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Abstract

Purpose: Bayesian hierarchical models (BHMs) have been used to identify adverse

drug reactions, allowing information sharing amongst adverse reactions and drugs

expected to have similar properties. This study evaluated the use of BHMs in the

routine signal detection analyses of potential first-trimester teratogens, where these

models have not previously been applied.

Methods: Data on 15 058 malformed foetuses exposed to first trimester medications

(1995-2011) from 13 European congenital anomaly (CA) registries were analysed.

The proportion of each CA in women taking a specific medication was compared with

the proportion of that CA in all other women in the dataset (55 CAs × 523 medica-

tions). BHMs were grouped by either medications or CAs or by both simultaneously,

and the results compared with analysing each medication-CA combination separately

and adjusting for multiplicity using a double false discovery rate (FDR) procedure.

The proportions of “high-risk” medications (medications which have been shown to

carry a moderate to high risk of foetal malformations) identified as potential signals

were compared, as well as the total number of potential signals requiring follow up

(the effective workload).

Results: BHMs identified more high-risk medications than the double FDR method,

but the effective workload was larger. A BHM grouping both medications and CAs,

for example, identified 23% of high-risk medications compared with 14% by the dou-

ble FDR; however, there was an increase from 16 to 71 potential signals requiring

follow up.

Conclusion: For comparable effective workloads, BHMs did not outperform the dou-

ble FDR, which is comparatively straightforward to implement and is therefore rec-

ommended for continued use in teratogenic signal detection analyses.
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1 | INTRODUCTION

Pregnant women are excluded from the majority of new medication

safety studies, so information about potential risks to a foetus is lacking.

Routine screening of congenital anomaly (CA) data for potentially terato-

genic medications taken during the first trimester of pregnancy is per-

formed by EUROmediCAT.1 EUROmediCAT compares the odds of

exposure to a specific medication for a specific CA with the odds of

exposure to the same medication for all other medication-exposed CAs2

using a double false discovery rate (FDR) procedure to incorporate group-

ings of similar medications when adjusting for multiple testing.3

In the field of pharmacovigilance, large spontaneous reporting data-

bases detect signals of adverse events (AEs) using disproportionality ana-

lyses to identify drug-AE combinations with more observed reports than

expected under the assumption of independence.4 Bayesian hierarchical

models (BHMs) have been applied to these spontaneous reporting

datasets,5 with the aim of improving estimated associations for any drug-

AE combination by incorporating information from other similar drugs

(or AEs) using specified groupings.6 BHMs can explicitly allow (without

imposing) for the possibility that different medications in the same group

might be related and that AE rates are more likely to be similar within

than across these groups. A BHM with information sharing in two

dimensions has also been proposed to incorporate groupings of both

medications and AEs simultaneously.7 Simulation studies and application

to a sample of the World Health Organisation pharmacovigilance data-

base have demonstrated that a two-dimensional model of information

sharing can produce a more powerful BHM to detect true adverse drug

reactions, compared with sharing information only in one dimension.7

We aimed to ascertain whether BHMs that share information between

medications and/or CAs using existing coding hierarchies have the

potential to improve the effectiveness of signal detection methods using

EUROmediCAT data.

2 | METHODS

2.1 | Study population

EUROCAT is a network of European population based CA registries

whose data is obtained through both active case finding and voluntary

reporting,8 with multiple sources of information used to ascertain CA

cases including live birth, foetal death, and termination of pregnancy

for foetal anomaly. Data quality indicators are used to assess consis-

tency of inclusion criteria, data collection, and recording across regis-

tries.9 The International Classification of Diseases coding version

10 with British Paediatric Association extension (IDC10-BPA) is used

to code CAs according to EUROCAT guidelines. EUROmediCAT com-

prises EUROCAT registries that collect information on first-trimester

(defined as the first day of a woman's last menstrual period up to her

12th gestational week) medication use. Maternal medication exposure

data is primarily obtained through prospectively recorded maternity

records, with additional sources including maternal interviews and

general practitioner records.10,11 Data on 31 197 malformed foetuses

with first-trimester medication exposures from 1995 to 2011 were

available for this study, covering a population of around 7 million

births across 13 registries in 11 countries. For some registries, there

was considerable data loss where it was not possible to verify the

timing of reported medication exposures, which has been discussed

previously (6). However, the distribution of types of CA were similar

for those pregnancies included and excluded due to unknown timing,

suggesting that cases remaining in the dataset for these registries

should not be prone to selection biases in this respect. Ethical and

data access approvals were obtained for each database from the rele-

vant governance infrastructures. This EUROmediCAT dataset was

used previously to compare different FDR methods for multiple test-

ing adjustment,3 and a large proportion of this data was also previ-

ously analysed for signal detection purposes.2

2.2 | Congenital anomalies and medication
exposures

Cases with chromosomal anomalies, skeletal dysplasia, genetic syn-

dromes, and microdeletions were excluded as they are unlikely to be

caused by teratogenic medications. The aetiology of congenital dislo-

cation of the hip is mechanical, so foetuses with this being their only

recorded major CA were also excluded (n = 905). EUROCAT's hierar-

chical coding system categorises the 54 nonchromosomal CA sub-

groups into 11 main organ system groups and five “other anomalies/

syndromes” subgroups https://eu-rd-platform.jrc.ec.europa.eu/sites/

default/files/Full_Guide_1_4_version_28_DEC2018.pdf.12 Five hun-

dred forty-two foetuses with a congenital heart defect (CHD) but no

information regarding the specific type of CHD were combined into

an additional subgroup (“unspecified CHD”; Table S1.

The Anatomical Therapeutic Chemical (ATC) system13 is used to

code unlimited exposures in EUROmediCAT data. The ATC coding

Key Points
• Bayesian hierarchical models have the potential to

improve teratogenic signal detection by incorporating

information sharing between similar medications and/or

congenital anomalies.

• In our analysis, Bayesian hierarchical models demon-

strated a potential to detect signals with fewer exposed

cases than the current frequentist signal detection

procedure.

• In our analysis of prospectively collected registry data on

congenital anomalies, Bayesian hierarchical models did

not outperform the currently used double false discovery

rate (FDR) method of adjusting for multiple testing in sig-

nal detection; continued use of double FDR methods are

therefore recommended for teratogenic signal detection.
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system has a hierarchical structure, grouping medications at five

levels; the highest (ATC1) groups medications into 14 main anatomical

groups, the next three (ATC2-4) use three to five digit codes, respec-

tively, to represent further therapeutic, pharmacological, and/or

chemical classifications, and the most detailed level (ATC5) uses seven

digits to identify the chemical substance. Older ATC codes subject to

alterations over time14 were updated to the newer codes. Foetuses

exposed only to vitamins, minerals, and/or folic acid were excluded.

Foetuses were excluded if exposed only to topical medications, codes

with less than five digits (detail below ATC4 level; n = 1219), second/

third trimester medications (n = 1490), or with unknown timing

(n = 12 073). Further description of these exclusions by registry have

been described in more detail in our previous study.3 After these

exclusions, a total of 15 058 malformed foetuses were included in the

analysis dataset. ATC5 codes were analysed, but where information

was only available to ATC4 level, this was also included. Five hundred

twenty-three medications with at least three exposed foetuses were

investigated. As in the previous EUROmediCAT analysis, foetuses

exposed only to medications with fewer than three exposures in total

were included in the dataset as controls (since medications with fewer

than three exposures are not analysed for signal detection).2,3

2.3 | Statistical analysis

Results from BHMs were directly compared with those obtained pre-

viously for the double FDR procedure on the same dataset.3 Briefly,

the double FDR comprises two steps15,16: first, a representative mini-

mum P value is calculated for each group and only those groups with

a representative P value below the specified FDR threshold are

included in the next step. In the second step, a Simes FDR procedure

is applied across all combinations belonging to those groups passing

the first step. All data management and calculations for Fisher's exact

test and the double FDR procedure were performed using Stata 12.17

For the BHMs, a Gamma Poisson Shrinker (GPS) and a BHM with

a Poisson distribution were combined to model the CA and medica-

tion counts.7 The expected count Eij for each observed count cij was

calculated using the marginal totals for medication i and CA j assuming

no association between i and j. The proportional reporting ratio

(PRR)18 for medication i and CA j was the ratio of the observed to

expected counts, PRRij =
cij
Eij
. The data structure for two-dimensional

information sharing by medications and CAs is displayed in Table 1.

Here, d represents ATC3 medication codes with D groups and i = 1, …,

nd medications within each group d and a denotes groupings of CAs

according to the EUROCAT organ system classes with A groups of

CAs and j = 1, …, na CAs within each group. The lighter grey shading in

Table 1 represents the set of the d = 2 group of medications crossed

with the a = 2 group of CAs, and the dark grey cell in Table 1 c2122

denotes the observed count for the combination of medication

i = 1 in the d = 2 medication group with CA j = 2 in the a = 2 CA group.

Each set in Table 1 has a group distribution, such that each medication-

CA combination within that two-way group shares a common prior dis-

tribution. There is also a prior distribution for the set of all top-level

sets, that is, an average across all CAs and/or medications.

Table S2 presents notation for the BHMs, for which a Poisson

distribution was used to model the observed counts cij for each com-

bination of a medication i and a CA j according to four models of

information sharing. Model 1 is a separate BHM for each medication-

CA combination, with no grouping of medications or CAs. Models

2 and 3 are one-dimensional models of information sharing, with

TABLE 1 Information sharing by grouping of both medications and CAs

CAs

Organ class (a)
1 2

…
A

ATC medications CA ( j) 1 2 … n1 1 2 … n2 1 2 … nA
ATC3 (d) ATC5 (i)

1 1

2

..

.

n1

2 1

2

..

.

n2
..
. ..

.

D 1

2

..

.

nD

Abbreviations: ATC, Anatomical Therapeutic Chemical; CA, congenital anomaly.
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grouping for medications only (using ATC3 codes, model 2) or CAs

only (using EUROCAT organ system classes, model 3). In model 2, the

effects for each group of medications are calculated separately for

each CA, allowing a different distribution for each CA. Conversely, a

different distribution is allowed for each medication when grouping

by CAs in model 3. As a sensitivity analysis, an alternative formulation

of model 2 was also considered where CAs were treated as coming

from one overall group, imposing a common distribution of effects

across the group of all CAs, separately for each group of ATC3 medi-

cations (and vice-versa for model 3). For model 2, this allowed a more

direct comparison with the double FDR method, which groups medi-

cations using ATC3 codes but adjusts for multiple testing across all

CAs. Model 4 is two-dimensional in that groupings of both medica-

tions and CAs are incorporated, as displayed in Table 1. The minimally

informative priors used throughout are described in Section S1;

normal distributions were used for estimation of means (eg, average

PRRs for each medication/CA or group of medications/CAs), and uni-

form distributions were used for variance parameters.19 Minimally

informative priors were used, as our main aim was to assess the effect

of the groupings themselves on the model results, with the main

source of “informative” prior information therefore coming from the

groupings that were used. Different choices of values for the parame-

ters of prior distributions were assessed for their effect on model fit

and results. BHMs were implemented using JAGS via R package

rjags.20,21 The code used to specify these models in JAGS is presented

in Table S2. The coda package22 in R was used to assess model con-

vergence and to summarise the posterior distribution for each param-

eter, including convergence statistics and visual inspection of trace,

density and auto-correlation plots for the parameters in each model.

These measures were also used to determine the required number of

total iterations and thinning.

Any medication-CA combination with a posterior 2.5th percentile

(ie, the lower limit of a one-sided 97.5% posterior confidence interval

[PCI]) greater than 1 for the PRR was considered a potential signal. As

this choice of threshold is somewhat arbitrary, the effect of choosing

a stricter 0.5th percentile as a cut-off was also assessed. As the pur-

pose of signal detection is to screen for potential teratogens, combi-

nations are only flagged as potential signals if they represent an

increased in reporting (ie, PRR > 1). The number of associations with a

PRR < 1 (medications relatively “less harmful” for a specific CA than

the average medication in the dataset) and corresponding 97.5th

(or 99.5th) percentile less than 1 were monitored to determine how

often these occurred.

2.4 | Evaluation and comparison of signal
detection methods

Although risk classification systems have been implemented and

used in a number of countries including Australia, the United

States, and Sweden,23-25 a key challenge in the assessment of

signal detection methods for CA data is that there is no “gold stan-

dard” for classifying risks according to specific CAs.26,27 The

Australian government Department of Health provides an online

database of recorded pregnancy related risks associated with

medicines,25 and this categorisation system was used to indepen-

dently identify medications for which there has been evidence of

high teratogenic risk. All medications are divided into five lettered

categories, with category A medications being considered safe for

use during pregnancy. Medications in category B are those which

have not shown evidence of harmful effects to human foetuses;

category C medications may carry harmful effects to human foe-

tuses, but with no evidence of causing CAs. Categories D and

X medications are believed to increase the frequency of human

foetal malformations, carrying a moderate to high-risk. The

Australian classification system does not distinguish risks for spe-

cific CAs. The total number of “high-risk” medications identified

by each model was compared, as well as the proportion of medica-

tions identified as potential signals out of the total number of

high-risk medications in the data. This is called the identification

rate, and is defined as follows:

Identification rate

=
Number of “high-risk“medications identified as potential signals

Total number of “high-risk”medications in the data

The proportion of category A medications being identified as

potential signals was also considered, as a measure of the likely num-

ber of “false positive” associations. The total number of unique medi-

cations in the set of potential signals identified by each method is

referred to as the “effective workload.” Note that we refer only to

potential signals as the aim of this study is to assess signal generation

methods for CA data, and we do not further evaluate the potential

signals here (since this has already been done for this dataset28).

3 | RESULTS

3.1 | Description of signal detection dataset

Data on 15 058 malformed foetuses were available for analysis with

55 CAs in 16 organ system groups (see Table S1): an average of 4.5

CAs per group. Half of the groups had only one CA, and the largest

group (congenital heart disease) included 17 CAs (specific heart anom-

alies). There were 1.6 recorded medication exposures per pregnancy

on average, ranging from one (in 65% of cases) up to 16 (in one

case). The number of ATC medications with at least three exposures

in the data was 523, of which 39 (7.5%) were coded only to ATC4.

The total number of recorded exposures to these medications was

22 624. There were 28 765 potential medication-CA combinations

(523 medications × 55 CAs) and 116 ATC3 groups, with an average

of nine (range 1-20) medications and 487 (range 53-1086)

medication-CA combinations per group.

Of the 523 medications in the signal detection analyses,

44 (8.4%) were high-risk, 297 (57%) were “low risk” (of which 77 were

category A medications), and the other 182 medications (35%) were

4 CAVADINO ET AL.



not present in the Australian categorisation system database (coded

as “unclassified risk”). Three medications mapped to a code in both

the low-risk and high-risk group depending on their dosage; there is

no information on dosage in EUROmediCAT data, so these medica-

tions were assigned to the unclassified risk category. Of 116 ATC3

groups, 94 (81%) contained no high-risk medications, 13 (11%) con-

tained one high-risk medication, and nine (8%) groups contained at

least two high-risk medications.

3.2 | Signal detection analysis

Table 2 and Figure 1 present key results from the four BHMs and the

double FDR procedure, according to the two thresholds used to

define potential signals for BHMs (95% and 99% PCIs) and for FDR

cut-offs varying from 5% to 50%. A cut-off of 5% (FDR 5%), for exam-

ple, means that up to 5% of the potential signals in the double FDR

analysis might be expected to be false positive associations. The num-

ber of potential high-risk medication signals identified by each

method is displayed in Figure 1, which plots the identification rate

against the effective workload. Table 2 shows that the number of

ATC3 groups with at least one potential signal decreased as the

cut-off level for each method became stricter and fewer potential

signals were identified. The effective workload is also shown for

each method (in bold), including a breakdown by risk categories.

Table 2 and Figure 1 show that a one-dimensional BHM with

grouping by ATC3 and a 95% PCI cut-off resulted in the most

potential signals overall and identified the most high-risk DX medi-

cations as potential signals (identification rate = 48%). However,

this model also resulted in a very high effective workload (n = 160),

with 30% of all medications identified as potential signals and at

least one potential signal in over half the ATC3 groups. Individual

BHMs and those grouping only by CA gave similar results for a

95% PCI cut-off, though with fewer high-risk signals identified and

higher effective workloads. Using a stricter 99% PCI cut-off to

define potential signals always resulted in a lower identification

rate, but a higher proportion of the potential signals being for high-

risk medications. The proportion of category A medications identi-

fied as potential signals was lower than the high-risk proportion for

double FDR, but higher than the high-risk proportion for the major-

ity of BHMs. The “strictest” model was double FDR, especially at

lower thresholds, for example, double FDR 5% identified only three

potential signals (two high-risk). A BHM grouping both medications

and CAs with a 95% PCI threshold identified four more high-risk

medications (identification rate 23%) than double FDR 50% (identi-

fication rate 14%); however, this was at the expense of more than

a 4-fold increase in effective workload, from 16 medications to

71, for a gain in identification rate of only 9%. When using the 99%

PCI cut-off to define potential signals, the two-dimensional BHM

did not perform as well as the double FDR 50%.

Table S3 presents the overlap between the 16 potential medica-

tion signals from double FDR 50% and potential medication signals in

BHMs. BHMs with a 95% PCI and grouping by CAs or by both CAs

and ATC3 each did not include one of the double FDR medication sig-

nals, although the double FDR signal not present was for a different

medication in the two BHMs. The 99% PCI cut-off excluded more

double FDR signals, except for a BHM with no grouping and a 99%

PCI cut-off, which included all 16 potential signals from double FDR.

Results from the alternative one-dimensional models (averaging over

the ungrouped dimension) are presented in Table S4. These models

resulted in low effective workloads and identification rates, more

comparable with those using a double FDR. Double FDR 50% and its

“equivalent” one-dimensional BHM with grouping by ATC3 and aver-

aging over CAs resulted in 16 and 15 medications being identified as

potential signals, respectively (Table S4). However, two more high-risk

medications (six vs four) were identified by double FDR.

The number of “less harmful” associations according to each method

is presented in Table S5, along with the total number of combinations

identified as potential signals (as shown in Table 2) for comparison pur-

poses. Double FDR resulted in only three “less harmful” associations;

however, all of the BHMs resulted in a considerable number (up to 23 or

69 for models using a 99% or a 95% PCI threshold, respectively).

3.3 | Different potential signals according to
different methods: The effect of shrinkage in BHMs

As well as the overall number of potential signals, differences in which

medication-CA combinations were identified as potential signals in

the different methods were apparent. One situation where this

occurred was due to shrinkage to the null, where a potential signal

attenuates in some BHMs due to the influence of other combinations

in that group, as demonstrated in Figure S1. Shrinkage to the mean

can also occur if a strong association influences other combinations in

its group to create additional potential signals that are not present

without this shrinkage, for example, see Figure S2.

4 | DISCUSSION

Many BHMs considered in this study identified more of the high-

risk medications (higher identification rate) than the double FDR;

however, these improvements came at the expense of a substantial

increase in the effective workload, and therefore lower proportions

of the potential signals being for high-risk medications. Consider-

ing the simplicity of the double FDR method, we recommend that

the double FDR method continue to be used in practice for the

detection of potential signals of teratogenic medications using

EUROmediCAT data.

4.1 | Different potential signals according to FDR
and BHM approaches

BHMs incorporating information sharing could identify a greater num-

ber of potential high-risk medication signals than double FDR and

CAVADINO ET AL. 5
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strengthened the analysis of combinations with low cell counts by

using information in the surrounding cells, allowing them to be

included in the set of resulting potential signals (Table S5). In contrast,

the frequentist EUROmediCAT approach requires at least three expo-

sures to identify any association as a potential signal. This detection

of a potential medication signal for a newer drug with little data is one

of the potential advantages of BHMs in signal detection. Further

investigation is warranted to determine how likely it is that the addi-

tional potential signals detected by BHMs are true associations and

whether alternative model specifications could improve the power of

BHMs in this context. BHMs will be more powerful if similar drugs do

have similar teratogenic effects or if CAs in the same organ system

are affected by the same drugs.

4.2 | Evaluation and comparison of methods

The lack of existing knowledge regarding the teratogenic effect of

medications used during pregnancy makes it difficult to evaluate how

many teratogens are missed by each method and the possible reasons

for any lack of detection. A key limitation of using the Australian clas-

sification system is that high-risk medications are not identified in

association with a specific CA. In addition, categorisation of medica-

tions as B or C in the Australian database may indicate a lack of

evidence rather than meaning these medications are really low risk for

CAs. Furthermore, almost a third of the medications in the

EUROmediCAT data were not present in the Australian risk classifica-

tion database. In practice, teratogenic risk is nearly always specific to

certain CAs.29 This may have affected our “identification rate,” which

does not reflect the number of different CAs that a medication is

associated with. In this analysis, any associations arising due to con-

founding by indication cannot be identified. Our use of the risk

categorisation system here was not to judge the absolute strengths of

a signal detection procedure, but rather to directly compare methods

in terms of the volume of potential signals and assessment of resulting

workload for follow up of identified associations; the limitations iden-

tified above should therefore be present across all models considered.

4.3 | Methodological considerations

An important assumption of the Poisson distribution is that events in

the data occur independently. However, in EUROmediCAT, a mal-

formed foetus often has multiple CAs and/or medication exposures

and certain CAs may be more likely to co-occur within pregnancies.

Similarly, exposure to a specific medication may increase the likeli-

hood of exposure to another medication, for example, it is common to

take several different asthma medications together. It may also be the
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case that if one particular medication is taken, any other medications

in that group will not be taken. In addition, twins with the same anom-

alies will violate the independence assumption. Approximately 3% of

foetuses in EUROmediCAT data are twin births, 5% of whom have

the same anomalies.30 Therefore, the occurrence of twins will not be

a serious violation of the independence assumption here. The occur-

rence of twins is further considered when following up identified

associations in greater detail.

Another potential consideration for our two-dimensional BHMs is

the way in which information sharing is specified around the

medication-CA combination of interest. It may be argued that our

BHM allows the count for the medication-CA combination of interest

(ie, the dark grey cell in Table 1) to contribute the model twice: first,

to generate a hypothesis about the data via the prior distribution, and

second, to test it. One solution might be to consider a model where

the count for the combination of interest itself is removed from the

prior distribution for that combination. Table 1 presented our two-

dimensional model, where the prior for any combination includes

information from all mediations and CAs within that set; an alternative

formulation could be to include only those combinations with either

the medication or CA in common with the combination of interest.

These possibilities require further investigation.

In any signal detection analysis using disproportionality mea-

sures, reporting biases for a common medication may lead to infla-

tion in the overall rates for that medication, meaning that other

associations in the database are masked.27,31,32 This is not thought

likely to occur in the EUROmediCAT as medication exposure is

generally collected before the CA diagnosis. Masking may also be

an issue in EUROmediCAT data through the use of malformed con-

trols if a proportion of the control group is related to the medica-

tion of interest. Studies have demonstrated that the removal of a

masking effect may help lead to new signals of public health rele-

vance being discovered.31,33 It is also thought, however, that sig-

nificant masking is not common in large spontaneous reporting

databases, and where present it mostly affects rarely reported

AEs.34-36 Confounding by co-reported medications can also occur

if two medications are frequently prescribed together but only one

causes the CA of interest.32 We may expect a teratogen to act in a

similar way regardless of where it is taken; however, certain medi-

cations may have varying usages and/or availability in different

EUROmediCAT registries and countries. As many medication-CA

combinations have very small numbers, the best approach to an

ongoing signal detection process is considered to be investigation

of any potential registry effects at a later stage in the analysis; as

such, after potential signals are generated, the next step of the

EUROmediCAT signal detection process includes the adjustment

of estimates for confounding by registry.28

This analysis excludes all chromosomal anomalies; these anoma-

lies could theoretically be analysed as a negative control outcome as

no medications are expected to be associated with any chromosomal

anomalies. However, the risk of a chromosomal anomaly is strongly

associated with maternal age, and methods to adjust for this con-

founder in signal detection analyses would need to be developed.

4.4 | Strengths and limitations of
EUROmediCAT data

The existing EUROCAT network, upon which EUROmediCAT is

based11, ensures that CAs are coded in a detailed and standardised

manner across all registries. Good agreement between medication

exposures recorded in the EUROmediCAT database and those

actually used has also been demonstrated.37 As maternal medica-

tion exposure data in EUROmediCAT registries is primarily

obtained through prospectively recorded maternity records, con-

founding by the time of pregnancy registration of adverse out-

comes is unlikely to have occurred. On the other hand, there is

known under ascertainment for certain medication exposures in

EUROmediCAT data, which may reduce the sensitivity of any signal

detection analysis.10,38 There is also a lack of information regarding

the dosage and precise timing of medication exposures. Although

the critical period of development for most major CAs occurs dur-

ing the second and third gestational months, the exact timing can

differ according to the type of CA and some CAs may also develop

after the first trimester of pregnancy.39-41 In this study, we cannot

determine whether medications were taken during the particular

critical period for development of each specific CA. As only mal-

formed foetuses exposed to at least one medication are included, it

is not possible to estimate the relative risk of a CA for medication

exposures compared with a healthy (ie, non-exposed and non-mal-

formed) control population.42

5 | SUMMARY AND CONCLUSIONS

Despite the difficulties in assessing the performance of the signal

detection methods, we recommend the double FDR method for con-

tinued use in signal detection analyses of EUROmediCAT data.
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