

An efficient and novel technology for the extraction of parasite genomic DNA from whole blood or culture

Journal:	BioTechniques
Manuscript ID	BTN-2019-0086.R1
Manuscript Type:	Reports
Keywords:	Malaria, Plasmodium, Leishmania, Diagnostics, Blood, DNA extraction, PCR, Microbiology

BioTechniques

Abstract
The aim of this study was to assess pathogen DNA extraction with a new spin column-based
method (DNA-XT). DNA from i) whole blood samples spiked with Plasmodium falciparum
or ii) Leishmania donovani amastigote culture was extracted with DNA-XT and compared
with that produced by a commercial extraction kit (DNeasy). Eluates from large and small
sample volumes were assessed by PCR and spectroscopy. Using a small volume (5 μ l) of
blood, the DNA-XT and DNeasy methods produced eluates with similar DNA
concentrations, 0.63 versus 1.06 ng/ μ l, respectively. The DNA-XT method produced DNA
with lower PCR inhibition than DNeasy. The new technique was also twice as fast and
required fewer plastics and manipulations but had reduced total recovered DNA compared
with DNeasy.
Methods summary
DNA-XT, which is designed for small sample volumes, uses a 5 min detergent and enzymatic
lysis step to release DNA from cells. Contaminating proteins and lipids are then bound to a
matrix within a spin column during a 1 min centrifugation step whilst DNA passes directly
through.
Keywords Malaria, Plasmodium, Leishmania, diagnostics, blood, DNA extraction, PCR

20 Background

 DNA extraction is an essential starting point for methodologies such as the polymerase chain reaction (PCR), which is used in the laboratory for molecular biology and clinical diagnostics. It was first achieved in 1869 by Friedrich Meischer [1] but a routine laboratory procedure was not developed until 1958 [2]. Today a variety of methodologies are available (reviewed in [3]). However, commercial spin column purification of DNA from blood and other tissues and fluids is the most common approach used in modern laboratories. The technique, with its origins reported in 1979 [4], uses silica matrices to selectively bind DNA, allowing washing before elution of the purified product.

NanoMal was an EU-funded industrial-academic consortium that was brought together with the aim of developing a simple-to-use, affordable, handheld diagnostic device to detect malaria infection and the parasites' drug resistance status by identifying associated genetic mutations. The cartridge-based assay was designed to use only a finger prick of blood, with results obtained approximately 20 minutes after sampling. The diagnostics platform technology developed by our industrial partner, QuantuMDx Group Ltd., incorporates a novel DNA extraction technique that allows DNA from lysed whole blood (or other sample types) to flow straight through a proprietary material, while cellular debris is retained. The resulting eluate contains DNA that is of a quality that can be used directly in PCR. Therefore, the technique removes the need for additional washing and elution steps, which greatly simplifies the extraction procedure. During the NanoMal project, QuantuMDx created a standalone spin column-based version of this easy-to-use extraction methodology, called DNA-XT. Optimised for human whole blood, small volume samples are lysed and placed over a column of the proprietary material, which is housed within a microcentrifuge

BioTechniques

collection tube. Following centrifugation, the resulting eluate contains purified, high quality genomic DNA (gDNA).

Here we examined the performance characteristics of DNA-XT in parallel with a widely used commercial DNA extraction spin column kit for the isolation of parasite DNA from small volumes of i) Plasmodium falciparum-infected erythrocytes spiked into human whole blood (as a model for blood infections) and ii) purified Leishmania donovani amastigotes (as might be required in a laboratory setting). The two primary objectives were to determine i) the efficiency of gDNA extraction and ii) the quality of the isolated gDNA by undertaking parasite-specific PCR. Secondary objectives were to assess i) the level of operator input, ii) the time required for extractions and iii) the use of reagents/consumables. LICZ Methods **Parasites** P. falciparum 3D7 parasites were cultured in human red blood cell (RBC) suspensions, using RPMI 1640 medium (Sigma-Aldrich; Cat. No. R0883-500ML) supplemented with 2 mM L-glutamine, 35 mM HEPES, 0.5% (w/v) Albumax I, 0.2 mM hypoxanthine, and 50 µg/ml gentamycin and maintained at 37°C under 5% CO₂. Parasite growth was followed by microscopic examination of Giemsa stained thin blood smears and maintained at $\leq 10\%$ parasitaemia, with a $\sim 2\%$ haematocrit. Synchronization of early trophozoite stages was achieved by incubating infected RBCs (iRBCs) in 5% (w/v) sorbitol for 10 to 20 min at room temperature [5]. Leishmania donovani amastigotes were harvested from the spleens of donor mice. Briefly, female RAG1B6 KO mice, infected with L. donovani at least 60 days

beforehand, were humanely killed. At necropsy, spleens were dissected and homogenizedand the amastigotes harvested by differential centrifugation [6].

73 Sample preparation

For P. falciparum-infected RBC (iRBC) spiked fresh whole blood, stock iRBCs, with an 8-10% parasitaemia, were diluted in fresh whole blood (Cambridge Biosciences), to attain a parasitaemia of 1%. Two additional 10-fold dilutions were performed to obtain samples with parasitaemias of 0.1% and 0.01%. The parasitaemia for 1% and 0.1% samples were confirmed by microscopy (Additional file 1). Non-spiked fresh whole blood was used as a negative control. As a reference, levels of parasitaemia of 0.1 - 0.2% (5,000 - 10,000 parasites/µl of blood) are generally accepted to be the point at which fever begins and a patient becomes symptomatic for falciparum malaria[7].

For *Leishmania* parasite preparations, parasites were washed twice in either RPMI 1640
(amastigotes) without serum prior to counting and were used at a concentration of 1 x 10⁷/ml.

86 Column purification

For iRBC spiked fresh whole blood, Qiagen's DNeasy® Blood and Tissue and QuantuMDx's
DNA-XTTM DNA extraction kits were used to process samples. Samples (iRBC spiked or
non-spiked fresh whole blood) were processed following the manufacturer's instructions
(blood protocols). For the DNA XT kit, 10 µl of sample was used and for the DNeasy kit,
100 µl was used, termed Q100. Notably, only 40 µl of the 80 µl lysis step is passed though
DNA-XT columns after initial processing and thus only 5 µl of the original blood sample is
passed through the column (Fig. 1). In light of this, an additional arm of the study used

BioTechniques

2	
3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
33	
21	
24	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
<u>۸</u> ۵	
40	
49	
50	
51	
52	
53	
54	
54	
22	
56	
57	
58	
50	

94 DNeasy columns with a 5 µl sample volume, termed Q5, to allow a more direct comparison of the two extraction methodologies. 95 96

For Leishmania parasite preparations, the same two DNA extraction kits were used to process 97 samples. For the DNA-XT kit, 10 µl of sample was used, following manufacturer's 98 instructions (blood protocol) and for the DNeasy kit, 5 µl of sample was used, along with the 99 100 manufacturer's instructions (nucleated blood protocol).

101

102 **DNA** quantitation

103 The volume of the eluate (though technically flow-through in the case of the DNA-XT kit) 104 was noted and the DNA concentration determined by fluorescence, using a Qubit 105 spectrophotometer (Thermo Fisher). The two kits have a 5-fold difference in final

eluate/flow-through volume, with DNeasy recommending eluting in 200 µl and DNA-XT 106

having a flow-through of $\sim 40 \mu l$. 107

108

109 PCR

PCR targeting *P. falciparum* β tubulin (*Pf*BetaT) was performed, using Phire II polymerase 110

111 (Thermo Scientific). Two volumes of template $(1 \ \mu l \ and \ 10 \ \mu l)$ were used in parallel

reactions with primers (PfBetaT F, 5'-TTGGGGGTCCTTCCCCTTTATTGTAT-3' and 112

113 PfBetaT R, 5'-CAAAGGGGCCAGCACGAACACT-3') at final concentrations of 200 nM.

Cycling conditions were 95 °C for 30 s, then 35 cycles of [95 °C for 30 s, 55 °C for 30 s, 114

115 68 °C for 30 s], then 68 °C for 10 min.

116

117 PCR targeting L. donovani kinetoplast DNA (high copy number) and DNA pol I (low copy number) was performed using Phusion polymerase (Thermo Fisher). Volumes of 1 µl and 10 118 60

2 3	119	ul L. donovani eluate were used, respectively, with primers for the kinetoplast DNA
4 5	100	(LW) = t = 1 + T = 1
6 7	120	(LaKinetoplast F2, 5'-CCAAIGAAGCCAAGCCAGIG-3' and LaKinetoplast R2, 5'-
8 9	121	GGCTGGTTTTAGATGTGGGC-3') and DNA pol I (LdDNApol I F, 5'-
10 11	122	TGTCGCTTGCAGACCAGATG-3' and LdDNApol I R, 5'-
12 13	123	GCATCGCAGGTGTGAGCAC-3' [8] at final concentrations of 200 nM. Cycling conditions
14 15 16	124	were 98°C for 30 s, then 10 cycles of [10 s 98°C, 10 s 69-59°C Touch down, 2 s 72°C], then
10 17 18	125	20 cycles of [10 s 98°C, 10 s 59°C, 2 s 72°C], then 72°C for 5 min.
19 20	126	
21 22	127	PCR products were electrophoresed on 1% (<i>w/v</i>) agarose gels and visualised with UV.
23 24 25	128	
26 27	129	Statistical analysis
28 29 30	130	For the total eluate DNA concentration, a Student's <i>t</i> -test (unpaired, equal variance) was
31 32	131	performed using Prism version 6.0h for Macintosh (GraphPad Software).
33 34	132	
35 36	133	Results
37 38	134	
39 40 41	135	Extraction
42 43	136	Process timings
44 45 46	137	The time to complete extractions from eight samples, using each of the kits was recorded. For
47 48	138	the DNA-XT kit, the extractions took between 50-60 min, compared with 120-130 min for
49 50	139	the DNeasy kit.
51 52	140	
54 55	141	Manipulations
56 57	142	The number of manipulations required to perform the extractions was also tallied. For an
58 59 60	143	individual sample, the DNA-XT kit required 14 manipulations, whereas the DNeasy kit

Page 6 of 17

Page 7 of 23

BioTechniques

required 25. A manipulation was considered to be any change of tip or tube/wash column or any action (e.g. centrifugation or incubation step). In terms of plastics usage for a single sample, the DNA-XT kit used 5 tips and 4 tubes (including the column), while the DNeasy kit required 8 tips and 7 tubes.

Eluate Characteristics

P. falciparum

All three column extraction arms, Q100, Q5 and DNA-XT, had eluates that contained DNA, as measured by fluorescence spectrometry (Table 1). Given that the theoretical amount of human DNA in each sample far exceeds that of any parasite DNA, samples spiked with different levels of iRBCs were analysed both alone and together when comparing yields. Unsurprisingly in the Q100 arm there was a greater yield of DNA than the Q5 arm. This difference was 21-fold (4420 ± 340 vs 205 ± 11 ng; mean \pm SEM; n = 12), which is in line with the different volumes of blood processed in the Q100 and Q5 arms, of 100 μ l and 5 μ l, respectively. Assessing the O5 and DNA-XT arms where the same amount of sample was passed through the respective column, similar concentrations of DNA were obtained, $0.63 \pm$ $0.04 \text{ vs } 1.06 \pm 0.06 \text{ ng/}\mu\text{l}$, respectively (mean \pm SEM; n = 12), with the Q5 arm performing significantly (p = 0.013) better, albeit by 1.7-fold (NB, only a single batch of each column type was tested here). Notably, the volume of eluate produced when using each manufacturer's protocol is different; ~200 µl for Q100 and Q5 and ~40 µl for DNA-XT. Thus, the total DNA yield from the Q5 column was higher than that of the DNA-XT column (7.8-fold). L. donovani

2 3 4	168
5 6	169
7 8	170
9 10 11	171
12 13	172
14 15 16	173
10 17 18	174
19 20	175
21 22	176
23 24 25	177
26 27	178
28 29	179
30 31 32	180
33 34	181
35 36	182
37 38 30	183
40 41	184
42 43	185
44 45 46	186
40 47 48	187
49 50	188
51 52	189
53 54 55	190
56 57	191
58 59	192
60	

1

168	For the <i>L. donovani</i> extractions, only the Q5 and DNA-XT protocols were used (<i>i.e.</i> those
169	that use 5 μ l of sample). Both arms, Q5 and DNA-XT, had eluates that contained detectable
170	albeit low, levels of DNA, with the exception of one replicate of the Q5 arm (Table 2).
171	Again, similar concentrations of DNA were obtained in the Q5 and DNA-XT arms, 0.06 \pm
172	0.002 vs 0.17 \pm 0.01 ng/µl, respectively (mean \pm SEM; n = 2/3), with the DNA-XT arm
173	performing slightly better by 2.8-fold. Due to the different eluate volumes, the total DNA
174	yield from the Q5 column was slightly higher than that of the DNA-XT column (1.5-fold).

176 Parasite DNA quality

177 *P. falciparum*

178 While the DNA extracted in these experiments reflects human DNA predominantly, parasite 179 DNA was collected from spiked samples. Its presence and quality in eluates were determined 180 by PCR detection of *Pf*BetaT. Two different volumes of eluate were used, a low volume (1 181 μ l) and a high volume (10 μ l). In most cases, amplicon bands of the appropriate size (388 bp) 182 could be detected in samples in which parasite DNA should be present (Fig. 2). When using 183 the low volume of eluate, the strongest bands were produced from the Q100 eluates. This was 184 to be expected, as the Q100 eluates contain the highest total DNA concentrations (Table 1). 185 Bands were also visible, though fainter, in lanes using Q5 and DNA-XT samples, even at the 186 lowest (0.01%) parasitaemia used. However, when a greater (10-fold) volume of eluate was 187 used only the DNA-XT derived samples resulted in positive amplicon bands, in a 188 parasitaemia-dependent manner. This suggests an apparent inhibition of PCR when using 189 high volumes of the Q5 and Q100 samples. The findings presented in Figure 2 are supported 190 by data from three independent repeats of the experiment (with duplicate technical repeats within each). The number of positive bands in each (see Additional file 2 for PCR gel images 191 192 not present in main text) are presented in Table 3.

1 ว		
2 3 4	193	
5 6	194	L. donovani
7 8	195	DNA was successfully amplified from low volume (1 µl) eluates of purified L. donovani
9 10 11	196	amastigotes derived from Q5 and DNA-XT extraction technologies when targeting the
12 13	197	kinetoplast - a high copy number DNA sequence (Fig. 3A). Targeting a single copy number
14 15 16	198	gene, Leishmania spp. DNA pol I, a PCR amplicon was obtained with a larger volume (10
10 17 18	199	μ l) of DNA-XT derived eluate, but not with Q5 derived eluate (Fig. 3B).
19 20	200	
21 22 22	201	Discussion
25 24 25	202	
26 27	203	Here, a simple process for the extraction of DNA from small, parasite-containing culture
28 29 20	204	samples was assessed against a standard commercial, spin column-based extraction process
30 31 32	205	that is widely used in research and diagnostic laboratories. A considerable difference between
33 34	206	the two techniques is that DNA is retained on the Qiagen DNeasy mini spin column prior to
35 36 27	207	elution whilst the QuantuMDx DNA-XT column retains contaminants and only the DNA is
37 38 39	208	eluted in one centrifugation step. The advantages of this process, as demonstrated in this
40 41	209	study, are time savings, reduced plastics use, reduced reagents use (including removing the
42 43	210	necessity to use guanidinium chloride), and a reduction in PCR inhibiting contaminants.
44 45 46	211	However, total yields of DNA are much lower generally, when using the DNA-XT protocol.
47 48	212	
49 50	213	The DNA-XT methodology is similar to a previously described DNA isolation method that
52 53	214	uses a polyaniline-containing silica sorbent [9]. In terms of ease of use, the DNA-XT
54 55	215	methodology is also comparable to DNA extraction protocols that use Chelex 100. Both of
56 57	216	these alternative DNA extraction techniques have been used for forensic applications and
58 59 60	217	perform well with samples that have low DNA concentrations (e.g.[10]; [11]; [12]). In this

2	
3 4	2
5 6	2
7 8 0	2
9 10 11	2
12 13	2
14 15	2
16 17 18	2
19 20	2
21 22	2
23 24 25	2
26 27	2
28 29	2
30 31 32	2
33 34	2
35 36	2
37 38 20	2
39 40 41	2
42 43	2
44 45	2
46 47 48	2
49 50	2
51 52	2
53 54 55	24
56 57	24
58 59	24
60	

1

218 study, DNA-XT was used to extract DNA from whole blood spiked with P. falciparuminfected RBCs, simulating a clinical diagnostic sample, and purified L. donovani amastigotes, 219 as might be used in a research laboratory. In both cases, it was possible to amplify parasite 20 21 DNA, although the majority of DNA in whole blood extracts would be expected to be human 222 DNA. 23 24 Furthermore, with comparable input volumes, the DNA-XT technology compared favourably 25 with the Qiagen extraction kit. Thus, DNA-XT has potential uses within a laboratory, where 26 DNA extraction is required from small sample volumes. 27 28 The technology behind DNA-XT was designed for microfluidic-based, point-of-care, 29 molecular diagnostics platforms, where cell lysis and DNA extraction occur within a cassette 30 to provide DNA for microfluidic PCR and subsequent amplicon sensing. 31 32 In the case of malaria diagnosis at point-of-care (and other diseases caused by blood-borne 33 pathogens), capillary sampling from finger or heel pricks are the preferred options to generate 34 test samples for parasite detection. Capillary sampling can be safely performed by staff with basic training and is often quicker and less stressful when compared with venepuncture [13]. 35 36 Capillary sampling has also been used extensively for epidemiological studies of malaria 37 with the use of blood spot collection on filter paper [14–16]. 38 39 **Future perspectives** 40 Since DNA-XT has been demonstrated here to produce high-quality parasite gDNA (seemingly free of the types of PCR inhibitors that frequently contaminate whole blood 41

extracts [17–19]), this technology may also be useful for extracting blood from dried blood

Page 10 of 17

Page 11 of 23

1

BioTechniques

2						
3 4	243	spots, as has been demonstrated for other DNA extraction methodologies [20]. Further				
5 6	244	applications for high quality DNA extraction include genotyping for therapeutic diagnostics				
/ 8 0	245	(e.g. parasite drug resistance/susceptibility) and epidemiology for monitoring asymptomatic				
9 10 11	246	individuals [21,22] and those with sub-microscopic parasitaemia within a population [23].				
12 13	247	These could be particularly useful in potential eradication programmes [24–26].				
14 15	248					
16 17 18	249	Future work for diagnostic applications for the DNA-XT technology should include patient				
19 20	250	samples, and a larger sample size, to field-test this new technology. In addition, a more				
21 22	251	accurate method of DNA quantification should be used in these proof-of-concept studies,				
23 24 25	252	namely qPCR.				
26						
27 28	253	Executive summary				
29 30	254	• A new spin column-based DNA extraction method (DNA-XT) was assessed using i)				
31 32 33	255	pathogen-spiked blood samples or ii) pathogen culture.				
34 35	256	• The DNA-XT method was quicker, used less plastic and required fewer				
36 37	257	manipulations, yet the total recovered DNA was less than the comparator.				
38 39 40	258	• Eluates from the DNA-XT method had less PCR inhibition than those of the				
40 41 42	259	comparator.				
43 44	260					
45 46 47	261	List of Abbreviations				
48 49	262					
50 51	263	Q5 – 5 µl of blood in Qiagen kit				
52 53	264	Q100 – 100 µl of blood in Qiagen kit				
54 55 56	265	PCR – Polymerase Chain Reaction				
57 58	266	RDT – Rapid Diagnostic Test				
59 60	267	POC – Point-of-Care				

 0.17 ± 0.01

0.16

0.11

 7.3 ± 0.2

6.6

7.2

				BIOIECHNIQUES		
68	<i>Pf</i> BetaT – J	P. falcipa	<i>rum</i> β tubulin			
69	iRBC – inf	ected red	blood cell			
'0						
'1						
2 3 2	Tables					
5 6	Table 1: El samples	uate chara	acteristics for Plasm	nodium falcipar	um spiked whole bl	000
-	Column		Eluate volume (mean \pm SEM, μ l)	[DNA] (mean ± SEM, ng/µl)	Total DNA yield (mean ± SEM, ng)	n
	Q100	Overall	197 ± 1.4	22.4 ± 1.6	4420 ± 340	1.
		1%		22.1 ± 1.5	4320 ± 290	3
		0.1%		21.4 ± 2.2	4260 ± 500	3
		0.01%		24.5 ± 0.5	4880 ± 170	3
		0%		21.5 ± 1.1	4210 ± 210	3
	Q5	Overall	194 ± 0.4	1.06 ± 0.06	205 ± 11	1
		1%		1.06 ± 0.02	204 ± 4.5	3
		0.1%		1.09 ± 0.12	211 ± 23	3
		0.01%		1.08 ± 0.03	209 ± 5.6	3
		0%		1.02 ± 0.05	197 ± 10	3
	DNA-XT	Overall	42 ± 0.4	0.63 ± 0.04	26.3 ± 1.7	1
		1%		0.65 ± 0.03	28.4 ± 1.1	3
		0.1%		0.59 ± 0.05	24.8 ± 2.3	3
		0.1% 0.01%		0.59 ± 0.05 0.68 ± 0.05	24.8 ± 2.3 28.9 ± 2.6	3

56

57 58

59

60

DNA-XT

Mean \pm SEM

А

В

Page	12	of	17

 42 ± 0.3

42

42

https://mc04.manuscriptcentral.com/fs-btn

2						
3 1		С	43	0.19	8.1	
4 5	281	nd., Not determined				

Table 3: PCR positive outcomes for Plasmodium falciparum spiked whole blood derived samples

Human Whole Blood	1% parasitaemia (pos/total)*	0.1% parasitaemia (pos/total)	0.01% parasitaemia (pos/total)	0% unspiked (pos/total)	
High volume template Q5	2/6	2/6	2/6	0/6	
High volume template Q5	0/6	2/0 1/6	2/0	0/0	
High volume template DNA-XT	6/6	6/6	6/6	0/6	
Low volume template Q100	6/6	6/6	5/6	0/6	
Low volume template Q5	5/6	6/6	6/6	0/6	
Low volume template DNA-XT	6/6	6/6	5/6	0/6	

- *pos = gel band positive

2								
4 5 6 7 8 9 10 11 12 13 14 15	289	Figure legends						
	290							
	291	Figure 1: DNA-XT protocol. Sample preparation: 10 μ l of blood/sample added to 150 μ l of						
	292	lysis buffer; mixture incubated at 55 $^{\circ}$ C for 10 min. Column preparation: 350 µl of buffer						
	293	added prior to centrifugation; 1,400 g, 3 min. 80 μ l of incubated lysis buffer/sample added to						
	294	prepared column and incubated at room temperature for 3 min prior to centrifugation; 1,400						
16 17 18	295	<i>g</i> , 3 min.						
19 20	296							
21 22	297	Figure 2: Plasmodium falciparum DNA from spiked whole blood determined by PfBeta						
23 24 25	298	tubulin PCR. A. low volume eluate template, 1 µl B. high volume eluate template, 10 µl. M:						
23 26 27	299	100bp marker, NTC: No template control. Percentage denotes the parasitaemia post spiking.						
28 29	300							
30 31 32 33 34	301	Figure 3: L. donovani DNA extracted purified amastigotes and determined by PCR of						
	302	kinetoplast sequence. A. 1 μ l of eluate from each manufacturer's column was used as						
35 36	303	template. B. 10µl of eluate from each manufacturer's column was used as template. Eluates						
37 38	304	from 3 separate columns for each manufacturer were used. POS positive control, NTC no						
39 40 41	305	template control.						
42 43	306							
44	307							
45 46	308	References						
47	309	1 Delve D. Friedrich Misselsen and the discourse of DNA Day Did 270(2) 274 200						
48	310	1. Danm K. Friedrich Miescher and the discovery of DNA. <i>Dev. Biol.</i> $2/8(2)$, $2/4-288$						
49 50	312	(2003). 2 Meselson M. Stahl FW. THE REPLICATION OF DNA IN ESCHERICHIA COLI						
51	312	2. Mescison M, Stan TW. THE REFERENTION OF DIVA IN ESCHERICHIA COLI. Proc. Natl. Acad. Sci. U.S. A. 44(7), 671–82 (1958)						
52	314	3 Griffiths L. Chacon-Cortes D. Methods for extracting genomic DNA from whole						
53	315	blood samples: current perspectives J. Biorepository Sci. Appl. Med. 2, 1 (2014).						
54	316	4. Vogelstein B, Gillespie D. Preparative and analytical purification of DNA from						
55 56	317	agarose. Proc. Natl. Acad. Sci. U. S. A. 76(2), 615–9 (1979).						
57 318 5. Lambros C. Vanderberg JP Synchronization of Plasmodium falciparum Er								
58	319	Stages in Culture. J. Parasitol. 65(3), 418 (1979).						
59	320	6. Croft SL, Yardley V. Animal Models of Visceral Leishmaniasis. <i>Handb. Anim. Model.</i>						
60	321	Infect., 783–787 (1999).						

2			
3	322	7.	Hanscheid T. Diagnosis of malaria: a review of alternatives to conventional
4 5	323		microscopy. Clin. Lab. Haematol. [Internet]. 21(4), 235–245 (1999). Available from:
5 6	324		http://www.ncbi.nlm.nih.gov/pubmed/10583325.
7	325	8.	Bretagne S, Durand R, Olivi M, et al. Real-time PCR as a new tool for quantifying
, 8	326		Leishmania infantum in liver in infected mice. <i>Clin. Diagn. Lab. Immunol.</i> 8(4), 828–
9	327		31 (2001)
10	328	9	Kapustin D.V. Vagudaeva FV. Zavada I.I. <i>et al.</i> A Composite Polyaniline-
11	320).	Containing Silice Sorbert for DNA Isolation <i>Buss. I. Biographic Chem.</i> 20(3), 281
12	330		Containing Since Solution for DNA isolation. Russ. 5. Dioorganic Chem. $29(5)$, $281-285$ (2002)
13	224	10	205 (2005). Konka I. Ladan M. Jauraaniharry S.M. Dram C. Dagalli C.O. Naw Ontinized DNA
14	331	10.	Kopka J, Ledel M, Jauleguldeny SM, Blein G, Bosein GO. New Optimized DNA
15	332		Extraction Protocol for Fingerprints Deposited on a Special Self-Adnesive Security
16	333		Seal and Other Latent Samples Used for Human Identification*. J. Forensic Sci. 56(5),
1/	334		1235–1240 (2011).
10	335	11.	Matai AS, Sijen T. Improving a rapid DNA profiling service regularly applied in
20	336		forensic casework. Forensic Sci. Int. Genet. Suppl. Ser. 4(1), e284–e285 (2013).
20	337	12.	Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a Medium for Simple Extraction of
22	338		DNA for PCR-Based Typing from Forensic Material. <i>Biotechniques</i> . 54(3) (2013).
23	339	13.	WHO WHO guidelines on drawing blood: best practices in phlebotomy. WHO.
24	340		(2017).
25	341	14.	Bereczky S, Mårtensson A, Gil JP, Färnert A. Short report: Rapid DNA extraction
26	342		from archive blood spots on filter paper for genotyping of Plasmodium falciparum.
27	343		Am J Trop Med Hyg [Internet] 72(3) 249–51 (2005) Available from:
28	344		http://www.nchi.nlm.nih.gov/nubmed/15772315
29	345	15	Corran PH Cook I I ynch C <i>et al</i> Dried blood snots as a source of anti-malarial
30 21	3/6	15.	antibodies for enidemiological studies Malar I [Internet] 7(1) 195 (2008)
27	247		Available from: http://www.nebi.nlm.nih.gov/nubmed/18826572
33	240	16	Haing MS. Lin M. Dalvemaiilar C. et al. DCD. Deced Dealing of Dried Dlaad Spots
34	040 240	10.	for Detection of Molaria Demoitant Ontimination and Application to a Cohort of
35	349		For Detection of Mataria Parasites: Optimization and Application to a Conort of L_{1}
36	350		Ugandan Children. J. Clin. Microbiol. [Internet]. 48(10), 3539–3543 (2010). Available
37	351	17	from: http://www.ncbi.nim.nin.gov/pubmed/206860/9.
38	352	17.	Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K. Identification of the
39	353		heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a
40	354		major inhibitor of polymerase chain reaction (PCR) amplification. J. Forensic Sci.
41 42	355		[Internet]. 39(2), 362–72 (1994). Available from:
42 43	356		http://www.ncbi.nlm.nih.gov/pubmed/8195750.
44	357	18.	Al-Soud WA, Rådström P. Purification and characterization of PCR-inhibitory
45	358		components in blood cells. J. Clin. Microbiol. [Internet]. 39(2), 485–93 (2001).
46	359		Available from: http://www.ncbi.nlm.nih.gov/pubmed/11158094.
47	360	19.	Al-Soud WA, Jönsson LJ, Râdström P. Identification and characterization of
48	361		immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J. Clin. Microbiol.
49	362		[Internet], 38(1), 345–50 (2000), Available from:
50	363		http://www.ncbi.nlm.nih.gov/nubmed/10618113
51	364	20	Strøm GEA Tellevik MG Hanevik K Langeland N Blomberg B Comparison of four
52	365	20.	methods for extracting DNA from dried blood on filter paper for PCR targeting the
53 54	366		mitochondrial Plasmodium genome Trans R Soc Tron Med Hyg 108(8) 488-94
55	367		(2014)
56	360	21	(2017). la Fichoux V. Quaranta IF. Aufouvro ID. at al Occurrence of Leichmonic infectium
57	260	<i>L</i> 1.	norregitamic in asymptometic blood denors living in an area of andomicity in asymptometic
58	309		Erange L Chin Microphial Enternet 27(6) 1052 7 (1000) Accellate frame
59	3/0		France. J. Clin. Microbiol. [Internet]. 37(0), 1955–7 (1999). Available from:
60	3/1		nup://www.ncol.nim.nin.gov/pubmed/10325353.

- 372
 372
 372
 373
 373
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 375
 374
 375
 375
 375
 376
 376
 376
 377
 375
 378
 379
 379
 370
 370
 370
 371
 372
 372
 375
 374
 375
 374
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 376
 376
 376
 376
 376
 376
 376
- 8 376 http://www.ncbi.nlm.nih.gov/pubmed/14964810.
 9 377 23 Lin IT Saunders DL Meshnick SR The role of s
- 9 377 23. Lin JT, Saunders DL, Meshnick SR. The role of submicroscopic parasitemia in malaria
 10 378 transmission: what is the evidence? *Trends Parasitol.* 30(4), 183–190 (2014).
- 11
12
13
14379
38024.Silal SP, Little F, Barnes KI, White LJ. Hitting a Moving Target: A Model for Malaria
Elimination in the Presence of Population Movement. *PLoS One* [Internet]. 10(12),
e0144990 (2015). Available from: http://www.ncbi.nlm.nih.gov/pubmed/26689547.
- 382 25. White LJ, Maude RJ, Pongtavornpinyo W, *et al.* The role of simple mathematical
 383 models in malaria elimination strategy design. *Malar. J.* [Internet]. 8(1), 212 (2009).
 384 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19747403.
- 18 385 26. Tietje K, Hawkins K, Clerk C, *et al.* The essential role of infection-detection technologies for malaria elimination and eradication. *Trends Parasitol.* [Internet].
 387 30(5), 259–266 (2014). Available from:
- 21 367 50(5), 259–200 (2014). Available from: 22 388 http://www.ncbi.nlm.nih.gov/pubmed/24726857.

 RELEXON

2		
3	390	Reference annotations
4	391	*Al-Soud W A and Radstrom P (2001) 'Purification and Characterization of PCR-
5	302	Inhibitory Components in Blood Cells' <i>Journal of Clinical Microbiology</i> 30(2) pp. 485
6	303	402 doi: 10.1128/JCM 20.2.485 402 2001
7	393	495. uol. 10.1120/JCW.59.2.463-495.2001.
8	394	This paper characterised the components of blood cells which cause PCR inhibition.
9	395	
10	396	
11	397	*Bereczky, S. et al. (2005) 'Short report: Rapid DNA extraction from archive blood spots on
12	398	filter paper for genotyping of Plasmodium falciparum.', The American journal of tropical
14	399	<i>medicine and hygiene</i> , 72(3), pp. 249–51. Available at:
15	400	http://www.ncbi.nlm.nih.gov/pubmed/15772315 (Accessed: 8 February 2019)
16	401	Described herein is a commonly used method for blood collection and archiving, from
17	402	which DNA can be extracted using volumes particularly relevant to the DNA-XT
18	403	extraction technology
19	400	extraction technology.
20	404	
21	405	
22	406	*Griffiths, L. and Chacon-Cortes, D. (2014) Methods for extracting genomic DNA from
23	407	whole blood samples: current perspectives', Journal of Biorepository Science for Applied
24	408	<i>Medicine</i> . Dove Press, 2, p. 1. doi: 10.2147/BSAM.S46573.
25	409	This article describes the current landscape of DNA extraction methods from whole
26	410	blood samples, including their strengths and drawbacks which is a useful backdrop for
27	411	assessing new DNA extraction techniques.
28	412	
29	413	
30	414	*Kanustin D V et al. (2003) 'A Composite Polyaniline-Containing Silica Sorbent for DNA
32	115	Isolation' Russian Journal of Rioorganic Chamistry, Kluwer Academic Publishers-Plenum
33	416	Dubligherg 20(2) pp 221 225 doi: 10.1022/A:1022002701562
34	410	Fublishers, $29(5)$, pp. $281-265$. doi: $10.1025/\text{A}$. 1025992701508 .
35	417	The majority of commercial DNA extraction kits rely on the since sorbent method
36	418	described by Kapustin, D.V. et al.
37	419	
38	420	
39	421	**Riera, C. et al. (2004) 'Detection of Leishmania infantum cryptic infection in
40	422	asymptomatic blood donors living in an endemic area (Eivissa, Balearic Islands, Spain) by
41	423	different diagnostic methods.', Transactions of the Royal Society of Tropical Medicine and
42	424	Hygiene, 98(2), pp. 102–10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14964810
43	425	(Accessed: 8 February 2019).
44 45	426	(
45 46	427	
40 47	128	**Tiatia K at al (2014) 'The assential role of infection detection technologies for malaria
48	420	alimination and analization? Then do in Departiculary 20(5) np. 250, 266, doi:
49	429	eminiation and eradication, Trends in Parasitology, $50(5)$, pp. 259–200. doi:
50	430	10.1016/J.pt.2014.03.003.
51	431	
52	432	**
53	433	Riera, C. et al., and Tietje, K. et al. demonstrate the critical importance of sensitive
54	434	diagnostics which can be readily employed in the field, so that leishmania and malaria
55	435	can be detected in asymptomatic patients. Eradication becomes that much more
56	436	difficult when asymptomatic patients act as reservoirs for these parasites, continuing
57	437	the spread of disease.
58	438	1
59		
60		

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
18 19 20	
20 21 22	
23 24 25	459 460
26 27	461
28 29 30	462
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 90 51 52 54 55 56 57 58	463 464

$\leq \frac{1\%}{X_{T}} \xrightarrow{0.19}{9}$	6 0.01% 0100 XT 05 0100	0.00% XT 05 0100 388nt A.				
$M = \frac{1\%}{X_{T}} \frac{0.1\%}{Q_{T}}$	6 0.01% Q100 XT 05 0100	0.00% XT 05 0100 388nt B.				
Figure 2: <i>Plasmodium falciparum</i> DNA from spiked whole blood determined by <i>Pf</i> Beta tubulin PCR. A. low volume eluate template, 1 μ l B. high volume eluate template, 10 μ l. M:						

62 100bp marker, NTC: No template control. Percentage denotes the parasitaemia post spiking.

Figure 3: *L. donovani* DNA extracted purified amastigotes and determined by PCR of kinetoplast sequence. A. 1 μ l of eluate from each manufacturer's column was used as template. B. 10 μ l of eluate from each manufacturer's column was used as template. Eluates from 3 separate columns for each manufacturer were used. POS positive control, NTC no template control.

2								
3 Experim	ent 1	Parasitaemia, %						
4 5		Predicted	Count 1		Count 2	Actual		
6		1		1.16	1.44		1.30	
7		0.1		0.10	0.09496	1	0.10	
8 9		0.01	NT		NT	NT		
10		0	NA		NA	NA		
11						<u></u>		
12 13 Experim	ent 2		Pa	rasita	emia, %			
14		Predicted	Count 1		Count 2	Actual		
15		1		0.88	0.79		0.84	
16 17		0.1		0.09	0.09		0.09	
18		0.1	NT	0.05	0.05 NT		0.05	
19		0.01					0.01	
20		0	NA		NA	INA		
21								
23 Experim	ent 3		Parasitaemia, %					
24		Predicted	Count 1		Count 2	Actual		
25		1		0.91	0.95		0.93	
26		0.1		0.10	0.10		0.10	
27 28		0.01	NT		NT	INT		
29		0	NΔ		NΔ	ΝΔ		
30		0						
31		• · - • • · · · ·						
32		NI: Not teste	d					
33 34		NA: Not appli	cable					
35								
36								
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								
4/								

Additional file 2

Supplementary Figure 1: *Plasmodium falciparum* DNA from spiked whole blood determined by *Pf*Beta tubulin PCR. A and B. low volume eluate template, 1 μ l C and D. high volume eluate template, 10 μ l. Two extractions run per parasitaemia condition. M: 100bp marker, NTC: No template control. Percentage denotes the parasitaemia post spiking.

4

5

6 7

8 9 10

11

12 13

14

15 16

17

18 19 20

21 22 23

24

25

26

27

28 29 30

35

36

37

38

39 40 41

42

50

51 52

53

54 55

56

Additional file 2

Q5 Q5 긔 NTC б 4 С Г **100B** . Ե B \triangleright Β \triangleright \triangleright В 388nt 0.1% 0.01% 0.00% 1% Q5 Q5 Q5 NTC 놐 겈 2 G 겈 2100100 100 \triangleright \triangleright Β Β \triangleright Β \triangleright Β Β Β \triangleright 388nt 0.01% 0.00% 1% 0.1% XT B \leq Q5 Q5 Q100 Q5 Q5 NTC Q100 Ľ 100 100 \triangleright Β Β \triangleright Β \triangleright \triangleright Β $\mathbf{\Sigma}$ Β 388nt 0.1% 0.01% 0.00% 1% Q5 Q100 XT B Q5 Q5 A XT A Q5 Q100Â 2100NTC Β \triangleright В Β Β $\mathbf{\Sigma}$ Β \triangleright 388nt 0.1% 0.01% 1% 0.00% D

Supplementary Figure 2: *Plasmodium falciparum* DNA from spiked whole blood determined by *Pf*Beta tubulin PCR. A and B. low volume eluate template, 1 μ l C and D. high volume eluate template, 10 μ l. Two extractions run per parasitaemia condition. M: 100bp marker, NTC: No template control. Percentage denotes the parasitaemia post spiking.