notochord, become
incorporated into somites and differentiate into slow muscle fibres
(Coutelle et al., 2001; Devoto et al., 1996; Weinberg et al., 1996).
Loss of either MRF alone is not sufficient to prevent slow
myogenesis, but loss of both completely inhibits adaxial slow
muscle formation (Hinits et al., 2009, 2011). Dorsal tissue
immediately lateral to the pre-adaxial cells, the paraxial mesoderm
(Fig. 1A), expresses myf5 and subsequently generates fast muscle
once somites have formed, upregulatingmyod in the process. A key to
understanding myogenesis in both paraxial and adaxial cells is thus
the mechanism(s) by which myf5 and myod expression is regulated.
Intrinsic factors such as Tbx proteins likely interact with extrinsic

positional cues within the embryo to pattern myogenesis. Fgf and Tbx
function have long been known to interact to drive earlymesendoderm
patterning, but how directly they control early embryonic myogenesis

remains unclear (Kimelman and Kirschner, 1987; Showell et al.,
2004; Slack et al., 1987). Various Fgf family members are expressed
close to myogenic zones during vertebrate gastrulation (Isaacs et al.,
2007; Itoh and Konishi, 2007; Wilkinson et al., 1988). In zebrafish,
Fgf signalling is required for mesendoderm formation, tailbud
outgrowth and normal fast myogenesis (Draper et al., 2003; Griffin
et al., 1995; Groves et al., 2005; Reifers et al., 1998; Yin et al., 2018).
Fgf signalling is also involved in early expression ofmyf5 andmyod in
pre-adaxial cells, but the mechanism of initial induction of myf5 and
myod is unknown (Ochi et al., 2008). Expression of several Fgfs has
been detected in the chordoneural hinge (CNH; Fig. 1A) adjacent to
pre-adaxial cells (Draper et al., 2003; Groves et al., 2005; Thisse and
Thisse, 2005). Subsequently, Hh signalling from the ventral midline
maintains MRF expression and progression of the pre-adaxial cells
into terminal slow muscle differentiation (Coutelle et al., 2001;
Hirsinger et al., 2004; Lewis et al., 1999). Here, we show howboth Fgf
and Hh extracellular signals cooperate with Tbx genes to control fast
and slow myogenesis. In the trunk, Fgf signalling is required for the
initiation of myogenesis and acts in cooperation with Tbx16/Tbxta
function directly onmyf5 andmyod. In the tail, by contrast, directMRF
gene induction by Fgf is not required and the evolutionary novelty of
midline-derived Hh signalling accounts for adaxial myogenesis.

RESULTS
Fgf signalling is essential for induction of adaxial myf5 and
myod expression
Adaxial myogenesis is driven by successive Fgf and Hh signals.
When Hh signalling was prevented with the Smoothened (Smo)
antagonist cyclopamine (cyA) from 30% epiboly, myf5 and myod
mRNAs in pre-adaxial cells were unaffected at 90% epiboly
(Fig. 1A). In contrast, when Fgf signalling was inhibited with
SU5402 from 30% epiboly both myf5 and myod mRNAs were lost
(Fig. 1A) (Ochi et al., 2008). Persistence of the anterior mesodermal
marker aplnrb (Zeng et al., 2007) showed that the lack of MRFs was
not due to failure of gastrulation caused by SU5402 treatment
(Fig. 1A, Fig. S1; see Table S1 for quantification and Table S5 for a
summary checklist of results of this and subsequent experiments). In
SU5402-treated embryos, aplnrb mRNA revealed the normal
invagination of mesoderm and aplnrb-expressing cells flanking
the organiser. However, both downregulation of aplnrb mRNA in
paraxial trunk mesoderm that normally expresses myf5 alone, and
pre-adaxial aplnrb upregulation were absent in SU5402-treated
embryos (Fig. 1A). Thus, early Fgf signalling is required for the
initiation of skeletal myogenesis in future trunk regions.

As trunk myogenesis proceeds, Hh signalling becomes essential
for adaxial slowmyogenesis. Blockade of Hh signalling with cyA or
in smomutants (which lack Smoothened, an essential component of
the Hh signal transduction pathway), led to loss of myod mRNA
from adaxial slowmuscle at the 6 somite stage (ss), whereas paraxial
fast muscle precursors were unaffected (Fig. 1B). Nevertheless,
myod mRNA transiently accumulated in pre-adaxial cells of
presomitic mesoderm (PSM) destined to make trunk somites, but
was then lost in anterior PSM (Fig. 1B) (Barresi et al., 2000; Lewis
et al., 1999; Osborn et al., 2011; van Eeden et al., 1996, 1998).
Thus, as suggested previously (Coutelle et al., 2001; Ochi et al.,
2008), in the wild-type situation trunk pre-adaxial myod expression
is maintained and enhanced by Hh. In contrast, during tail
myogenesis at 15ss and thereafter, no pre-adaxial myod
expression was detected in smo mutants or cyA-treated embryos
(Fig. 1B, Fig. S2). These data suggest that whereas Hh is necessary
for induction of adaxial myogenesis in the tail, Fgf-like signals
initiate myod expression in trunk pre-adaxial cells.

Fig. 1. Inhibition of Fgf signalling blocks initial induction of myod and
myf5 expression. ISH for myod and myf5 in control untreated, cyA-treated
(100 µM) and SU5402-treated (60 μM) wild-type or mutant embryos, shown in
dorsal view, anterior to top. (A) Adaxial (arrows) and paraxial myod and myf5
mRNAs are lost upon SU5402 treatment from 30% to 80 or 90% epiboly
(dashes indicate approximate position of the germ ring) but are unaffected by
cyA treatment. The anterior mesoderm marker aplnrb is normally
downregulated in paraxial presomitic cells expressingmyf5 (white dashes) and
upregulated in adaxial cells (arrows). Both changes were absent after SU5402
treatment. Schematics illustrate the location of equivalent cell types at two
successive stages. CNH, chordoneural hinge (hatched); mpcs, muscle
precursor cells; PSM, presomitic mesoderm (brackets). (B) Smob641 mutants
retain pre-adaxial myod mRNA at 6ss even after cyA treatment, but lack pre-
adaxial myod mRNA at 15ss. ptc1 (ptch2) mRNA downregulation shows that
both smomutation and cyA treatment (shown after longer colour reaction) fully
block Hh signalling throughout the axis. Scale bars: 50 µm.
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Additional evidence emphasises the greater reliance on Hh in tail
myogenesis. In shha mutants at 24 hours post-fertilisation (hpf ),
slow muscle was lost from tail but remained in trunk somites,
suggesting that slow muscle in tail is more sensitive to reduction in
Hh activity (Fig. 2A,B). Moreover, injection of myod or myog
mRNA into embryos lacking Hh signalling was able to rescue slow
myogenesis in trunk but not in tail (Fig. S3). Similarly, absence of
notochord-derived signals in noto ( flh) mutants, in which the
nascent notochord loses notochord character and converts to muscle
(Coutelle et al., 2001; Halpern et al., 1995), ablated tail but not trunk
slow muscle (Fig. 2C). Treatment of noto mutants with cyA shows
that myod expression is initiated in trunk pre-adaxial cells adjacent
to the transient pre-notochordal tissue, but fails to be maintained
owing to the blockade of floorplate-derived Hh signals (Fig. 2D).
Taken together, these data show that Hh can initiate and thenmaintain
MRF gene expression, but that other signals initiate slow myogenesis
in the trunk.
We next tested whether Hh-independent myod expression and

myf5 upregulation in trunk pre-adaxial cells requires Fgf signalling.
Treatment with cyA left residual pre-adaxialmyod and myf5mRNA
flanking the base of the notochord at trunk levels, but ablated
adaxial expression in slow muscle precursor cells (Fig. 2E). The
residual expression was ablated when, in addition to cyA, SU5402
was used to block Fgf signalling from 30% epiboly (Fig. 2E).
Application of SU5402 alone diminished myf5 and myod mRNA
accumulation up to the tailbud stage, but caused little if any
reduction of adaxial myf5 and myodmRNAs in the tailbud region at
6ss, after midline shha function had commenced (Fig. 1B) (Krauss
et al., 1993). Nevertheless, SU5402 greatly diminished myod
expression in somitic fast muscle precursors and reduced the extent
of myf5 expression in paraxial PSM (Fig. 1B) (Groves et al., 2005;
Reifers et al., 1998).

Fgf3, Fgf4, Fgf6a and Fgf8a collaborate to promote MRF
expression
To identify candidate Fgf regulators of pre-adaxial myogenesis, the
expression patterns of fgf3, fgf4, fgf6a and fgf8awere investigated in
wild-type embryos (Fig. S4A). As reported previously, fgf4, fgf6a
and fgf8amRNAswere all detected in the posterior dorsal midline at
80% epiboly, followed by fgf3 in the chordoneural hinge (CNH) and
posterior notochord (Fig. S4A) (Kudoh et al., 2001; Thisse and
Thisse, 2005; Yamauchi et al., 2009). These Fgfs are candidate
regulators of myf5 and myod.

Each Fgf was knocked down with previously validated
antisense morpholino oligonucleotides (MOs) in wild-type
embryos (Fig. S4B). At 80% epiboly, there was little or no
decrease of myf5 or myod mRNA in individual Fgf morphants or
fgf8a mutant embryos (Fig. S4B). Combinatorial knockdown of
several Fgfs led to progressively more severe loss of myod mRNA
and reduction of the raised pre-adaxial and paraxial levels of myf5
mRNA (Fig. 3A, Fig. S4C,D) and pre-adaxial aplnrb mRNA
(Fig. S4E). Thus, specific Fgfs collaborate to drive the initial
expression of myod and myf5 in pre-adaxial and paraxial cells.

By tailbud stage, however, fgf4+fgf8a MO treatment alone had
little effect on myod mRNA accumulation, presumably due to the
presence of Hh in the midline (Fig. 3B). Congruently, cyA-
treatment reduced anterior adaxial myod mRNA, but pre-adaxial
expression persisted after blockade of Hh signalling (Fig. 3B).
Pre-adaxial myod mRNA was ablated in cyA-treated embryos
injected with fgf4+fgf8a MO (Fig. 3B). Thus, expression of
Fgf4 and Fgf8a in the shield, CNH and posterior notochord,
provides a spatiotemporal cue for pre-adaxial myogenic initiation in
the tailbud.

To test the ability of Fgfs to promote myogenesis further, we
generated ectopic Fgf signals by injection of fgf4 or fgf6a mRNA

Fig. 2. Successive Fgf and Hh signals drive
trunk slow myogenesis. (A) Immunodetection
showing slow fibre reduction is greater in tail than
trunk in shha mutants. Insets show individual
fibres magnified. (B) Quantification of experiment
in A. Upper graph shows mean±s.d. (n=10
embryos of each genotype). Lower graph shows
the fraction remaining in the mutant.
(C) Trunk-specific residual slow muscle in noto
mutant. (D) 5ss embryos from a noton1

heterozygote incross treated with cyA at 30%
epiboly stage, showing loss of adaxial myod
mRNA in anterior presomitic mesoderm
(arrowheads), but retention in the most posterior
pre-adaxial mesoderm (arrows) flanking the
chordoneural hinge (white outline). (E) Exposure
to cyA diminishes myf5 and myod mRNAs in
adaxial cells in anterior PSM (arrowheads).
Exposure to SU5402 (50 µM) at the tailbud stage
ablates residual pre-adaxial myod and myf5
mRNAs in cyA-treated 8ss embryos (arrows).
Expression of paraxial myod in fast muscle
precursors (asterisks) is not affected by cyA but is
decreased by SU5402. Scale bars: 50 µm.
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into wild-type embryos, and analysed myf5 and myod mRNA at
80% epiboly (Fig. 3C). Both myod and myf5 mRNAs were
upregulated in more ventral regions at levels comparable to those in
adaxial cells of control embryos, despite the absence of Hh
signalling in these regions. Overexpression of fgf4 mRNA
upregulated myf5 mRNA in an initially uniform band around the
embryo that extended towards the animal pole for a distance similar
to that of myod mRNA in adaxial cells of controls (Fig. 3C). myod

was less easily induced, but was upregulated in similar regions of
the mesoderm. Fgf4-injected embryos became ovoid, with germ ring
constriction that stretched and broadened the notochord (although the
numbers of DAPI-stained notochord cells appeared normal). There
was a positive correlation between the extent of myf5 and myod
mRNA upregulation and the extent of deformation. aplnrb mRNA
persisted in animal regions of the mesoderm, but was downregulated
where myf5 mRNAwas induced nearer to the margin, revealing that
anterior/cranial mesoderm is present but resistant to Fgf-driven MRF
induction and aplnrb suppression (Fig. 3D). Thus, Fgf4 dorsalised
the embryo, converting the entire posterior paraxial and ventral
mesoderm to a myogenic profile with some regions expressing only
myf5 and others expressing also myod, particularly around the germ
ring. Fgf6a overexpression also induced ectopic MRFs in cells
around the germ ring, which then appeared to cluster (Fig. 3C). Taken
together, these data show that posterior/dorsal Fgf signals initiate
MRF expression in both pre-adaxial slow and paraxial fast muscle
precursors in pre-somitic mesoderm.

MRFs are initially induced by Fgfs, Tbxta and Tbx16
Zebrafish Tbx genes, including tbxta and tbx16 [formerly called no
tail (ntla) and spadetail (spt), respectively], potentially mediate Fgf
signalling in gastrulating embryos (Amaya et al., 1993; Griffin et al.,
1995; Smith et al., 1991; Sun et al., 1999). tbx16 is suppressed by a
dominant negative Fgf receptor (FgfR) (Griffin et al., 1998).
However, whether tbxta and tbx16 activities are altered by SU5402
treatment, which also blocks FgfR function, is unclear (Rentzsch
et al., 2004; Rhinn et al., 2005). Wild-type embryos at 30% epiboly
were therefore exposed to SU5402 and subsequently fixed at 80%
epiboly or 6ss to investigate expression of tbxta and tbx16 (Fig. 4A).
Application of 10 μM SU5402 diminished tbxta mRNA in
notochord, and tbxta and tbx16 mRNAs in the germ ring
(particularly in dorsal paraxial regions) at 80% and in the tailbud
at 6ss (Fig. 4A), and 30 μM SU5402 abolished tbxta and tbx16
mRNAs throughout the trunk (Fig. 4A). Thus, Fgf-like signalling is
required for normal Tbx gene expression in mesoderm.

Tbxta is required for normal myf5 and myod expression in
posterior regions during tailbud outgrowth, partly due to loss of
notochordal Hh signalling, which normally maintains a high level
of tbx16 mRNA accumulation in adaxial cells in anterior PSM
(Fig. S5) (Coutelle et al., 2001; Weinberg et al., 1996). To test
whether Tbx genes are required for MRF expression at earlier
stages, each Tbx gene was knocked down and MRF and Fgf
expression analysed at 80% epiboly. Tbxta knockdown reduced
expression of dorsal midline Fgfs, ablatedmyodmRNA and reduced
myf5 mRNA accumulation in pre-adaxial cells to the level in
paraxial regions (Fig. 4B). However, Tbxta knockdown had little
effect on either fgf8a or myf5 mRNAs in more lateral paraxial
mesoderm or the germ ring (Fig. 4B). This correlation raised the
possibility (addressed below) that Tbxta may drive MRF expression
through induction of Fgf expression. Tbx16 knockdown, on the
other hand, ablated pre-adaxial myod mRNA and reduced both pre-
adaxial and paraxial myf5 mRNA without reduction of Fgf
expression (Fig. 4B). Indeed, both germ ring fgf8a mRNA at 80%
epiboly and dorsal midline fgf3, fgf4 and fgf8a mRNAs in the
tailbud at 6ss appeared to be increased (Fig. 4B), as previously
described (Warga et al., 2013). As Tbx16 expression persists in
tbxta mutants (Amack et al., 2007; Griffin et al., 1998), these data
raise the possibility that Tbx16 is required to mediate the action of
Fgf signals on myogenesis.

tbx16 null mutants show a failure of convergent migration of
mesodermal cells into the paraxial region (Ho and Kane, 1990;

Fig. 3. Dorsally expressed Fgfs drive paraxial myogenesis. (A-D) ISH for
myod and myf5 (A,C) or aplnrb (D) mRNAs at 80% epiboly or tbxta (red) and
myod (blue/brown) at the tailbud stage (tb) (B). (A) Reduction ofmyod andmyf5
mRNAs in dual and triple Fgf MO-injected wild-type embryos. Arrowheads
indicate nascent adaxial cells. (B) In contrast to 80% epiboly (compare with
Fig. S4C), at the tailbud stage, cyA treatment ablates anterior adaxial myod
mRNA, but leaves pre-adaxial expression intact (arrowheads). Injection of
fgf4+fgf8aMOs ablate residual myod mRNA. (C) fgf4 or fgf6a mRNA injection
upregulatesmyod and myf5 mRNAs around the marginal zone (arrows). Note
thewidening of the unlabelled dorsal midline region (brackets). Insets show the
same embryos viewed from the vegetal pole. (D) fgf4 mRNA injection
downregulates aplnrbmRNA around the marginal zone (white dashes) but not
anteriorly (brackets) in the dorsalised embryo. Scale bars: 100 µm.
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Molven et al., 1990), which, by reducing mesodermal cells flanking
the CNH, may contribute to the reduction inMRFmRNAs observed
at 80% epiboly. Nevertheless, tbx16 mutants generate enough
paraxial mesoderm that reduced numbers of both paraxial fast
muscle and adaxially derived slow muscle fibres arise after Hh
signalling commences (Honjo and Eisen, 2005; Weinberg et al.,
1996). To investigate whether Tbx16 is required for initial induction
of myf5 and/ormyod expression in pre-adaxial cells, we titrated MO
to reduce tbx16 function to a level that did not prevent accumulation
of significant numbers of trunk mesodermal cells and examined
myf5 and myod expression at 6ss (Fig. 4C). In tbx16 morphants,
myod mRNA was readily detected in adaxial cells adjacent to
notochordal Hh expression (Fig. 4C, cyan arrowheads). Treatment
of these tbx16morphants with cyA to block Hh signalling, however,
ablated adaxial myod expression, leaving only weak myod in
paraxial somitic fast muscle precursors (Fig. 4C, cyan and pink
arrowheads). In contrast, treatment of control embryos with cyA left
pre-adaxial myod mRNA intact (Fig. 4C, black arrowheads). These
findings show that Fgf-driven pre-adaxialmyod expression flanking
the CNH requires Tbx16 function.

Adaxialmyf5 expression also requires Tbx16. Tbx16 knockdown
reducedmyf5mRNA accumulation in the posterior tailbud, and also
diminished the upregulation of myf5 mRNA in pre-adaxial and
adaxial cells (Fig. 4C, orange arrowheads). Addition of cyA to
tbx16 morphants had little further effect on myf5 expression
(Fig. 4C, white arrowheads). In contrast, cyA treatment alone
reduced adaxial myf5mRNA in the anterior PSM, but did not affect
themyf5 upregulation in pre-adaxial cells or tailbudmyf5 expression
(Fig. 4C, white arrowheads). Additional knockdown of Tbx16 in
cyA-treated embryos prevented pre-adaxial myf5 upregulation
(Fig. 4C, white arrowheads). Thus, Tbx16 is required for Fgf to
upregulate both myf5 and myod in pre-adaxial cells.

Both pre-adaxial and anterior PSM adaxialmyod expression were
also absent in tbxta morphants, but recovered in somites, again due
to midline-derived Hh signalling (Fig. 4C) (Coutelle et al., 2001). In
marked contrast, Tbxta knockdown upregulated myf5 mRNA in the
tailbud (Fig. 4C, asterisks), presumably reflecting loss of tailbud
stem cells that lack myf5 mRNA. Taken together, the data strongly
suggest that tbx16 is required for midline-derived Fgf signals to
induce myod and upregulate myf5 in pre-adaxial cells in the tailbud.

Fig. 4. Redundant Fgf/Tbx and Hh signals are required for MRF induction. ISH of drug and/or MO-treated embryos. (A) In 10 µM SU5402-treated wild-type
embryos, tbxta and tbx16 transcripts are decreased (arrows) at 80% epiboly, but almost normal at 6ss. Both transcripts are absent in 30 µM SU5402-treated
embryos at 6ss. (B) Adaxialmyod expression (black arrowheads) is completely ablated in tbxta or tbx16morphants at 80% epiboly, andmyf5 expression is greatly
decreased (black arrowheads). fgf8a mRNA is ablated in the posterior notochord of tbxta morphants (blue arrowheads), but upregulated in tbx16 morphants
around the germ marginal zone at 80% and in the posterior notochord at 6ss (yellow arrowheads). Expression of fgf3 and fgf4 is absent in posterior notochord of
tbxtamorphants, but enhanced in that location in tbx16morphants (green arrowheads). (C) At 6ss, pre-adaxialmyod expression (black arrowheads) is lost in tbxta
morphant tailbud, and diminished in tbx16 morphants. Injection of tbx16 MO, but not tbxta MO, reduces adaxial myf5 mRNA to the level observed in paraxial
mesoderm (orange arrowheads), whereas tbxta MO but not tbx16 MO upregulates myf5 mRNA in the posterior tailbud (asterisks). Tbx16 MO abolishes pre-
adaxialmyf5mRNA in cyA-treated embryos (white arrowheads). Adaxialmyf5 andmyod transcripts recover in tbxtamorphants, but are ablated by cyA-treatment
(red arrowheads). CyA-treatment of tbx16 morphants ablates adaxial myod expression throughout the axis (cyan arrowheads), leaving only residual paraxial
myod and myf5 expression (pink arrowheads). Scale bars: 100 µm.
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In contrast, the loss of MRF expression in tbxta mutants could be
simply explained by loss of midline-derived Fgf signals, and/or
might require some other Tbxta-dependent process.

myf5 and myod induction by Fgf signalling requires Tbx16
To test rigorously whether Tbx16 is required for Fgf to induce
MRFs, fgf4 mRNA was injected into embryos from a tbx16
heterozygote incross. Whereas Fgf4 upregulated myf5 and myod
mRNAs all around the germ ring in siblings, in sequence-genotyped
tbx16 mutant embryos no upregulation was detected (Fig. 5A). It is
clear that mesoderm was present in tbx16 mutants because the
mRNAs encoding Aplnrb, Tbxta, Tbx16 and Tbx16-like (formerly
known as Tbx6 and then Tbx6-like) are present in tbx16 mutants
(Fig. S6; Griffin et al., 1998; Morrow et al., 2017). The effect of
Fgf4 does not appear to act by radically altering tbxta or tbx16 gene

expression (Fig. 5B). Thus, Tbx16 is required for Fgf-driven
expression of MRFs in pre-somitic mesoderm.

Tbx16 requires Fgf-like signalling to rescue myf5 and myod
expression
The results so far show that tbx16 function is necessary for Fgf to
induce myf5 and myod (Fig. 5A). To determine whether increased
Tbx16 activity is sufficient to induce MRFs, Tbx16 was
overexpressed. Injection of tbx16 mRNA caused ectopic
expression of both myf5 and myod in the germ marginal zone
(Fig. 5C). Notably, Tbx16 overexpression inducedmyf5mRNA in a
much broader region than was observed for myod mRNA.

We next tested whether Tbx16 could induce expression of myf5
ormyod in the absence of Fgf signalling. Exposure to a high dose of
SU5402, which downregulates endogenous tbx16 and tbxtamRNA

Fig. 5. Tbx16 is necessary and sufficient for MRF induction.
ISH of manipulated embryos at 80% epiboly stage. Dorsal views.
Insets show ventral views. (A) myf5 and myod mRNAs flank the
dorsal midline in siblings (sib), but are absent or greatly diminished in
tbx16−/− mutants. fgf4 mRNA injection widened notochord and
induced ectopic myod and myf5 mRNA around the germ marginal
zone of siblings, but did not rescue expression in tbx16−/− embryos.
(B) tbxta mRNA reveals widened notochord (bars) in wild-type
embryos injected with fgf4mRNA. Both tbxta and tbx16mRNAs show
clumping in the germ ring after overexpression of fgf4. (C,D) ISH at
80% epiboly stage for myf5 and myod mRNAs in wild-type control or
tbx16 mRNA-injected embryos treated with SU5402 at 10 µM (C) or
60 µM (D). myf5 and myod mRNAs are ectopically induced in
posterior mesoderm by Tbx16 expression, but decreased by
administration of 10 µM SU5402 in wild type, and rescued in SU5402-
treated embryos by overexpression of tbx16. High dose SU5402
prevents MRF expression, even after tbx16 mRNA injection.
Scale bars: 100 µm.
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(Fig. 4A), prevented MRF induction by injection of tbx16 mRNA
(Fig. 5D). Nevertheless, when tbx16 mRNA was injected into low
dose (10 µM) SU5402-treated embryos, which normally have
reduced MRF expression, the level of myf5 and myod mRNAs was
rescued (Fig. 5C). However, tbx16 mRNA was less effective at
ectopic MRF induction in the presence of SU5402 (Fig. 5C). These
results demonstrate that Fgf signalling cooperates with Tbx16
activity in inducing expression of myf5 and myod in pre-adaxial
cells at gastrulation stages. Moreover, Tbx16 requires Fgf-like
signals to induce MRF gene expression.

myf5 and myod are direct transcriptional targets of Tbx16
In order to determine further the regulatory relationship between
Tbx16 and myf5 and myod, we interrogated our previously
published chromatin immunoprecipitation and sequencing (ChIP-
seq) experiments for endogenous Tbx16 at 75-85% epiboly stage
(see Materials and Methods) (Nelson et al., 2017). Our analyses
revealed a highly significant peak at −80 kb upstream (myf5 distal
element, 5DE) and two peaks proximal tomyf5 (proximal elements,
5PE1,5PE3) (Fig. 6A,B; Table S3). Cross-referencing to published
histone modification ChIP-seq data (Bogdanovic et al., 2012)

Fig. 6.myf5 is a direct transcriptional target of Tbx16. (A,B) ChIP-seq on wild-type embryos at 75-85% epiboly reveals endogenous Tbx16 and Tbxta binding
events within 120 kb flanking the myf5 transcriptional start site (TSS). H3K4me3 indicates TSSs. H3K4me1 indicates putative enhancers. H3K27ac indicates
active enhancers. Known transcripts with exons (black) and introns (arrowheads) are indicated. Purple and cyan boxes indicate validated and other mentioned
Tbx16 binding sites, respectively. (C) ChIP-qPCR validation of Tbx16 peaks on myf5 distal element (5DE) and proximal element 2 (5PE1). Error bars indicate
s.e.m. for biological triplicate experiments. (D) Schematic of Tbx16 direct-target assay. (E) Wild-type embryos injected with tbx16-GR mRNA treated with CHD
±DEX. CHD alone permits wild-type myf5 expression at 75-80% epiboly, whereas CHD+DEX induced mosaic ectopic myf5 expression with strong (white
arrowheads, comparable to wild-type pre-adaxial level) and weak (black arrowheads, comparable to wild-type paraxial level) staining. Numbers indicate the
fraction of embryos with the expression pattern(s) shown. Inset shows an unusual induction of myf5 in anterior regions that was not observed with myod.
(F) Injection of tbx16 mRNA (200 pg) into embryos from a myf5hu2022/+ heterozygote incross led to ectopic upregulation of myod mRNA in the dorsal germ ring
(arrows) irrespective of genotype. Numbers indicate fraction of embryos showing ectopic mRNA/total analysed. Scale bars: 100 µm.
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revealed that 5DE and 5PE1 overlapped significant H3K27ac and
H3K4me1 peaks (Table S3), suggesting that these are functionally
active enhancers. Tbx16 ChIP-qPCR confirmed the validity of the
5DE and 5PE1 ChIP-seq peaks (Fig. 6C). These putative enhancers
are likely to regulate myf5, the promoter of which has a H3K4me3
mark, rather than the adjacent myf6 gene, which is not expressed at
80% epiboly and does not have a H3K4me3 mark. Each peak
showed significant conservation to regions adjacent tomyf5 in other
fish species (Fig. 6A,B). Thus, ChIP-seq peaks corresponding to
histone marks indicative of enhancer activity suggest evolutionarily
conserved mechanisms of myf5 regulation in fish.
We next tested whether Tbx16 is able to positively regulate myf5

directly by using a dexamethasone (DEX)-inducible system to
activate Tbx16 in the absence of translation (Kolm and Sive, 1995;
Martin and Kimelman, 2008) (Fig. 6D). Ectopic expression of myf5
around the germ ring, and of myod in a narrower domain flanking
the base of the notochord, was observed upon Tbx16 activation
(Fig. 6E). Interestingly, across the set of cycloheximide
(CHD)+DEX-treated embryos, ectopic myf5 mRNA was induced
to a higher level than elsewhere (as assessed by staining intensity) in
a similar region to ectopic myodmRNA, suggesting that Tbx16 was
able to induce two aspects of pre-adaxial character (myod expression
and upregulation of myf5) directly in this region of the embryo. To
confirm this result, we tested whether Myf5 is required for Tbx16 to
inducemyod expression. When tbx16mRNAwas injected intomyf5
mutant or heterozygote embryos, ectopic myod mRNA was
observed flanking the base of the notochord in about 50% of
mutant or heterozygote embryos, but appeared to be more readily
induced in wild-type siblings (Fig. 6F). Thus, Tbx16 is necessary
for MRF expression and can induce both myf5 and myod
independently, as long as Fgf signalling is active. Moreover, a
feed-forward mechanism operates by which Tbx16 induction of
myf5 augments, but is not essential for, induction of myod. In
summary, Tbx16 directly induces MRF expression in gastrulating
mesoderm and is particularly potent in the pre-adaxial region that
normally retains high tbx16 expression.

Tbxta is essential for pre-adaxial but not paraxial
myogenesis
Whereas the entire paraxial PSM expresses myf5, pre-adaxial cells
upregulate myf5 and are the first cells to express myod. Tbxta and
Tbx16 have similar DNA-binding recognition sequences (Garnett
et al., 2009; Nelson et al., 2017). Congruently, we observed a
prominent Tbxta ChIP-seq peak at the 5DE −80 kb site upstream of
myf5, and minor peaks at the proximal sites (Fig. 6A,B; Table S3).
Because of the role of Tbx16 and Tbxta inmyod expression, we also
examined the myod locus for Tbx protein binding. We found
multiple sites occupied by Tbxta and Tbx16 either individually or in
combination (Table S3). Notably, only one site (DDE3) displayed
strongly significant H3K4me1 and H3K27ac peaks and this was
only occupied by Tbxta and not by Tbx16 (Fig. S7, Table S3).
However, an additional site (DDE1) showed significant occupancy
by Tbx16 and Tbxta concurrent with H3K4me1 but not H3K27ac
(Fig. S7, Table S3). These findings indicate that differential direct
binding of Tbxta and Tbx16 may control both myf5 and myod
expression at the inception of skeletal myogenesis.
Is Tbxta also required for MRF expression in response to Fgf?

Overexpression of Fgf4 in tbxta mutants successfully induced myf5
mRNA and suppressed aplnrb mRNA widely in the posterior
mesoderm except in a widened dorsal midline region, showing that
the introduced Fgf4 was active (Fig. 7A,B). However, myod
expression was not rescued in tbxtamutants in the dorsal pre-adaxial

region of Fgf4-injected embryos, or elsewhere around the germ ring
(Fig. 7A). Moreover, even an increased dose of 225 pg fgf4mRNA/
embryo failed to rescuemyodmRNA in tbxtamutants. Importantly,
tbxta heterozygotes showed significantly less extensive induction of
myod mRNA in response to Fgf4 than did their wild-type siblings

Fig. 7. Tbxta is essential for Fgf4-driven induction of myod but not myf5.
Embryos from a tbxta+/− incross injected with 150 pg fgf4 mRNA or control.
(A) Tbtxa−/− mutants lack myod mRNA (arrows) but retain myf5 mRNA in
presomitic mesoderm (white dashes). Fgf4 induced myf5 and myod mRNAs
throughout the posterior mesoderm in siblings (sib; white dashes), but failed to
inducemyodmRNA inmutants. (B) Fgf4 suppressed aplnrbmRNA in posterior
mesoderm above the germ ring (white dashes) in both tbxta−/− mutants and
siblings. In A,B, individually genotyped embryos are shown in lateral view,
dorsal to right. (C) Scoring ofmyodmRNA accumulation in response to Fgf4 in
a tbxta+/− incross. Expanded: ventral expansion, generally all around germ ring
as in A. Adaxial/faint: either wild-type pattern, or reduced intensity in a small
proportion of mutants that was not significantly altered by Fgf4. Left: absolute
number of embryos analysed from two experiments to emphasise the lack of
induction in mutants (see Table S3). Right: alternative display to highlight the
reduced response in heterozygotes compared with wild type (χ2 test).
(D) Adaxial upregulation of tbx16 mRNA is lost in tbxta−/− mutants
(arrowheads). Fgf4 upregulates tbx16 mRNA throughout ventral posterior
mesoderm (arrows) and causes mesodermal cell aggregation (asterisks).
tbxta−/− mutants accumulate less tbx16 mRNA than siblings and have less
expression on the dorsal side (brackets). Scale bars: 100 µm.
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(P=0.0001 χ2-test; Fig. 7C; Table S4). Therefore, Tbxta is essential
for myod induction in pre-adaxial cells independently of its role in
promoting expression of midline Fgfs.
Although Fgf4 injection did not radically alter the location of

tbx16 or tbxta mRNA (Fig. 5B), we noticed that the higher level of
tbx16 mRNA in adaxial compared with paraxial cells was not
obvious in Fgf4-injected wild-type embryos, with high levels
present at all dorsoventral locations, presumably because pre-
adaxial character was induced widely in posterior mesoderm
(Fig. 5B). Nevertheless, as Fgf4 injection into tbxta mutants
induced myf5 but not myod mRNA (Fig. 7A), it seems that Tbxta is
essential for progression from myf5 to myod expression.
Two hypotheses could explain the lack of myod expression in

Fgf4-injected tbxtamutants. First, despite the apparent lack of Tbxta
protein in adaxial cells (Ochi et al., 2008; Schulte-Merker et al.,
1994a), Tbxta might act directly on myod. Alternatively, Fgf-driven
Tbxta activity might act indirectly in pre-adaxial cells to upregulate
Tbx16 and thereby drive myod expression. We therefore examined

the ability of Fgf4 to upregulate Tbx16 in tbxta mutants. Fgf4
enhanced tbx16 mRNA throughout the posterior mesoderm in
siblings, with the exception of the widened notochordal tissue that
contained nuclear Tbxta protein and failed to upregulate MRFs
(Figs 7D and 8D). In tbxta mutants, Fgf4 also enhanced tbx16
mRNA in the ventral mesoderm, but a broader dorsal region did not
express tbx16. Moreover, the level of tbx16 mRNA appeared to be
lower than in siblings (Fig. 7D). Thus, Fgf4-injected tbxta mutants
lack both Tbxta and Tbx16 upregulation in pre-adaxial cells. We
conclude that, whereas Fgf-driven induction of lateral myogenic
tissue requires Tbx16 but not Tbxta, induction of pre-adaxial
character (marked by upregulated myf5 and myodmRNAs) requires
both Tbx genes.

Fgf action on Tbx16 suppresses dorsoposterior axial fate
Finally, we examined the wider effect of Fgf signalling when
skeletal muscle cannot form in the absence of tbx16 function.
Excess Fgf action in embryos causes gross patterning defects

Fig. 8. Tbx16 is essential for Fgf4-driven
upregulation of tbx16 and suppression of tbxta.
Embryos from a tbx16+/− incross injected with 150 pg
fgf4 mRNA or control. (A) By 24 hpf, Fgf4-injected
embryos have disorganised heads and, although lacking
obvious trunk or tail, some contain twitching muscle.
(B) ISH for col1a2 for dermomyotome/connective tissue
and myhz1 for skeletal muscle revealed muscle in fgf4-
injected sibs, but not in tbx16−/− mutants. Boxed areas
are magnified to show the alternating pattern of
aggregated muscle and connective tissue in Fgf4-
injected siblings, but the reduced col1a2 and absent
myhz1 mRNA in Fgf4-injected mutants. Note the
aggregation of posterior mesoderm cells into strands
around the yolk. (C) ISH for tbx16mRNA in embryos from
a tbx16+/− incross at around 90% epiboly. Nonsense-
mediated decay of the mutant transcript is apparent
(arrow). fgf4 RNA injection increases tbx16 mRNA in
paraxial mesoderm, widens dorsal axial notochord
domain (asterisks) and causes aggregation of paraxial
cells in siblings, but suppresses residual tbx16 transcript
in mutants. (D) Immunodetection of Tbxt protein and
tbx16mRNA in Fgf4-injected and control embryos from a
tbx16+/− incross. The Fgf4-injected tbx16−/− mutant
(bottom) reveals nuclear Tbxt protein in the entire
posterior mesoderm. Residual tbx16 mRNA in the
prechordal region (arrows) but absence in posterior
mesoderm demonstrates the genotype. (E) Widespread
upregulation of shha mRNA reveals the notochord-
like character of posterior mesoderm in Fgf4-injected
tbx16−/− mutant. Scale bars: 100 µm.
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(Kimelman and Kirschner, 1987; Slack et al., 1987). When Fgf4
was overexpressed in tbx16 heterozygote incross lays, some anterior
mesodermal tissue formed and head tissues, such as eye and brain,
were apparent, but trunk and tail mesoderm was grossly deficient
(Fig. 8A). In siblings overexpressing Fgf4, somemusclewas formed
and truncated embryos were observed to twitch at 24 hpf. In
contrast, no muscle was detected in tbx16 mutants overexpressing
Fgf4 (Fig. 8B). Moreover, the residual expression of mutant tbx16
mRNA at 90% epiboly observed in uninjected embryos was lost
upon Fgf4 overexpression (Fig. 8C). This suggests that the cells
with tailbud character normally accumulating in tbx16mutants were
missing. Instead, widespread expression of Tbxta protein in nuclei
far from the germ ring suggested that the entire posterior (but not
anterior) mesoderm had converted to notochord, the most dorsal
posterior mesoderm fate (Fig. 8D). Indeed, shha mRNA, a marker
of notochord, was found to be broadly but weakly upregulated
around the embryo in tbx16 mutant embryos injected with fgf4
mRNA, but not in their siblings (Fig. 8E). The data suggest that
Fgf4 drives early involution of all posterior mesoderm precursors,
leaving none to form a tailbud. In the presence of Tbx16, Fgf4 also
dorsalises most involuted trunk mesoderm to muscle, whereas in the
absence of Tbx16 Fgf4 converts most of the trunk mesoderm to
notochord precursors.

DISCUSSION
The current work contains four main findings. First, that Tbx16
directly binds and activates myf5 regulatory elements to initiate
skeletal myogenesis. Second, that Fgf signalling acts through Tbx16
to drive the initial myogenic events in the adaxial cell lineage, which
subsequently require Hh signalling to complete myogenesis. Third,
that Tbxta, the dorsal-most/posterior Tbx factor, binds directly to
myod regulatory elements and also promotes dorsal midline
expression of Fgfs, which subsequently cooperate to drive dorsal
myogenesis through Tbx16. Fourth, that Fgf action through Tbx16
suppresses the dorsoposterior axial fate induced by Tbxta. Overall,
Tbx transcription factors provide a crucial link between mesoderm
induction and the initiation of myogenesis, which has profound
implications for understanding the evolution of vertebrates.

Tbx genes and myogenesis
Building on previous evidence that Tbx16 upregulates myf5
expression (Garnett et al., 2009; Mueller et al., 2010), our findings
show that myf5 and myod genes are direct targets of Tbx16. We also
present evidence that myf5 and myod are direct targets of Tbxta. As
MRF gene activity drives commitment to skeletal myogenesis in
vertebrates, our findings place Tbx protein activity at the base of
skeletal myogenesis in zebrafish (Fig. S8).
Before myogenesis, Tbx16 is required for migration of most trunk

PSM cells away from the ‘maturation zone’ immediately after their
involution (Griffin and Kimelman, 2002; Row et al., 2011). Our
analysis of aplnrb-expressing mesodermal cells shows that most
anterior (i.e. head) and posterior ventral (i.e. ventral trunk) mesoderm
involution and migration occurs normally in both tbx16 and tbxta
mutants. Indeed, some PSM eventually yielding muscle is formed in
tbx16mutant trunk (Amacher et al., 2002; Kimmel et al., 1989). PSM
is more severely lacking in tbx16;tbxta or tbx16;tbx16l double
mutants (Amacher et al., 2002; Griffin et al., 1998; Morrow et al.,
2017; Nelson et al., 2017) or after Tbxtb knockdown in the tbxta
mutant (Martin and Kimelman, 2008). Cooperation of Tbx proteins
in PSM formation also occurs in Xenopus (Gentsch et al., 2013). It is
likely, therefore, that all PSM formation and its accompanying myf5
expression requires Tbx proteins, which may help explain why tbx16

mutants have increased pronephric mesoderm (Warga et al., 2013).
As Tbx16 is required for direct induction of myf5 and for pcdh8,
msgn1, mespaa and tbx6 expression in PSM (Fior et al., 2012;
Goering et al., 2003; Griffin and Kimelman, 2002; Lee et al., 2009;
Morrow et al., 2017; Yamamoto et al., 1998), the data support
previous proposals (Amacher and Kimmel, 1998; Griffin and
Kimelman, 2002) of a role for Tbx16 in promotion of the earliest
step in PSM formation, en route tomyogenesis. These early actions of
Tbx16 and Tbxta proteins have previously masked their direct
myogenic actions in mutants.

Our data argue that once posterior (i.e. trunk) mesoderm forms,
Tbx proteins are still required for MRF expression and normal
myogenesis. Hh signalling from notochord acts to maintain adaxial
MRF expression in wild type and, if Tbx-driven initiation fails, Hh
can initiate myod and upregulate myf5 expression, thereby driving
slow myogenesis (Blagden et al., 1997; Coutelle et al., 2001; Du
et al., 1997). When Hh signalling is prevented, both Tbx16 and
Tbxta are essential for initial pre-adaxial myod transcription.
Conversely, Tbx16-induced ectopic myod expression is restricted
to a narrower mesodermal region flanking the pre-adaxial cells,
likely due to the restricted expression of smarcd3 (Baf60c) in this
region (Ochi et al., 2008). Nevertheless, myod is induced by Tbx16
in the absence of Myf5, probably through direct binding to
regulatory elements in the myod locus. It is possible that changes in
chromatin structure in myf5 and myod loci accompanying posterior
mesoderm formation facilitate Tbx16 access to its binding sites in
these MRF genes.

Adaxial slow and paraxial fast myogenesis differ (Blagden et al.,
1997; Devoto et al., 1996). Paraxial PSM expresses myf5 after
involution, which requires Tbx16, but not Tbxta. However, fast
myogenesis is delayed until somites form, perhaps through Tbx6
action (Windner et al., 2015). In contrast, pre-adaxial cells that
generate slow muscle within PSM require both Tbxta and Tbx16
function for upregulation of myf5 and initiation of myod expression.
Thus, distinct Tbx proteins are required for normal adaxial and
paraxial myogenesis.

Residual muscle in tbx16 mutants is likely driven by Tbx16l
(Morrow et al., 2017). However, as tbx16;tbx16l double mutants
continue myod mRNA expression at a reduced level throughout the
axis at 24 hpf (Morrow et al., 2017), we predict this is in adaxially
derived slow muscle induced by Hh signalling.

To identify likely MRF enhancers at 80% epiboly, we have
largely restricted our focus to robust Tbx16 and Tbxta ChIP-seq
peaks that are co-incident with established histone marks indicative
of active enhancers, H3K4me1 and H3K27ac. As many
transcription factor-binding events may be non-functional, not all
enhancers have H3K27ac (Pradeepa, 2017; Pradeepa et al., 2016)
and a minority of embryonic cells are myogenic, additional Tbx16
and Tbxta ChIP-seq peaks beyond 5DE, 5PE1 and DDE3maymark
functionally important enhancers regulating myf5 and myod. Of
particular note DDE1, −31 kb upstream of myod, with Tbx16 and
Tbxta ChIP-seq peaks that colocalise with significant H3K4me1,
may be functionally important.

Understanding of the elements driving specific aspects of
zebrafish myf5 expression is limited. As with murine Myf5
(Buckingham and Rigby, 2014), our data suggest that elements
∼80 kb upstream of the transcription start site are required for myf5
expression. A BAC transgenic encompassing 5DE drives GFP
expression in muscle, although analysis of shorter constructs has
been confounded by cloning artefacts (Chen et al., 2001, 2007). We
also observe Tbx-binding peaks far upstream of zebrafish myod.
Upstream elements are known to initiate murine Myod (Myod1)
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expression in some embryonic regions, but whether these elements
drive the earliest myotomal regulation of Myod is unknown (Chen
and Goldhamer, 2004). Mouse Tbx6 and Tbxt family genes are also
required for trunk/tail, but not cranial, myogenesis (Nandkishore
et al., 2018). Moreover, other Tbx proteins bind similar DNAmotifs
and are required to pattern cranial, cardiac and limb muscle (Don
et al., 2016; Knight et al., 2008; Lu et al., 2017; Papaioannou, 2014;
Valasek et al., 2011). The extent to which Tbx genes act through
similar binding elements to initiate MRF expression and
myogenesis across vertebrates remains to be determined.

Fgf and myogenesis
Tbx16 is required for Fgf signalling to inducemyf5 (Fig. 5A, Fig. S8).
In its absence, Fgf drives all posterior mesoderm towards a
notochord-like fate (Fig. 8D,E), probably via activation of Tbxta.
Fgf signalling is required for expression of myf5 in tailbud paraxial
PSM (Groves et al., 2005). Here, we show that Fgf is also required for
the earliestmyf5 expression in involuting trunk mesoderm and for the
initiation ofmyf5 andmyod expression in pre-adaxial cells destined to
form the slow muscle of anterior somites. Our data provide further
evidence that this MRF expression is subsequently maintained by Hh
signalling, as the shield/tailbud-derived sources of Fgf recede from
the adaxial cells (Coutelle et al., 2001; Osborn et al., 2011) (Fig. S8).
We find that Fgf action is stronger in trunk (as opposed to tail)
somites, consistent with (1) dwindling Fgf mRNA levels as tailbud
outgrowth slows and (2) the unresolved issue of Hh-independent
initiation of MRF expression in the anterior-most somites of murine
smoothened mutants (Zhang et al., 2001). We suggest this MRF
expression is triggered by Fgf in mouse, as in zebrafish.
Our data argue strongly that Fgf signalling not only promotes

tbx16 expression, but also enhances the activity of the Tbx16
protein, constituting a feed-forward mechanism. The MRF-
inducing activity of Tbx16 is suppressed by inhibition of Fgf
signalling (Fig. 5C,D). Bearing in mind the existence of Tbx16l and
Tbxta, this result is consistent with the finding that tbxta or tbx16
mutation sensitises embryos to Fgf inhibition (Griffin and
Kimelman, 2003). As Tbx16 overexpression can expand PSM
fates and reverse the effect of partial Fgf inhibition, a primary role of
Fgf signalling is to cooperate with Tbx16 to drive expression of its
target genes, including myf5. This understanding provides
mechanistic insight into how the effects of Fgf on gastrulation
movements and histogenesis are separated, as originally proposed
(Amaya et al., 1993). Interestingly, Tbx16 overexpression rescues
myf5 mRNA preferentially on the dorsal side of the embryo,
suggesting that BMP and/or other signals continue to suppress PSM
fates ventrally, and thus that Tbx16 does not act by simply
suppressing the inhibitory effect of such signals.
Tbxta and Fgf appear to act in a positive-feedback loop to both

maintain tailbud character and diversify PSM into pre-adaxial and
paraxial. Tbxta is required for normal Fgf signalling from the
midline to promote pre-adaxial myogenesis. Fgf overexpression
drives myf5 in tbxta mutants, but cannot drive myod. ChIP shows
sites upstream of myod preferentially bound by Tbxta. As Tbxta is
not readily immunodetectable in these pre-adaxial cells
(Hammerschmidt and Nüsslein-Volhard, 1993; Odenthal et al.,
1996; Schulte-Merker et al., 1994a), Tbxta may either open the
myod locus, act indirectly, or remain tightly bound despite low free
concentration. In the absence of Tbx16, Fgf drives the entire germ
ring towards notochord fate, preventing continued tailbud
outgrowth. It seems, therefore, that Fgf/Tbx16 interaction is
required to maintain tailbud stem cells and promote PSM
formation. In a chordate ancestor, the evolution of interaction

between Fgf/Tbx6/16-dependent muscle-forming tissue and Fgf/
Tbxta-dependent dorsal organiser might be a key innovation leading
to both tailbud stem cells and notochord.

Evolution of vertebrates
As efficient motility driven by sarcomericmuscle is found throughout
triploblasts, it is likely that mesodermal striated muscle existed in the
common ancestor of deuterostomes and protostomes. There is
consensus that the appearance of neural crest, notochord and a
post-anal tail were significant evolutionary steps for chordates (Gee,
2018). Already in cephalochordates at least two kinds of striated
muscle had evolved in anterior somites (Devoto et al., 2006; Lacalli,
2002). Our evidence that initiation of both slow and fast myogenesis
in the most anterior trunk is driven by Fgf/Tbx signalling indicates
that a major function of this early mesodermal inducer was induction
of trunk striated myogenesis, which may constitute an ancestral
chordate character. Once Hh is expressed in maturing midline tissues,
it triggers terminal differentiation ofmuscle precursors into functional
muscle through a positive-feedback loop (Coutelle et al., 2001;
Osborn et al., 2011) (Fig. S8). Parallel diversification of neural tube
cells, also regulated by Hh (Placzek and Briscoe, 2018), may have
generated matching motoneural and muscle fibre populations that
enhanced organismal motility. With the evolution of a tbxta-
dependent tailbud destined to make the post-anal tail and
notochord, our data suggest that weakening Fgf signalling
continued to induce myf5 expression and paraxial mesoderm
character through tbx16, but was insufficient to induce adaxial
myogenesis. The presence of Hh and Tbxta plus Tbx16, however,
ensure that adaxial slow muscle is initiated in the zebrafish tail.

In the anterior somites of amniotes, as in zebrafish, Hh signalling
maintains, rather than initiates, myf5 expression (Zhang et al., 2001).
In more posterior somites of zebrafish, Xenopus and amniotes, Hh
signalling drivesmyf5 initiation (Borycki et al., 1999; Grimaldi et al.,
2004). Compared with zebrafish, however, murineMyf5 induction is
further delayed until after somitogenesis, when Gli3 repressive
signals in PSM have diminished (McDermott et al., 2005). In mouse,
Tbxt (known as brachyury) is required for myogenesis and binds
20 kb downstream of Myod, but does not obviously control its
expression (Lolas et al., 2014). No clear orthologue of tbx16 exists in
mammals, although it clusters by sequence with Tbx6 genes.
Mammalian Tbx6 suppresses neurogenesis in posterior paraxial
mesoderm, suggesting that additional mechanisms have evolved that
suppress early pre-somitic Myf5 expression (Chapman and
Papaioannou, 1998). Indeed, possible low level Myf5 expression in
PSM has long been a source of controversy (George-Weinstein et al.,
1996; Gerhart et al., 2004). Thus, there has been diversification in
how these Tbx genes regulate somitic myogenesis.

The ancestral situation seems clearer. In amphioxus, Tbx6/16 is
expressed in tailbud and PSM (Belgacem et al., 2011). In Ciona,
knockdown of Tbx6b/c/d leads to reducedMyoD expression, loss of
muscle and paralysis (Imai et al., 2006). In Xenopus, both Tbx6 and
VegT are implicated in early myogenesis (Callery et al., 2010;
Fukuda et al., 2010; Tazumi et al., 2010), although some
mechanisms may differ from those in zebrafish (Maguire et al.,
2012). By adding our zebrafish findings, we show that in all major
chordate groups Tbx-dependent gene regulation is central to skeletal
myogenesis. The conserved involvement, yet divergent detail, of
how Tbx16, Tbx6 and Tbxt genes regulate somitic myogenic
diversity along the body axis are consistent with selective pressures
on these duplicated Tbx gene families playing a key role in the
diversification of myogenesis in the vertebrate trunk and tail,
characters that gave these chordates their predatory advantage.
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MATERIALS AND METHODS
Zebrafish lines and maintenance
Mutant lines fgf8ati282a (Reifers et al., 1998), noton1 (Talbot et al., 1995),
smob641 (Barresi et al., 2000), tbxtab195 and tbx16b104 (Griffin et al., 1998)
are likely nulls and were maintained on King’s wild-type background.
Staging and husbandry were as described previously (Westerfield, 2000).
All experiments were performed under licences awarded under the UK
Animal (Scientific Procedures) Act 1986 and subsequent modifications.

In situ mRNA hybridisation and immunohistochemistry
In situ mRNA hybridisation (ISH) for myf5 and myod was performed as
described previously (Hinits et al., 2009). Additional probes were: fgf3
(Maroon et al., 2002), fgf4 (IMAGE: 6790533, https://www.ncbi.nlm.nih.
gov/nuccore/BC128817), fgf6a (Thisse and Thisse, 2005), fgf8a (Reifers
et al., 1998), tbxta (Schulte-Merker et al., 1994b) and tbx16 (Griffin et al.,
1998; Ruvinsky et al., 1998). Anti-Ntla immunostaining was performed after
ISH using rabbit anti-Ntla (Schulte-Merker et al., 1992; 1:2000) and goat anti-
rabbit IgG-HRP-conjugated secondary antibody (PI-1000-1, Vector
Laboratories).

Embryo manipulations
Embryos were injected withMOs (GeneTools LLC) as indicated in Table S2
to fgf3, fgf4, fgf6a, fgf8a, tbxta (Feldman and Stemple, 2001) or tbx16
(Bisgrove et al., 2005). Controls were vehicle or irrelevant mismatch MO.
Cyclopamine (100 µM in embryo medium), SU5402 (at the indicted
concentration in embryo medium) and vehicle control were added at 30%
epiboly to embryos whose chorions had been punctured with a 30G
hypodermic needle. A PCR product of fgf4 (IMAGE: 6790533) was cloned
(primers in Table S2) into the SacI/SalI sites of pβUT3 to make mRNA for
overexpression. One-cell-stage embryos were injected with 100-220 pg fgf4
mRNA (made with messageMachine), 50 pg fgf6a mRNA, 150 pg tbx16
mRNA (Griffin et al., 1998) or 150 pg tbx16-GR mRNA (Jahangiri et al.,
2012). For hormone-inducible Tbx16 activation, mRNA corresponding to
Tbx16 fused to the hormone-binding domain of glucocorticoid receptor
(GR) was overexpressed in wild-type embryos. The resulting protein is
held in the cytoplasm until DEX from shield stage stimulates GR nuclear
translocation. In the presence of the translation inhibitor CHD (added
prior to DEX at the germ ring stage), increased nuclear Tbx16 is
expected to induce only direct targets of Tbx16 in a mosaic fashion.
Embryos were treated with 10 μg/ml final concentration of CHD 2 h
prior to collection at 75-80% epiboly. CHD caused ∼5% delay in
epiboly, showing that it was active. After 30 min, 20 μM DEX was
added for the remaining 1.5 h.

ChIP-seq and ChIP-qPCR
ChIP-seq data from GSE84619 and GSE32483 were analysed as reported
previously (Nelson et al., 2017). Multiz Alignments & Conservation from
UCSC Genome Browser (Haeussler et al., 2019) are shown beneath
schematics. ChIP-seq peak height was measured in reads per million reads
(RPM). ChIP-qPCR experiments were performed as previously reported
(Jahangiri et al., 2012) using the primers in Table S2.
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Fig. S1

Fig. S1.  Expression of aplnrb mRNA during zebrafish axis formation. 
Wholemount in situ mRNA hybridization of apelin receptor b (aplnrb) mRNA in zebrafish embryos at the 
indicated stages, shown in animal (An), lateral (La), dorsal (Do, animal to top), ventral (Ve, animal to top) and 
posterior (Po, dorsal to top) views. Ant = anterior. Note significant expression in early germ ring (arrows), 
future cranial mesoderm (large and small brackets highlight comparable regions of expression) and adaxial 
cells (arrowheads).  Expression is lacking in paraxial mesoderm (white dashes) that expresses myf5 and later 
myod mRNAs (see Fig. 1C).  Between 75-90% epiboly, aplnrb mRNA has a complex and informative 
expression pattern, marking the anterior invaginating mesoderm cells around the germ ring and the pre-
adaxial cells, but appears down-regulated in more lateral regions expressing myf5 but not myod.   
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Fig. S2 

Fig. S2. Hh signals are required for induction of adaxial myod in the tail. 

Dorsal flatmount preparations showing in situ mRNA hybridisation for myod at 15ss.  A,B. Wild-type embryos 
were treated with either a low dose (50 µM, A) or the standard dose of cyA (100 µM, B). The control vehicle-
treated embryo is shown in Fig. 1B.  C-F. Hh signalling is required to drive pre-adaxial myod induction in the 
tail of noto mutants. Embryos from a notom614/+ incross were treated with cyA (D,F) or vehicle control (C,E). 
Bars: 50 µm. 

Development: doi:10.1242/dev.184689: Supplementary information
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Fig. S3 

Fig. S3.  MRF over-expression rescues trunk slow myogenesis. 
Confocal stacks showing immunodetection of slow fibres with Slow MyHC in smo mutant (identified by lack of 
tail circulation), smo sibling, un-injected control or cyA-treated embryos injected with myod or myog RNA.  All 
embryos orientated anterior to left dorsal up showing 2-3 trunk somites (A-H) or entire trunk and tail (I,J).  A,B. 
Myod RNA-injected smo siblings have slow muscle with disrupted somite morphology.  C,D.  Rare slow fibres 
present in the trunk region of smo mutants (arrow) are more common after myod RNA injection.  E,F. CyA-
treatment prevents slow fibre formation.  Presence of maternal Smo protein may account for the greater 
number of residual slow fibres in smo mutant compared to cyA-treated embryos.  G,H. Myod or myog RNA 
injection rescues slow fibre formation in cyA-treated embryos.  Inset in H shows co-expression of slow MyHC, 
Prox1 and GFP in a cyA-treated embryo after injection of myog-IRES-GFP RNA.  I,J. Myog RNA rescues slow 
fibres in trunk but not tail.  Insets show co-expression of Prox1 and slow MyHC in short confocal stacks.  K.  
Slow fibres were counted at 24 hpf in each somite of seven control smo mutants and seven smo mutants 
injected at 1 cell stage with myod RNA.  L.  Slow fibres were counted at 24 hpf in each somite of ten control 
uninjected and ten embryos injected at 1 cell stage with myog RNA that were each subsequently treated with 
cyA from 30% epiboly.  Lack of slow fibre induction in tail could reflect either differential tissue sensitivity or 
dilution of the injected mRNA.  Bars: 50 µm. 

Development: doi:10.1242/dev.184689: Supplementary information
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Fig. S4 

Fig. S4. Dorsal fgf expression and requirement for adaxial myogenesis. 
In situ mRNA hybridization for fgfs in wild type embryos at 80% epiboly, tailbud (tb) and 6ss (A), for myod and 
myf5 in control and fgf MO-injected and fgf8a-/- embryos at 80% (B,C) and for tbxta (red) and myod 
(blue/brown) (D). A. fgf8a, fgf4, fgf6a and fgf3 transcripts appear successively in wild type embryos in the 
dorsal midline (arrows) and CNH (arrowheads).  B. Myod and myf5 mRNAs in fgf3 MO, fgf4 MO and fgf6a MO 
wild type embryos and in sequence-genotyped fgf8a-/- embryos at 80% epiboly (upper rows, control and single 
MOs from a representative experiment). Note that siblings of the fgf8a mutants had similar MRF expression. 
Arrowheads indicate nascent adaxial cells. C. Myf5 mRNA in sibling embryos from an incross of heterozygous 
fgf8a+/- fish injected with 6 ng control MO or 2 ng each of fgf3, fgf4 and fgf6a MO. Note the successively 
stronger reduction in signal as more fgf function is removed.  D.  Rows showing replicate fgf MO-injected 
embryos had reduced accumulation of myod mRNA in pre-adaxial cells of compared to control (arrowheads). 
Note widening of notochord in fgf6a morphants. E.  Aplnrb mRNA in fgf MO- or control MO-injected embryos 
from an incross of heterozygous fgf8a+/- fish showing good gastrulation (asterisks), but reduction in aplrnb 
mRNA in pre-adaxial cells (arrowheads) and increase in paraxial region (white dashes) in dorsal (Do) and 
lateral (La; dorsal to right) view when fgf signalling was reduced (lower right).  Bars: 100 µm. 

Development: doi:10.1242/dev.184689: Supplementary information
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Fig. S5 

Fig. S5. Tbx mRNA changes in response to Hedgehog signalling blockade. 
In situ mRNA hybridization for tbx16 (A) and tbxta (B) in cyA- and control vehicle-treated wild type embryos at 
80% epiboly and 5 ss developmental stages.  Single embryos are shown from dorsal (80% and 5ss) and 
vegetal (80%) views.  Adaxial tbx16 mRNA is unaffected by cyA treatment as cells leave the germ ring/tailbud 
(white line), but is diminished in anterior PSM (arrowheads).  Bar: 200 µm. 

Development: doi:10.1242/dev.184689: Supplementary information
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Fig. S6 

Fig. S6. Aplnrb mRNA changes in Tbx mutants. 
In situ mRNA hybridization for aplnrb in wild type sibling and tbx16 mutant and tbxta mutant  embryos at 80% 
epiboly. Single embryos are shown from dorsal, left lateral and ventral views. Labelling (brackets) is in a band 
of anterior mesoderm. Note the unlabelled region in wild type and tbxta mutant that is missing in tbx16 mutant 
(white dashes).  Adaxial aplnrb mRNA up-regulation (arrowheads) is lacking in mutants.  

Development: doi:10.1242/dev.184689: Supplementary information
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Fig. S7 

Fig. S7. ChIP-seq analysis of myod locus. 
ChIP-seq on wt embryos at 75-85% epiboly indicates endogenous Tbx16 and Tbxta binding events within 
75 kb flanking myod TSS. H3K4me3 marks TSSs; H3K4me1 marks enhancers; H3K27ac indicates active 
enhancers; RPM – ChIP-seq peaks height in reads per million reads.  Multiz Alignments & Conservation from 
UCSC Genome Browser (Haeussler et al., 2019) are shown beneath. Purple boxes indicate significant Tbx 
binding for Tbx16 and Tbxta (DDE1) and Tbxta alone (DDE3).  Cyan boxes indicate of Tbx sites mentioned in 
text.  Significant H3K4me1 marks are present at both DDE1 and DDE3, while only DDE3 has a significant 
H3K27ac mark.   

Development: doi:10.1242/dev.184689: Supplementary information
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Fig. S8 

Fig. S8.  Model illustrating the diminishing role of Fgf signalling in slow myogenesis from trunk to tail. 
Note that not all interactions in precursors of adaxial slow muscle cells are shown.  In particular, our data 
indicate that Fgf has effects on both the accumulation of Tbx mRNAs and subsequently on the activity of Tbx 
proteins.  Note also that Fgf-dependent Tbx16 regulation of myf5 mRNA accumulation in paraxial precursors 
of fast muscle and dermomyotome is not illustrated. 

Development: doi:10.1242/dev.184689: Supplementary information
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Table S1  Quantitation of data in Figures 

Figure + 
panel 

Assay Treatment/genotype Embryos with phenotype 
shown/Total (%) 

1A myod mRNA control 
SU5402 
control 
cyA 

51/51 (100%) 
40/40 (100%) 
80/80 (100%) 
60/60 (100%) 

1A myf5 mRNA control 
SU5402 
control 
cyA 

50/50 (100%) 
36/36 (100%) 
81/81 (100%) 
68/68 (100%) 

1A aplnrb mRNA control 
SU5402 

30/30 (100%) 
28/28 (100%) 

1B myod mRNA cyA 6ss 
smo 6ss  
smo + cyA 6ss 
smo 15ss  

83/83 (100%) 
13/46 (28%) 
14/54 (26%) 
26/99 (26%) 

1B ptc1 mRNA smo 6ss 
cyA 

11/67 (16%) 
31/31 (100%) 

2A Slow MyHC shha 24hpf 23/80  (29%) 
2B Slow MyHC noto 24hpf 25/88  (28%) 
2C myod mRNA sib 

noto 
sib + cyA 
noto + cyA 

47/62 (76%) 
15/62 (24%) 
39/56 (70%) 
17/56 (30%) 

2D myod mRNA control  
cyA  
SU5402  
SU5402 + cyA 

67/67 (100%) 
47/47 (100%) 
116/116 (100%) 
62/63   (98%) 

2D myf5 mRNA control 
cyA 
SU5402 
SU5402+cyA 

20/20 (100%) 
15/15 (100%) 
   5/5 (100%) 
13/13 (100%) 

3A myod mRNA control 
fgf6a MO + fgf8a MO 
fgf4 MO + fgf8a MO 
fgf4 MO + fgf6a MO + fgf8a 
MO 

35/40 (88%) + 8/19 (42%) 
38/46 (83%) + 22/26 (85%) 

25/36 (69%) 
13/15 (87%) 

3A myf5 mRNA control 
fgf6a MO + fgf8a MO 
fgf4 MO + fgf8a MO 
fgf4 MO + fgf6a MO + fgf8a 
MO 

38/40 (95%) + 20/20 (100%) 
46/50 (97%) + 32/33 (91%) 

11/38 (29%) 
17/25 (68%) 

3B myod mRNA control 
cyA 
fgf4 MO + fgf8a MO 
fgf4 MO + fgf8a MO + cyA 

3/3 (100%) 
5/5 (100%) 
5/5 (100%) 
4/5 (80%) 

3C myod mRNA control (fgf4) 
+ fgf4 mRNA 
control (fgf6a) 
+ fgf6a mRNA 

129/129 (100%) 
131/136 (96%) 
20/20 (100%) 
20/20 (100%) 

3C myf5 mRNA control (fgf4) 
+ fgf4 mRNA 
control (fgf6a) 
+ fgf6a mRNA 

30/30 (100%) 
34/40 (85%) 
20/20 (100%) 
18/18 (100%) 

3D aplnrb mRNA control 
+ fgf4 mRNA 

32/32 (100%) 
12/18 (67%) 
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Figure + 
panel 

Assay Treatment/genotype Embryos with phenotype 
shown/Total (%) 

4A tbxta mRNA control  80% 
low SU5402  80% 
control 6ss 
low SU5402 6ss 
high SU5402 6ss 

21/21 (100%) 
14/14 (100%) 
52/52 (100%) 
44/50  (88%) 
32/32 (100%) 

4A tbx16 mRNA control  80% 
low SU5402  80% 
control 6ss 
low SU5402 6ss 
high SU5402 6ss 

21/21 (100%) 
15/15 (100%) 
40/40 (100%) 
41/41 (100%) 
74/74 (100%) 

4B myod mRNA control 
tbxta MO 
tbx16 MO 

28/28 (100%) 
20/21  (95%) 
20/22  (91%) 

4B myf5  mRNA control 
tbxta MO 
tbx16 MO 

30/30 (100%) 
12/19  (63%) 
19/20  (95%) 

4B fgf8a  mRNA control 
tbxta MO 
tbx16 MO 

30/30 (100%) 
19/20  (95%) 
18/20  (90%) 

4B fgf3 mRNA control 
tbxta MO 
tbx16 MO 

25/25 (100%) 
17/17 (100%) 
11/14  (79%) 

4B fgf4 mRNA control 
tbxta MO 
tbx16 MO 

28/28 (100%) 
19/19 (100%) 
12/14  (86%) 

4B fgf8a mRNA control 
tbxta MO 
tbx16 MO 

30/30 (100%) 
14/16  (88%) 
10/12  (83%) 

4C myod mRNA control 
tbxta MO 
tbx16 MO 
cyA 
cyA + tbxta MO 
cyA + tbx16 MO 

31/31 (100%) 
21/22  (95%) 
24/24 (100%) 
30/30 (100%) 
23/23 (100%) 
22/22 (100%) 

4C myf5 mRNA control 
tbxta MO 
tbx16 MO 
cyA 
cyA + tbxta MO 
cyA + tbx16 MO 

40/40 (100%) 
24/26  (92%) 
25/25 (100%) 
38/38 (100%) 
19/20  (95%) 
24/24 (100%) 

5A myod mRNA sib 
tbx16-/- 
sib + fgf4 mRNA 
tbx16-/- + fgf4 mRNA 

82/122 (67%) 
40/122 (33%) 
95/128 (78%) 
33/128 (26%) 

5A myf5 mRNA sib 
tbx16-/- 
sib + fgf4 mRNA 
tbx16-/- + fgf4 mRNA 

95/120 (79%) 
25/120 (21%) 
98/126 (78%) 
28/126 (22%) 

5B tbxta mRNA control 
fgf4 mRNA 

30/30 (100%) 
20/21 (95%) 

5B tbx16 mRNA control 
fgf4 mRNA 

29/29 (100%) 
61/61 (100%) 
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Figure + 
panel 

Assay Treatment/genotype Embryos with phenotype 
shown/Total (%) 

5C myod mRNA control 
+tbx16 mRNA 
control + 10 µM SU5402 
+tbx16 mRNA + 10 µM 
SU5402  

31/31 (100%) 
7/42 (17%) 
32/32 (100%) 
7/35 (20%) 

5C myf5 mRNA control 
+tbx16 mRNA 
control + 10 µM SU5402 
+tbx16 mRNA + 10 µM 
SU5402  

24/24 (100%) 
14/42 (33%) 
29/29 (100%) 
4/35 (11%) 

5D myf5 mRNA control 
+tbx16 mRNA 
control + 60 µM SU5402 
+tbx16 mRNA + 60 µM 
SU5402  

18/18 (100%) 
2/23 (9%), 21/23 (91%) faint 
8/8 (100%) 
23/23 (100%) 

5D myod mRNA control 
+tbx16 mRNA 
control + 60 µM SU5402 
+tbx16 mRNA + 60 µM 
SU5402  

15/15/ (100%) 
2/24 (8%), 7/24 (29%) disrupted 
15/15 (100%) 
32/32 (100%) 

6E myf5 mRNA CHD alone 
CHD + DEX 

75/75 (100%) 
35/70 (50%) 

6E myod mRNA CHD alone 
CHD + DEX 

28/28 (100%) 
11/21 (52%) 

6F myod mRNA Control myf5 het incross 
myf5+/+ + tbx16 mRNA 
myf5+/- + tbx16 mRNA 
myf5-/- + tbx16 mRNA 

33/33 (100%) 
6/6 (100%) 
11/17 (65%) 
2/4 (50%) 

7A myod mRNA sib 
tbxta-/- 
sib + fgf4 mRNA 
tbxta-/- + fgf4 mRNA 

100/132 (76%) 
32/132 (24%)    
16/27 (59%)     (for genotyping see 
8/27 (29%)       Table S4)  

7A myf5 mRNA sib 
tbxta-/- 
sib + fgf4 mRNA 
tbxta-/- + fgf4 mRNA 

108/138 (78%) 
30/138 (22%)   
50/74 (68%)     
24/74 (32%)    

7B aplnrb mRNA sib 
tbxta-/- 
sib + fgf4 mRNA 
tbxta-/- + fgf4 mRNA 

144/195 (74%) 
51/195 (26%)   
12/18 (67%)  
6/18 (33%)    

7D tbx16 mRNA sib 
tbxta-/- 
sib + fgf4 mRNA 
tbxta-/- + fgf4 mRNA 

48/66 (73%) 
18/66 (27%) 
70/93 (75%) 
23/93 (25%) 

8A Bright field sib 
tbx16-/- 
+ fgf4 mRNA 

28/41 (68%) 
13/41 (32%) 
48 

8B myhz1 mRNA sib 
tbx16-/- 
sib + fgf4 mRNA 
tbx16-/- + fgf4 mRNA 

27/40 (68%) 
13/40 (32%) 
38/48 (79%) 
10/48 (21%) 
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Figure + 
panel 

Assay Treatment/genotype Embryos with phenotype 
shown/Total (%) 

8C,D tbx16 mRNA+ 
Tbxta protein 

sib 
tbx16-/- 
sib + fgf4 mRNA 
tbx16-/- + fgf4 mRNA 

33/47 (70%) 
14/47 (30%) 
40/57 (70%) 
17/57 (30%) 

8E sib 
tbxt16-/- 
sib + fgf4 mRNA 
tbx16-/- + fgf4 mRNA 

19/28 (68%) 
9/28 (32%) 
19/31 (61%) 
12/31 (39%) 

S1 aplnrb mRNA 50%-10ss approx. 25 embryos/stage 
S2A Slow MyHC smo sib 27/40 (67.5%) 
S2B Slow MyHC smo sib + myod mRNA 28/35 (80%) 
S2C Slow MyHC smo-/- 13/40 (32.5%) 
S2D Slow MyHC smo-/- + myod mRNA 7/35 (20%) 
S2E Slow MyHC control 100/100 (100%) 
S2F Slow MyHC cyA 73/73 (100%) 
S2G Slow MyHC cyA + myod mRNA 20/32 (63%) 
S2H Slow MyHC 

+ Prox1 + 
GFP 

cyA + myog mRNA 26/46 (57%) 

S2I Slow MyHC + 
Prox1 

24hpf 50/50 (100%) 

S2J Slow MyHC + 
Prox1 

24hpf 26/43 (60%) 

S3B myod mRNA control 
+ fgf3 MO 
+ fgf4 MO 
+ fgf6a MO 
fgf8a-/- 

39/47 
58/65 
46/70 
52/69 

S3B myf5 mRNA control 
+ fgf3 MO 
+ fgf4 MO 
+ fgf6a MO 
fgf8a-/- 

51/51  (100%) 
21/58  (36%) 
19/58  (33%) 
44/69  (64%) 

S3C myf5 mRNA sib + control MO 
fgf8a-/- + control MO 
sib + triple Fgf MO 
fgf8a-/- + triple Fgf MO 

13/17 (76%) (2/2 genotyped sib) 
4/17 (24%)  (3/4 genotyped -/-) 
19/31 (77%) (2/2 genotyped sib) 
7/31(23%) (3/3 genotyped -/-) 

S3D myod mRNA control 
+ fgf4 MO 
+ fgf6a MO 
+ fgf4 MO + fgf6a MO 

4/4 
3/3 
2/2 
3/3 

S3E aplnrb mRNA + Control MO 
fgf8a+/+ + triple Fgf MO 
fgf8a-/- + triple Fgf MO 

42/42 (genotyped: 1 +/+,  5 +/-, 2 -/-) 
32/38 (genotyped: 1 +/+,  3 +/-) 
6/38   (genotyped: 3/3 -/-) 

S4A tbx16 mRNA control @ 80% 
cyA @ 80% 
control @ 5ss 
cyA @ 5ss 

16/16 
19/19 
33/33 
18/18 

S4B tbxta mRNA control @ 80% 
cyA @ 80% 
control @ 5ss 
cyA @ 5ss 

13/13 
25/25 
29/29 
32/32 
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Table S2  Sequences of morpholinos and primers 
Morpholino 

Gene Sequence  (start codon underlined) Quantity (ng) Reference 

fgf3 5’-CATTGTGGCATGGCGGGATGTCGGC-3’ 7.5 (Maroon et al., 

2002) 

fgf4  5’-GCAAGAGGGCTGACTGGACACTCAT-3’ 2-6 

fgf6a 5’-TGAGGAACCTTTGCGCAGTGGCCAT-3’ 2-6 

fgf8a 5’-GAGTCTCATGTTTATAGCCTCAGTA -3’ 2 (Furthauer et 

al., 2001) 

tbx16 5’-GCTTGAGGTCTCTGATAGCCTGCAT-3’ 0.5 (Bisgrove et al., 

2005) 

tbxta 5’-GACTTGAGGCAGGCATATTTCCGAT -3’ 

5’-GCTGGTCGGGACTTGAGGCAGACAT-3’ 

0.25 

2 
(Bisgrove et al., 

2005; Feldman 

and Stemple, 

2001) 

control 5’-CCTCCTACCTCAGTTACAATTTATA -3’ 3-6 Gene Tools 

standard 

Primers  (start and stop codons underlined) 

Gene Forward Reverse Reference 

fgf4 5’-GAGCTCGAGCTCATGAGTGTCC 
AGTCGGCCCTCTTG-3’ 

5’-GTCGACGTCGACTCAAATTCTAGGCA 
AG-3’ 

5DE_ChIP-

qPCR 

5’-TTCCTCACCGTACCTTTTGC-3’ 5’-CATTTCCCCCACAATACACC-3’ 

5PE1_ChIP-

qPCR 

5’-GTGCAATTTTGGCTCAGCTT-3’ 5’-AGATCGGGGAACTTCGCTAT-3’ 

Negative 
region 
(rhod) 

5’-GACTCCACACAATCTGCAACAT-3’  5’-ACCACCTACGCTAAAGAAACCA-3’ Morley et 
al., 2009 
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Table S3  Location and histone modifications of Tbx16 and Tbxta ChIP-seq peaks on myf5 and myod loci

Tbx16 ChIP-seq
myf5 locus Zv9/danRer7 GRCz11/danRer11

Putative 
enhancer ID chr start stop Tbx16 ChIP1 

P value
Tbx16 ChIP2 P 

value H3K4me1 H3K4me3 H3K27ac start stop size
Distance 

from TSS to 
peak centre

5DE chr4 20596134 20597306 2.36592E-91 3.7325E-52 Yes No Yes 21660444 21661616 1173 -80198.5
5PE1 chr4 20672749 20673195 5.47016E-11 6.93426E-08 Yes No Yes 21737059 21737505 447 -3945.5
5PE3 chr4 20680778 20681312 1.69434E-08 1.96789E-06 No No No 21745088 21745622 535 +4126.5

myod locus

Putative 
enhancer ID chr start stop Tbx16 ChIP1 

P value
Tbx16 ChIP2 P 

value H3K4me1 H3K4me3 H3K27ac start stop size
Distance 

from TSS to 
peak centre

D3'E1 chr25 32256140 32256596 8.74984E-14 2.1727E-06 No No No 31412869 31413325 457 +10,396
DDE1 chr25 32297466 32298512 3.92645E-30 3.9355E-09 Yes No No 31454195 31455241 1047 -31224.5
DDE2 chr25 32307295 32307540 1.45546E-05 5.22396E-05 No No No 31464024 31464269 246 -40653

Tbxta ChIP-seq
myf5 locus Zv9/danRer7 GRCz11/danRer11

Putative 
enhancer ID chr start stop Tbxta ChIP1 

P value
Tbxta ChIP2 P 

value H3K4me1 H3K4me3 H3K27ac start stop size
Distance 

from TSS to 
peak centre

5DE chr4 20595996 20597295 N.S. 2.8774E-90 Yes No Yes 21660306 21661605 1300 -80273
5PE2 chr4 20674923 20675240 4.46684E-06 1.1298E-13 Yes No No 21739233 21739550 318 -1837

myod locus

Putative 
enhancer ID chr start stop Tbxta ChIP1 

P value
Tbxta ChIP2 P 

value H3K4me1 H3K4me3 H3K27ac start stop size
Distance 

from TSS to 
peak centre

DDE1 chr25 32297085 32298653 N.S. 2.26464E-12 Yes No No 31453814 31455382 1569 -31104.5
DDE3 chr25 32312015 32312366 1.08643E-07 1.14551E-37 Yes No Yes 31468744 31469095 352 -45426

Peaks with significant H3K4me1 and H3K27ac
N.S. = not significant
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Table S4.  Tbxta dosage controls response of myod to Fgf. 

Fgf4 
mRNA 

(pg) 

Genotype Number 
genotyped 

[%]¶ 

Myod mRNA expression pattern in genotyped 
embryos (%) 

Absent Adaxial only Expanded ventrally 

0 -/-    
+/-   
+/+ 
Total 

  4* 
  3* 
  2* 
  9 

4  (100%)§ 
0      (0%) 
0      (0%) 
8 
((15%))∞ 

0      (0%) 
3  (100%) 
2  (100%) 

45  ((85%)) 

0   (0%) 
0   (0%) 
0   (0%) 
0  ((0%)) 

100 -/-    
+/-  
+/+ 
Total 

  8  [30%] 
14  [52%] 
  5  [19%] 
27 

7  (88%) 
0    (0%) 

0 0    (0%) 
7  (26%) 

1   (12%) 
11   (79%) 

0     (0%) 
12   (44%) 

0     (0%) 
3    (21%) 
5  (100%) 
8    (30%) 

0 -/-    
+/-   
+/+ 
Total 

  5* 
  2* 
  3* 
10 

5 (100%) 
0     (0%) 
0     (0%) 
9  ((30%)) 

0     (0%) 
2 (100%) 
3  (100%) 

21  ((70%)) 

0  (0%) 
0  (0%) 
0  (0%) 
0  ((0%)) 

100 -/-    
+/-   
+/+ 
Total 

  1    [6%] 
  8  [50%] 
  7  [44%] 
16 

1  (100%) 
0      (0%) 
0      (0%) 
1      (6%) 

0    (0%) 
3  (37%) 
1  (14%) 
4  (25%) 

0    (0%) 
5  (63%) 
6  (86%) 

11  (69%) 
150 -/-   

+/-  
+/+ 
Total 

  6  [25%] 
  9  [38%] 
  9  [38%] 
24 

5 (100%) 
0    (0%) 
0    (0%) 
5  (21%) 

1  (17%) 
6  (67%) 
2  (22%) 
9  (38%) 

0  (0%) 
3  (33%) 
7  (78%) 

10  (42%) 
225 -/-   

+/-  
+/+ 
Total 

15  [24%] 
26  [42%] 
21  [34%] 
62 

12 (80%) 
0   (0%) 
0   (0%) 

12  (19%) 

3   (20%) 
11 (42%) 
4   (19%) 

18   (29%) 

0    (0%) 
15  (58%) 
17  (81%) 
32  (52%) 

Summary 
0 -/-   

+/- 
+/+ 
Total 

  9* 
  5* 
  5* 
19 

9  (100%) 
0     (0%) 
0     (0%) 

17  ((20%)) 

0      (0%) 
5  (100%) 
5  (100%) 

66   ((80%)) 

0   (0%) 
0   (0%) 
0   (0%) 
0  ((0%)) 

100-225 -/-   
+/-   
+/+  
Total 

30  [23%] 
57  [44%] 
42  [33%] 
129 

25  (88%) 
0    (0%) 

1 0    (0%) 
25  (19%) 

5  (12%) 
31   (54%) 

7  (17%) 
43  (33%) 

0     (0%) 
26   (46%) 
35   (83%) 
61   (47%) 

* Only a subset of control embryos were genotyped (to ensure reproducibility).

§ Percentages in curved brackets represent fraction of embryos of indicated genotype showing listed myod

expression pattern. 

¶ Percentages in square brackets represent fraction of embryos in sample with each genotype. 

∞ Percentages in double brackets represent fraction of embryos in sample showing listed myod expression 

pattern. 
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Table S5 Summary of Results
Stage	
  (hpf) Genetic	
  

Background
Treatment Gene	
  

product
preadaxial	
  
cells

adaxial	
  
cells

paraxial	
  
mesoderm

somites marginal	
  
zone

germ	
  
ring

notochord Tailbud slow	
  muscle	
  
trunk

slow	
  muscle	
  
tail

skeletal	
  
muscle

Dermomyotome/c
onnective	
  tissue

figure	
  
reference

80-­‐90%	
  Epiboly wt none myf5 ✓ ✓ Fig.	
  1A
wt cyA myf5 ✓ ✓ Fig.	
  1A
wt 60	
  uM	
  SU5402 myf5 ✗ ✗ Fig.	
  1A
wt fgf3MO myf5 ✓ ✓ Fig.	
  S3B
wt fgf4MO myf5 ✓ ✓ Fig.	
  S3B
wt fgf6aMO myf5 ✓ ✓ Fig.	
  S3B
fgf8a-­‐/-­‐ none myf5 ✓ ✓ Fig.	
  S3B
wt fgf6a,	
  fgf8a	
  MO myf5 ✗ ! Fig.	
  3A
wt fgf4,	
  fgf8a	
  MO myf5 ✗ !! Fig.	
  3A
wt fgf4,	
  fgf6,	
  fgf8a	
  MO myf5 ✗ !! Fig.	
  3A
fgf8a-­‐/-­‐ fgf3,fgf4,fgf6a	
  MO myf5 ✗ ✗ Fig.	
  S3C
wt fgf4	
  mRNA myf5 ✓ ✓ ✓ ✓ Fig.	
  3C
wt fgf6a	
  mRNA myf5 ✓ ✓ ✓ ✓ Fig.	
  3C
wt tbxtaMO myf5 ✗ ✓ Fig.	
  4B
wt tbx16MO myf5 ✗ !! Fig.	
  4B
tbx16-­‐/-­‐ none myf5 ✗ ✗ Fig.	
  5A
tbx16-­‐/-­‐ fgf4	
  mRNA myf5 ✗ ✗ Fig.	
  5A
wt tbx16	
  mRNA myf5 ✓ ✓ ✓ ✓ Fig.	
  5C
wt 10uM	
  SU5402 myf5 !! !! Fig.	
  5C
wt 10uM	
  SU5402,	
  tbx16	
  mRNA myf5 ✓ ✓ Fig.	
  5C
wt 60uM	
  SU5402,	
  tbx16	
  mRNA myf5 ✗ ✗ Fig.	
  5D
wt tbx16-­‐GR	
  mRNA,	
  CHD myf5 ✓ ✓ Fig.	
  6E
wt tbx16-­‐GR	
  mRNA,	
  CHD,	
  DEX myf5 ✓ ✓ ✓ Fig.	
  6E
tbxta-­‐/-­‐ none myf5 ✓ ✓ Fig.	
  7A
tbxta-­‐/-­‐ fgf4	
  mRNA myf5 ✓ ✓ ✓ ✓ Fig.	
  7A
wt none myod ✓ Fig.	
  1A
wt cyA myod ✓ Fig.	
  1A
wt 60uM	
  SU5402 myod ✗ Fig.	
  1A
wt fgf3MO myod ✓ Fig.	
  S3B
wt fgf4MO myod ✓ Fig.	
  S3B
wt fgf6aMO myod ✓ Fig.	
  S3B
fgf8a-­‐/-­‐ none myod ✓ Fig.	
  S3B
wt fgf6a,	
  fgf8a	
  MO myod ! Fig.	
  3A
wt fgf4,	
  fgf8a	
  MO myod !! Fig.	
  3A
wt fgf4,fgf6,fgf8a	
  MO myod ✗ Fig.	
  3A
wt fgf4	
  mRNA myod ✓ ✓ ✓ Fig.	
  3C
wt fgf6a	
  mRNA myod ✓ ✓ ✓ ✓ Fig.	
  3C
wt tbxtaMO myod ✗ Fig.	
  4B
wt tbx16MO myod ✗ Fig.	
  4B
tbx16-­‐/-­‐ none myod ✗ Fig.	
  5A
tbx16-­‐/-­‐ fgf4	
  mRNA myod ✗ Fig.	
  5A
wt tbx16	
  mRNA myod ✓ ✓ ✓ Fig.	
  5C
wt 10uM	
  SU5402 myod !! Fig.	
  5C
wt 10uM	
  SU5402,	
  tbx16	
  mRNA myod ✓ Fig.	
  5C
wt 60uM	
  SU5402,	
  tbx16	
  mRNA myod ✗ Fig.	
  5D
wt tbx16-­‐GR	
  mRNA,	
  CHD myod ✓ Fig.	
  6E
wt tbx16-­‐GR	
  mRNA,	
  CHD,	
  DEX myod ✓ ✓ ✓ Fig.	
  6E
myf5	
  +/-­‐ none myod ✓ Fig.	
  6F
myf5	
  +/-­‐ tbx16	
  mRNA myod ✓ ✓ ✓ Fig.	
  6F
myf5	
  -­‐/-­‐ tbx16	
  mRNA myod ✓ ✓ ✓ Fig.	
  6F
tbxta-­‐/-­‐ none myod ✗ Fig.	
  7A
tbxta-­‐/-­‐ fgf4	
  mRNA myod ✗ Fig.	
  7A
wt none aplnrb ✓ ✗ ✓ ✓ Fig.	
  1A
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wt SU5402 aplnrb ✗ " ✓ ✓ Fig        .	
  1A
wt fgf4	
  mRNA aplnrb ✓ ✗ ! ✓ Fig.	
  3D
tbx16-­‐/-­‐ none aplnrb ✗ " ✓ ✓ Fig.	
  S5
tbxta-­‐/-­‐ none aplnrb ✗ ✗ ✓ ✓ Fig.	
  S5
tbxta-­‐/-­‐ fgf4	
  mRNA aplnrb ✓ ✓ ! ✓ Fig.	
  7B
fgf8a+/-­‐ control	
  MO aplnrb ✓ ✗ ✓ ✓ Fig.	
  S3E
fgf8a-­‐/-­‐ control	
  MO aplnrb ✓ ✗ ✓ ✓ Fig.	
  S3E
fgf8a+/-­‐ fgf3,fgf4,fgf6a	
  MO aplnrb ! ✗ ✓ ✓ Fig.	
  S3E
fgf8a-­‐/-­‐ fgf3,fgf4,fgf6a	
  MO aplnrb ✗ ✗ ! ! Fig.	
  S3E
wt none tbxta ✓ ✓ Fig.	
  4A
wt 10um	
  SU5402 tbxta ! ! Fig.	
  4A
wt fgf4	
  mRNA tbxta ! #$ Fig.	
  5B
wt cyA tbxta ✓ #$ Fig.	
  S4
wt none tbx16 ✓ ✓ ✓ Fig.	
  4A
wt 10um	
  SU5402 tbx16 ✗ ! ! Fig.	
  4A
wt fgf4	
  mRNA tbx16 ! ✓ ! Fig.	
  5B
wt cyA tbx16 ✓ ✓ ✓ Fig.	
  S4
tbxta-­‐/-­‐ none tbx16 ! ✓ ✓ Fig.	
  7D
tbxta-­‐/-­‐ fgf4	
  mRNA tbx16 ✗ ! ! Fig.	
  7D
tbx16-­‐/-­‐ none tbx16 !! !! ! Fig.	
  8C
tbx16-­‐/-­‐ fgf4	
  mRNA tbx16 ✗ ✗ ✗ Fig.	
  8C
wt none fgf8a ✓ ✓ Fig.	
  4B
wt tbxtaMO fgf8a ✓ ✗ Fig.	
  4B
wt tbx16MO fgf8a " ✗ Fig.	
  4B
tbx16	
  sib none Tbxt ✓ ✓ Fig.	
  8D
tbx16-­‐/-­‐ none Tbxt ✓ #$ Fig.	
  8D
tbx16	
  sib fgf4	
  mRNA Tbxt ✓ #$ Fig.	
  8D
tbx16-­‐/-­‐ fgf4	
  mRNA Tbxt ✓ ✓ ✓ #$ Fig.	
  8D
tbx16	
  sib none shha ✓ Fig.	
  8E
tbx16-­‐/-­‐ none shha #$ Fig.	
  8E
tbx16	
  sib fgf4	
  mRNA shha ✓ #$ Fig.	
  8E
tbx16-­‐/-­‐ fgf4	
  mRNA shha ✓ ✓ ✓ ✓ ✓ #$ Fig.	
  8E

Tailbud wt none myod ✓ ✓ Fig.	
  3B
wt cyA myod ✓ ✗ Fig.	
  3B
wt fgf4,	
  fgf8a	
  MO myod ✓ ✓ Fig.	
  3B
wt cyA,	
  fgf4,	
  fgf8a	
  MO myod ✗ ✗ Fig.	
  3B

6	
  somites wt none myod ✓ ✓ ✓ Fig.	
  1B
wt cyA myod ✓ ✗ ✓ Fig.	
  1B
smo-­‐/-­‐ none myod ✓ ✗ ✓ Fig.	
  1B
smo-­‐/-­‐ cyA myod ✓ ✗ ✓ Fig.	
  1B
noto-­‐/-­‐ none myod ✓ ✓ ✓ Fig.	
  2C
noto-­‐/-­‐ cyA myod ✓ ✗ ✓ Fig.	
  2C
wt tbx16MO* myod ! ! !! Fig.	
  4C
wt tbx16MO*,	
  cyA myod ✗ ✗ !! Fig.	
  4C
wt tbxta myod ✗ ✓ ✓ Fig.	
  4C
wt tbxta,	
  cyA myod ✗ ✗ ✓ Fig.	
  4C
wt none myf5 ✓ ✓ ✓ ✓ ✗ Fig.	
  4C
wt tbx16MO* myf5 ! ! ✓ ✓ ✗ Fig.	
  4C
wt tbx16MO*,	
  cyA myf5 ✗ ✗ ✓ ✓ ✗ Fig.	
  4C
wt tbxta myf5 ! ! ✓ ✓ ✓ Fig.	
  4C
wt tbxta,	
  cyA myf5 ✗ ✗ ✓ ✓ ✓ Fig.	
  4C
wt none tbxta ✓ ✓ Fig.	
  4A
wt 10um	
  SU5402 tbxta ✓ ! Fig.	
  4A
wt 30um	
  SU5402 tbxta ✗ ✗ Fig.	
  4A
wt cyA tbxta ✓ ✓ Fig.	
  S4
wt none tbx16 ✓ ✓ ✓ Fig.	
  4A
wt 10um	
  SU5402 tbx16 ✓ ✓ ! Fig.	
  4A
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wt 30um	
  SU5402 tbx16 ✗ ✗ ✗ Fig.	
  4A
wt cyA tbx16 ! ✓ ✓ Fig.	
  S4
wt none fgf3 ✓ Fig.	
  4B
wt tbxtaMO fgf3 ✗ Fig.	
  4B
wt tbx16MO fgf3 " " Fig.	
  4B
wt none fgf4 ✓ Fig.	
  4B
wt tbxtaMO fgf4 ✗ Fig.	
  4B
wt tbx16MO fgf4 " Fig.	
  4B
wt none fgf8a ✓ ✓ ✓ ✓ Fig.	
  4B
wt tbxtaMO fgf8a ✓ ✓ ! ✓ Fig.	
  4B
wt tbx16MO fgf8a " ✓ " " Fig.	
  4B

8	
  somites wt none myod ✓ ✓ ✓ Fig.	
  2D
wt cyA myod ✓ ✗ ✓ Fig.	
  2D
wt SU5402 myod ✓ ✓ ! Fig.	
  2D
wt cyA,	
  SU5402 myod ✗ ✗ ! Fig.	
  2D
wt none myf5 ✓ ✓ ✓ ✓ Fig.	
  2D
wt cyA myf5 ✓ ✗ ✓ ✓ Fig.	
  2D
wt SU5402 myf5 ✓ ✓ ✓ ✓ Fig.	
  2D
wt cyA,	
  SU5402 myf5 ✗ ✗ ! ✓ Fig.	
  2D

15	
  somites smo	
  sib none myod ✓ ✓ ✓ Fig.	
  1B
smo-­‐/-­‐ none myod ✗ ✗ ✓ Fig.	
  1B

24	
  hpf shha	
  sib none slow	
  MyHC ✓ ✓ ✓ Fig.	
  2A
shha	
  -­‐/-­‐ none slow	
  MyHC ✓ ✗ ! Fig.	
  2A
noto	
  sib none slow	
  MyHC ✓ ✓ ✓ Fig.	
  2B
noto-­‐/-­‐ none slow	
  MyHC ✓ ✗ ! Fig.	
  2B
smo	
  sib none slow	
  MyHC ✓ ✓ ✓ Fig.	
  S2
smo	
  sib myod	
  RNA slow	
  MyHC ✓ ✓ " Fig.	
  S2
smo-­‐/-­‐ none slow	
  MyHC !! ✗ ! Fig.	
  S2
smo-­‐/-­‐ myod	
  RNA slow	
  MyHC ✓ ✗ ! Fig.	
  S2
wt cyA slow	
  MyHC ✗ ✗ ! Fig.	
  S2
smo-­‐/-­‐ cyA slow	
  MyHC ✓ ✗ ! Fig.	
  S2
tbx16	
  sib none col1a2 ✓ Fig.	
  8B
tbx16	
  sib fgf4	
  mRNA col1a2 !! Fig.	
  8B
tbx16	
  -­‐/-­‐ none col1a2 ! Fig.	
  8B
tbx16	
  -­‐/-­‐ fgf4	
  mRNA col1a2 !! Fig.	
  8B
tbx16	
  sib none myhz1 ✓ ✓ ✓ Fig.	
  8B
tbx16	
  sib fgf4	
  mRNA myhz1 !! !! !! Fig.	
  8B
tbx16	
  -­‐/-­‐ none myhz1 ! ! ! Fig.	
  8B
tbx16	
  -­‐/-­‐ fgf4	
  mRNA myhz1 ✗ ✗ ✗ Fig.	
  8B

✓ present	
  at	
  normal	
  levels
✗ absent
! downregulated

!!
severely	
  downregulated,	
  
still	
  present

" upregulated
#$ mild	
  expansion
#$ moderate	
  expansion
#$ severe	
  expansion
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