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ABSTRACT The gold standard to assess whether a baby is at risk of oxygen deprivation during childbirth,
is monitoring continuously the fetal heart rate with cardiotocography (CTG). The aim is to identify babies
that could benefit from an emergency operative delivery (e.g., Cesarean section), in order to prevent
death or permanent brain injury. The long, dynamic and complex CTG patterns are poorly understood
and known to have high false positive and false negative rates. Visual interpretation by clinicians is
challenging and reliable accurate fetal monitoring in labor remains an enormous unmet medical need. In this
work, we applied deep learning methods to achieve data-driven automated CTG evaluation. Multimodal
Convolutional Neural Network (MCNN) and Stacked MCNN models were used to analyze the largest
available database of routinely collected CTG and linked clinical data (comprising more than 35000 births).
We also assessed in detail the impact of the signal quality on the MCNN performance. On a large hold-
out testing set from Oxford (n = 4429 births), MCNN improved the prediction of cord acidemia at birth
when compared with Clinical Practice and previous computerized approaches. On two external datasets,
MCNN demonstrated better performance compared to current feature extraction-based methods. Our group
is the first to apply deep learning for the analysis of CTG. We conclude that MCNN hold potential for the
prediction of cord acidemia at birth and further work is warranted. Despite the advances, our deep learning
models are currently not suitable for the detection of severe fetal injury in the absence of cord acidemia —
a heterogeneous, small, and poorly understood group. We suggest that the most promising way forward are
hybrid approaches to CTG interpretation in labor, in which different diagnostic models can estimate the risk
for different types of fetal compromise, incorporating clinical knowledge with data-driven analyses.

INDEX TERMS Clinical decision making, deep learning, convolutional neural networks, fetal heart rate,
sensitivity, specificity.

I. INTRODUCTION

During labor, materno-fetal respiratory exchange is tran-
siently compromised by uterine contractions leading to
reduced oxygen supply to the fetus. The fetus responds by
adjusting its cardiac output, redistributing blood to prioritize
the heart and brain, and adapting metabolically. The failure
of oxygen delivery can cause fetal brain injury or even death.
Such events are usually associated with changes in the fetal
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heart rate (FHR). Because of this, it is recommended that
the fetal heart rate is monitored during labor to detect FHR
abnormalities, which may in turn reduce adverse outcomes
related to oxygen deprivation (hypoxia) [1]. Most women
in high income countries will have continuous monitoring
using a cardiotocogram (CTG, Figure 1), which continuously
displays the FHR alongside uterine contractions.

In practice, the CTG is examined visually in real time,
to identify those babies that may benefit from emer-
gency delivery (Cesarean or instrumental vaginal birth). The
CTG signals are complex and reflect periodic changes in
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FIGURE 1. Cardiotocogram (CTG) in labor (a 30min snippet).

the fetal sleep state, responses to the stresses of uter-
ine contractions, responses to maternal position, anes-
thesia, pregnancy complications, infection, and stage of
labor, in addition to patterns that reflect severe oxygen
deprivation.

There has been little progress in monitoring the health
of babies in labor over the past several decades [2], [3].
In the UK alone, during labor at term, about 100 healthy
babies die and about 1100 sustain brain injury each
year [4]-[6]. Globally, of the approximately 2.6 million still-
births that occurred in 2015, most of those that occurred
during childbirth are considered to be preventable with
CTG monitoring and appropriate intervention [7]. It must also
be noted that due to the high false positive rate, performing
CTG is also associated with harm due to unnecessary inter-
ventions. Therefore, the challenge is how CTG monitoring in
labor can be improved to maximize sensitivity, while reduc-
ing the false positive rate.

Current clinical knowledge on how to interpret the
CTG stems from basic animal research [8]; but more recently
computerized versions of expert clinical interpretation have
been developed [9], [10]. Their aim is to improve consistency
of the interpretation by substituting the subjective assessment
(with its intrinsically poor inter-observer agreement) with
objective pattern recognition.

In randomized clinical trials two such systems, in their
current form, showed no benefit over standard visual
CTG interpretation [9], [10]. They were designed to replicate
“expert opinion’’, which in itself is limited. For this and
other reasons [11], the negative results do not prove that
computerized analysis has nothing to offer, but that it needs
to be rethought. For example, the latest data-driven meth-
ods can use more sophisticated signal processing to extract
features that are associated with adverse outcome. Modern
classifiers have been used, such as Bayesian Support Vector
Machines [12], [13], classic Artificial Neural Networks [14],
and ‘sparse learning’ approaches [15]. These methods and
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models allow to go beyond what is classically observed in
the CTG by eye [11].

One of the difficulties associated with such approaches is
that most clinical datasets contain only a few hundred or a
few thousands births at best [16], [17]; as fetal compromise
is rare, and as the signals associated with adverse outcome are
heterogeneous and patient-specific, small datasets mean that
training robust algorithms is very challenging.

The investigation presented here arises from our prior work
with the Oxford digital cohort, which is unique in its detail
and, to our knowledge, is over ten times larger than any other
CTG database. We have already developed a basic prototype
diagnostic system (OxSys 1.5) that objectively quantifies the
CTG in the context of clinical risk factors; and relates these
to perinatal outcome [18]. OxSys 1.5 compares favourably
to clinical assessment on retrospective data with a higher
Sensitivity for fetal compromise (37.6% vs. 32.2%, p < 0.05)
and higher Specificity (85.5% vs. 83.6%, p < 0.001). Itis a
relatively simple system that employs only two FHR features
and two clinical risk factors [18]. The main CTG feature used
by OxSys 1.5 is the decelerative capacity (DC) of the phase
rectified signal averaging algorithm — a combined measure
of the frequency, depth, and slope of any dips in the fetal
heart rate [18], [19]. However, the size of our database confers
scope for substantial improvement of OxSys.

Deep Learning methods have been successful in various
real-world applications by ‘learning’ the most relevant,
unbiased information from large datasets [20]-[22]. Hence,
our aim was to apply Deep Learning to interrogate our
CTG archive and establish optimal ways to classify the
CTG into ‘high’ and ‘low’ risk. We recently presented
our initial simulations and experiments of applying Long
Short Term Memory (LSTM) and Convolutional Neural Net-
works (CNN) to CTG assessment [23]. We demonstrated that
CNN compared favourably to LSTM. The LSTM is generally
more suitable for forecasting patterns rather than classifying
them, and there were also vanishing gradient problems during

112027



IEEE Access

A. Petrozziello et al.: MCNNs to Detect Fetal Compromise During Labor and Delivery

back-propagation when learning on long CTG records. On the
other hand, CNN worked effectively with prolonged data
through the use of moving filters and max-pooling. Despite
the fact that traditionally CNN are applied successfully
for image recognition [24], CNN has also shown promis-
ing results for time series, such as in our preliminary
work, as well as the analysis of neonatal EEG to detect
seizures [25]. The principle and implementation are the same
as with standard CNNs for image classification, but for
time-series, 1-dimensional convolutions are used instead of
two-dimensional matrices.

In this paper, we focused further on the use of CNNs
to detect indications of fetal hypoxia by: (1) introducing
multimodal CNN (MCNN) for CTG interpretation allowing
the network to easily scale in the number and type of input
signal; (2) including an array containing information about
the CTG signal loss and investigating in detail its impact on
the models’ performance; (3) developing Stacked MCNN to
analyze separately and link sequentially the CTG, before and
after the onset of active pushing (the second dynamic stage of
labor, when the baby is delivered over a relatively short time),
usually less than one hour; (4) validating the performance of
our models using external multicenter datasets.

Il. DATA AND METHODS

We investigated and implemented machine learning algo-
rithms that are using a total of 35429 births, a subset of
the Oxford archive (UK, figure 2). These were split into
85% training and 15% testing sets. The testing subset was
identified by a random selection of 15% of cases within
each outcome group, ensuring similar rates of compromise
in training and testing. The algorithms were then tested on
external datasets from hospitals in Lyon (France) and Brno
(Czech Republic).

A. OXFORD DATA

The Oxford archive [18] comprises data from all women and
their babies undergoing monitoring during labor at the John
Radcliffe Hospital, Oxford, UK, between 1993 and 2011 that
met the following inclusion criteria (n = 58748 births):

- Delivery at 36 weeks gestation or more;

- CTG in labor comprising fetal heart rate and contrac-
tions (Figure 1), longer than 15minutes, ending within
three hours of birth (98% of the Oxford CTGs end within
the hour; 92% within the 30min; and 86% within the
10min preceding birth).

In this particular study, in order to define precise outcome
groups of interest, we have selected those who also had:

- Validated cord blood gas analysis immediately after
birth as an indicator of fetal blood oxygenation. In prac-
tice, the acidity of the blood, measured by pH, is the
available index of an increased risk for long term com-
promise of the baby [26]. Cord gases were analyzed
at the discretion of the clinician — in about 65% of all
continuously monitored births in our unit.
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A4

Basic FHR pre-processing: remove noise; interpolate
missing values; re-sample FHR to 0.25Hz

.

Take relevant CTG segment for analysis: last 60min of
trace; last 60min of 1 stage; or last 30min of 2™ stage

v

If the Uterine signal quality in segment is poor, replace
Uterine values with zeros.

v

If the segment is not long enough, pad with zeros in
front so that its length is appropriate.

Training set: 30115 CTGs
85% of CTGs

Main testing set (hold-out): 4429 CTGs

- Moderate/Severe compromise with cord
pH<7.05 (n =180)
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FIGURE 2. Data preparation before training and testing. First and second
stage refer to the different stages of labor - prior to and after the onset
of pushing.

Excluded were babies with breech presentation and congen-
ital abnormalities. The inclusion/exclusion criteria resulted
in 35429 births with CTG in labor and clinical details of the
labor outcome (Figure 2). The births were grouped in five
exclusive groups according to the outcome of labor, defined
using the clinical presentation as well as the values of cord
arterial pH at birth:

- Severe compromise (a composite outcome of: stillbirth;
neonatal death; neonatal encephalopathy; intuba-
tion or cardiac massage followed by admission to neona-
tal intensive care for >48 hours) and cord pH < 7.05
(acidemia);

- Severe compromise and cord pH > 7.05 (no acidemia);

- Moderate compromise: arterial cord pH below 7.05;

- Intermediate: arterial cord pH > 7.05 and <7.15;

- Normal: arterial cord pH > 7.15.

In the cases with severe compromise but no acidemia, the role
of oxygen deprivation during labor is debated. How the com-
promise occurs and whether it is visible in the CTG is not
well established. Also, the Intermediate group comprises a
‘middle ground’ that takes into account the fact that poor
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outcome is part of a spectrum that evolves during labor,
and represents stress, which is not necessarily abnormal.
Intermediate cases as well as those with compromise but
no acidemia are typically excluded from consideration in
CTG research (see also the Discussion below). Nevertheless,
for completeness, we also report here the main result for an
Additional Testing Set of 885 CTGs. The Main Testing Set
(hold-out) then includes 4429 CTGs. This dataset matches the
selection criteria of the external datasets, allows comparison
to be made.

The CTG data was originally available at 4Hz for the fetal
heart rate and 2Hz for the uterine signal (as default output
from the monitors). Basic pre-processing was applied as
described in [23]: abrupt increases/decreases were removed
and missing values were linearly interpolated. The signals
were then averaged down (i.e. smoothed) to 0.25Hz as a
standard sampling rate for most OxSys algorithms and com-
puterized antepartum or intrapartum CTG analysis [23]. The
original 4Hz sampling rate is too frequent given that the
average fetal heart rate beats less often than 3 times a second
(< 180bpm). To allow computationally reasonable timeframe,
we settled on 0.25Hz for this particular study, but future work
could examine different sampling rates. If the missing values
were at the beginning of trace, they were coded as zeroes. As a
result, one hour of data corresponded to 900 heart rate and
900 contraction signal samples. Thirty minutes corresponded
to 450 signal samples each.

B. EXTERNAL DATASETS FROM LYON AND BRNO
We also tested the methods on two external datasets:

1) THE SIGNAL PROCESSING AND MONITORING (SPAM)

IN LABOR WORKSHOP 2017 DATABASE

The SPaM dataset is available at the Workshop webpage!
where full details of its characteristics are given). It comprises
monitoring data of 300 women in labor, collected from the
three participating centres (Lyon, Brno and Oxford). Each
centre provided 100 cases: 80 with normal pH and 20 with
pH < 7.05, i.e., case sets were selected specifically to have
a higher than usual rate of cases with fetal compromise.
We tested only with the 200 SPaM cases from Lyon and Brno
to ensure that it was truly independent data.

Four established and well-documented algorithms for com-
puterized CTG analysis were tested on this data and reported
previously [11]. The four algorithms performed comparably:
on the Lyon subset, the median True Positive Rate (TPR)
for methods was 77.5% at median False Positive Rate (FPR)
of 24%; and on the Brno subset, the median TPR was 55% at
median FPR of 28.5%.

2) THE CZECH TECHNICAL UNIVERSITY / UNIVERSITY
HOSPITAL BRNO (CTU-UHB)

The CTU-UHB [27] comprises 552 cases of which 40 (7%)
have cord acidemia at birth below 7.05. We refer to the

1 https://www.wrh.ox.ac.uk/research/spam-in-labour
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details provided in [27] and two published methods reporting
results on the CTU-UHB database (even though the data were
not strictly used as an unseen hold-out testing set in those
methods) and compared our models to them: Spilka et al. [28]
had 40% TPR at 14% FPR, and Georgoulas et al. [29] had
72%TPR at 35%FPR.

C. DEVELOPMENT OF DEEP LEARNING MODELS

To tackle the problem of imbalanced training dataset
(4% compromised babies vs. 96% healthy ones), we used a
weighted binary cross-entropy error: data were weighted in
such a way that one misclassification from the compromised
group contributed to the error as much as 24 misclassifica-
tions from the healthy group (reflecting the incidence of 1
in 24 of compromised cases in our data).

We also tested other approaches to overcome this problem,
namely down-sampling and bootstrapping techniques; how-
ever, this resulted in worse generalization performance on the
new data (data not shown).

For all models, we used Bayesian optimization with
Gaussian Process, a popular model for parameter optimiza-
tion [30], to maximize the models’ TPR at 15% FPR.

D. MULTIMODAL CONVOLUTIONAL NEURAL

NETWORKS (MCNN)

We proposed a multimodal Convolutional Neural Network
(MCNN), comprising different input layers and independent
learning branches (Figure 3). The MCNN allowed us to use
a variety of input sources: FHR, uterine contractions, and a
FHR quality score vector (comprised of ten signal quality
scores).

The ten signal quality scores were each calculated on
a 15 minute moving window, with a 5 minute step over
60 minute FHR. The raw 4Hz data was used to calculate the
ratio of valid signal data points, out of the total number of
signal points [18]. The heart rate and uterine signals were fed
into two distinct 12-layer convolutional networks branches,
while the FHR quality vector was used as a score multiplier
of the FHR convolutional branch, giving a weight for each
output.

We assessed the quality of the CTG contraction signals
by an established autoregressive model [31], imposing the
following restriction: longer than 40 minutes of acceptable
quality, of which more than 20 minutes of excellent quality.
We found in our preliminary work [23], that the classifi-
cation results were improved when only the uterine signals
that met this condition were used in the networks. Where
they did not, the data were input into the network as zeros
(Figure 3 and Figure 4). In effect, the data were tagged as
missing (zero entries) and did not contribute to the data anal-
ysis in as many as 76% of the 35429 CTGs (i.e. only 24% of
all CTGs had sufficient quality of the uterine activity signal).
When applied to clinical practice, the quality of contraction
signal would be checked before analysis, and if it were poor,
only the FHR signal would be analyzed.
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C. Development of deep learning models

Fully Connected Network
e

)
CNN
900 inputs
10 outputs
~— @ @@
Y

Uterine —>

\ 4

FHR  —> 900 inputs

10 outputs
~— @@

Fully Connected
Hidden Layer
10 inputs
10 outputs

Quality —»

10 Uterine
10 FHR

20 inputs
CNN 20 outputs

0 S

)

Fully Connected
Hidden Layer
10 Inputs
10 outputs

Fully Connected
Hidden Layer
20 Inputs
10 outputs

+ Softmax

FIGURE 3. Multimodal convolutional network topology. Uterine - time series showing contractions; FHR - fetal heart rate time
series; Quality - 10-dimentional array showing the amount of signal loss in the FHR for a sliding 15min window; MCNN -
multimodal convolutional neural network. Both convolutional layers take 900 data points as input and output 10 values.
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FIGURE 4. Stacked MCNN topology for 15t and 2"d stage classification. Uterine - time series showing contractions;
FHR - fetal heart rate time series; Quality - 10-dimentional array showing the amount of signal loss in the FHR for a
sliding 15min window; MCNN - multimodal convolutional neural network. First and second stage refer to the
different stages of labor - prior to and after the onset of pushing.

Batch normalization and dropout were also used through
the network [32]. A Softmax transformation was included
as the last layer of the network architecture, in order to get
the class probability of each sample. The convolutional layer
hyper-parameters (e.g., number of filters and filter length)
were independently optimized for each layer, granting more
flexibility during the network creation when compared to our
prior model.

E. STACKED MCNN
The end of the CTG often coincides with the time of birth and
thus, for classification, would be expected to yield the most
relevant data for predicting outcome. But, from the clinical
point of view, it is too late to alert the caregiver for the need
of intervention.

To address this problem, we split the time series into
two parts: (1) the last 60 minutes of the 1% stage of labor
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(900 FHR data points); and (2) the last 30 minutes of
the 2" stage of labor (450 FHR data points). The onset
of 2" stage of labor was documented by the attending
clinician as part of standard clinical care, namely by full
cervical dilatation. We only considered 30 minutes in the
274 stage of labor because significant physiological changes
are expected in a shorter time span and because often the sec-
ond stage does not last longer than 30 minutes. Deliver-
ies with less than 900 and 450 FHR data points for the
15t and 2™ stage respectively, were zero padded at the
front.

In the Stacked MCNN, the class probability from the
MCNN applied to the 1% stage of labor was used as addi-
tional input to the MCNN analyzing the 2™ stage of labor
(Figure 4). The Stacked MCNN was then tested and, if the
baby was delivered by intervention in the 1% stage of labor
and thus had no monitoring in the 2" stage, the probability
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FIGURE 5. Optimization contour plot. To represent the ten dimensions into a 2-D plot, the x-axis and y-axis are the median number of
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output of the first MCNN was considered as the relevant
MCNN’s outcome prediction for this baby.

In particular, to investigate the effect of the stage of labor
on the network performance, the MCNN was trained and
tested only on data from the first or second stages separately.
Secondly, we trained a simple Stacked MCNN as shown
in Figure 4, using the MCNN model trained on the 1% stage
data to generate the probability for compromise and then
fed this as an additional feature into the 2" stage MCNN
(trained and tested on the 2" stage with probability input
from 1% stage when available). Second stage data was not
available in 29% of the traces (i.e., there was a Cesarean
section in the first stage), and the probability generated from
the first stage analysis was used for the final classification.

F. COMPARISON METHODS

We compared the models’ performance to three other modal-
ities of fetal monitoring: Clinical Practice, OxSys 1.5, and
our prior work with the single channel CNN:

1) CLINICAL PRACTICE

The primary reason for operative delivery (Cesarean,
forceps or ventouse delivery) was noted in the patient records
by the attending clinician at the time of birth, when appli-
cable. We used this to define true and false positive rates
(TPR and FPR, respectively) as follows:

TPR — number of operative deliveries based on a clinical
decision for ‘presumed fetal compromise’ as a proportion of
the total number of babies with compromise;

FPR — number of operative deliveries based on a clinical
decision for ‘presumed fetal compromise’ where there was
no compromise as a proportion of the total number of normal
cases.
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2) OXSYS 1.5

This is a current prototype of the Oxford system for data-
driven fetal monitoring in labor [18]. It uses only two FHR
features and two clinical risk factors; and analyzes the entire
FHR trace with a 15min sliding window (Smin sliding step),
and produces an alert if the risk for the fetus is high.

3) CNN
For completeness, we also included a comparison with the
single channel CNN from our preliminary work [23].

G. PERFORMANCE METRICS

Each of the proposed models was trained following a 3-fold
cross validation schema to avoid overfitting and the reported
median performance metrics were collected after running
each algorithm five times.

Standard performance metrics for classification tasks were
used to evaluate the networks: Area Under the ROC curve
(AUC); TPR; and FPR. We present results for TPR with a
fixed FPR of 5, 10, 15 and 20 percent, relating to the FPR of
CTG analysis in clinical practice of 16%-21% [18], [15].

Ill. RESULTS

A. PARAMETERS OPTIMIZATION

We allowed 40 iterations, with an initial random search
of 10 samples. Ten hyper-parameters were optimized, rep-
resenting the number of filters and filter length of each
convolutional layer. The averaged results from the 3-fold
cross validation are illustrated in Figure 5, which shows the
hyper-parameters landscape after 40 iterations. To display the
10 hyper-parameters in a two-dimensional plot, we selected
the median value across the five convolutional layers, for the
filter length and the number of filters respectively. The color
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FIGURE 6. Performance on last 60min of CTG: Clinical Practice, Oxsys1.5, CNN, MCNN, Stacked MCNN (median of 5 runs). The FPR was fixed at 15% for

the CNN and MCNN in order to be comparable to the FPR of Clinical Practice.

scheme and the contours in Figure 5 represent the TPR at a
fixed 15% FPR for every set of chosen hyper-parameters in
the [10], [50] interval for the number of filters and in
the [5], [30] interval for the filter length.We observed that
mainly the filter length(y-axis) contributed to the improve-
ments of the fitness function.

In particular, the network performed better using short
filters (with a length smaller than 15 FHR sample points,
i.e. 60 seconds). This led to the conclusion that the ‘quicker’
variations into fetal heart rate and contraction are more rele-
vant than the long-term changes.

B. COMPARISON WITH CLINICAL PRACTICE, OXSYS

1.5 AND CNN (OXFORD TESTING DATA)

From the 35429 CTGs studied here, 1786 (5%) did not
have 60min of monitoring and required zero-padding at the
front for the MCNN model (all of these had more than
20 minutes and about half had more than 40min valid signal
just before birth). For the Stacked MCNN training and testing,
a total of 33590 CTGs (94.8%) had some 1% stage and 25299
(71.4%) some 2™ stage. In these, zero-padding at the front
was needed in 2441 (7.3%) and 4282 (16.9%) respectively.
Those without any 1% stage (1839, 5.2%) were excluded from
testing/training of the Stacked MCNN as per the methods
section above (Section IL.E).

The performance of MCNN trained on the last 60 minutes
of CTG recording is shown in Figure 6. On the Main Test-
ing Set (hold-out), MCNN outperformed Clinical Practice,
OxSys1.5 [18] and the single-channel CNN [23], increasing
the TPR with the same or lower FPR.

For completeness, we present in Figure 6(b) the results
on the Additional Testing Set where the deep learning mod-
els had inferior sensitivity, and the OxSysI.5 was strikingly
better than all other methods, including Clinical Practice.
We believe that this is a result of the fact that babies with
severe compromise without acidemia are a small and het-
erogeneous group, better detected with CTG interpretation
that incorporates the clinical context, as in the OxSysl.5.
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TABLE 1. Comparison of the proposed models (median of 5 runs) on the
Main Testing Set (n = 4429). Compromise: Acidemia (arterial cord pH at
birth <7.05); Normal: Healthy new-born with arterial cord pH > 7.15.
FPR: False positive rate. 15t labor stage: Established labor before the
onset of pushing. 27 Jabor stage: After the pushing began.

True Positive Rate (TPR %)

AUC | At5% | At10% | At 15% | At 20%
FPR FPR FPR FPR

[Test on last 60min of CTG, regardless of labor stage (4429 CTGs)

IMCNN (trained on last 60min
of CTG) 0.77 32 44 53 58

Test on last 60min of 1% stage (subset of 4177 CTGs)

IMCNN (trained on last 60min
lof 1 stage) 0.65 17 27 33 40

Test on last 30min of 2™ stage (subset of 3138 CTGs)

IMCNN (trained on last 30min
of 2™ stage) 0.71 22 36 43 47

Test on last 60min of 1** stage and/or the last 30min of 2™ stage as available
(4348 CTGs)

Stacked MCNN (trained on
last 60min of 1* stage and last
30min of 2" stage) 0.67 23 36 43 47
Stacked MCNN (trained on
last 60min of CTG and last
30min of 2" stage) 0.73 28 41 47 53

Compromise may not always be ‘visible’ in this group as
expected and discussed in Section ITA.

Furthermore, Table 1 shows the results for networks trained
on data from the two labor stages separately. The outcome
of labor can only be assigned at birth. It is to be expected
that a longer interval between an earlier CTG analysis and
the time of birth will be associated with reduced diagnostic
accuracy, as seen in Table 1 for the MCNN trained on the
1% stage data. If the fetus is exposed to stress in the first
stage of labor, but compensates well, then its heart rate will
be normal and correctly classified as such at that time.
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TABLE 2. Quality groups on the hold-out testing set. Reported is the
percentage of data belonging to each quality group and the respective
TPR/FPR median (min - max) for the five runs of the MCNN model
(trained on the last 30min of the 2"d stage).

(Groups of cases according to their Fetal Heart Rate
lquality (% of CTGs in the Testing Set, n = 4429)
[Excellent (52%)

(at least 5 windows >= 0.9 and at least 3 windows >= 0.5)
IGood (31%)

(at least 3 windows >= 0.7 and at least 3 windows >= 0.5)
Mediocre (9%)

(at least 5 windows >= 0.5)

Poor (8%)

(at least 5 windows < 0.5)

TPR (%) | FPR (%)

43 (41-44)| 9(8-10)

57(57-61)| 15 (14— 18)

69 (56 — 69)| 25 (25 — 29)

59 (59 - 76)| 37 (29 - 44)

On the other hand, when the MCNN model was trained and
tested only on the last 30 minutes of the 2" stage, the MCNN
achieved AUC of 0.70 and Sensitivity of 42% for FPR of 15%.
So, the Stacked MCNN improved on the individual MCNN
performance in each labor stage, but remained slightly sub-
optimal when compared to the MCNN trained and tested on
the last hour, regardless of stage (Table 1), AUC 0.74 vs 0.76
and Sensitivity for FPR at 15% of 47% vs 53%. Only the
median values were reported here because all networks had
very small performance variability over the five independent
runs (£0.1 and £3.5 from the median for the AUC and TPR
metrics respectively, when trained on the last 60 minutes of
CTG trace; £0.2 and £3.5 when trained on last 60 minutes
of the first stage).

We concluded that the best overall performance was
achieved by the MCNN trained on the last 60 minutes of CTG
(regardless of the stage of labor). Unsurprisingly, this indi-
cated that the most relevant CTG information in connection
to the labour outcome is contained in the last segments of
monitoring — closest to the time of outcome evaluation.

C. EFFECT OF THE FETAL HEART RATE SIGNAL QUALITY
ON THE CLASSIFICATION THRESHOLD AND

THE MCNN PERFORMANCE

We aimed to examine the influence of signal loss
(after de-noising) on the performance of our best model
(MCNN trained on the last 60 minutes of CTG). To achieve
this, we defined four groups of heart rate signal quality
(described in Table 2), based on the quality score vector
(which consists of 10 values for the 60min monitoring cor-
responding to each 15min window moving with a Smin step).
Each value is the ratio of valid signal and missing signal in
the 15min window. We found that MCNN had consistently
higher number of ‘alerts’ (i.e. high-risk classifications) when
there was more signal loss/noise (i.e. poorer signal quality),
regardless of the labor outcome. Importantly, for every quality
group, there was a different cut-off point in order to obtain
FPR at 15%. There was an association between signal quality
and performance as the AUC was particularly low for the
group with poorest signal quality (Figure 7). Table 2 shows
that, when using the same classification threshold for MCNN,
the number of traces classed as high risk increases as the sig-
nal quality deteriorates from excellent to mediocre, resulting
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FIGURE 7. ROC curves for the four FHR signal quality groups as defined
in Table 2 (Hold-out Testing Set, n = 4429).

TABLE 3. Testing on the SPaM’17 dataset (http://users.ox.ac.uk/
~ndog0178/spam2017.htm). Reported is the median performance
for five models.

True Positive Rate (TPR %)
AUC
At 5% FPR | At 10% FPR | At 15% FPR| At 20% FPR
MCNN (Lyon) [0.92] 63 70 78 83
MCNN (Bro) [0.82] 35 50 55 65
Stacked MCNN | 911 49 70 75 80
(Lyon)
Stacked MCNN | 71 3 40 50 60
(Brno)

in higher TPR and higher FPR. Nevertheless, the ROC curves
are similar for these signal quality groups (Figure 7).

D. TESTING ON EXTERNAL DATA

The MCNN and the Stacked MCNN were also tested on
two external datasets, for which simulations the results
are shown in Table 3 and Table 4. For the particular
FPR values previously reported on the CTU-UHB dataset
(see Section II), the TPR was substantially better for our
deep learning approaches: it was 58% (53%-60%) at 14%FPR
with MCNN and 80% (75%-85%) at 35%FPR; with the
Stacked MCNN it was 55% (53%-60%) at 14%FPR and
83% (75%-88%) at 35%FPR.

IV. DISCUSSION

Cardiotocography (CTG) analysis during labor still relies
on visual examination of long and complex heart rate pat-
terns [2]. Here, we present our work on deep learning meth-
ods employing more than 35000 CTGs. We investigated a
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TABLE 4. Testing on the CTU-UHB dataset [27]. Note this dataset also
comes from the same Brno Hospital but there is no overlap with the
SPaM’17 data.

True Positive Rate (TPR %)

AUC
At 5% FPR |At 10% FPR | At 15% FPR | At 20% FPR

MCNN 0.81 33 48 58 65

Stacked MCNN 0.82 33 45 58 65

Multimodal Convolutional Neural Network (MCNN) and a
Stacked MCNN model for the prediction of fetal compromise,
using CTG traces from over 35000 labors (85% for training
and 15% for hold-out testing). The Stacked MCNN can be
considered as a more clinically relevant model, allowing anal-
ysis of the CTGs from the first and second labor stages sep-
arately. This is achieved by feeding the estimated probability
of compromise from the first stage of labor into the analysis
of the second stage. In addition to the fetal heart rate (FHR)
and contraction signals, we incorporated into the network
architecture a signal quality vector with the proportion of
signal loss in the fetal heart rate trace.

The MCNNs’ convolutional layer hyper-parameters
(i.e., number of filters and filter length) were independently
optimized for each layer, allowing full flexibility during
the network optimization. We found that MCNN worked
better when using many short filters (Figure 5), whereas the
CNN reported in [23] worked better with few large filters.
This finding could be explained by the different architecture
proposed here, where each input is processed separately
before reaching the ‘fully connected layer’.

On the Oxford Main Testing Set (hold-out) of 4429 CTGs
(Figure 2), we compared the results of our models in
predicting acidemia (cord pH < 7.05, with or without
severe compromise) with the clinical assessment in prac-
tice (Clinical Practice); the current Oxford prototype system
OxSys 1.5 [18]; and our pilot work with Convolutional Neural
Network (CNN, [23]). All neural networks performed sub-
stantially better than the Clinical Practiceand OxSys 1.5, with
True Positive Rates (TPR) significantly higher than that of the
Clinical Practice, for the same or lower False Positive Rate
(FPR). The TPR was 53% and 31% for the MCNN and Clin-
ical Practice, respectively (Figure 6a). The best performing
model was our newly proposed MCNN, trained on the last
60 minutes of CTG, regardless of the stage of labor (Figure 6a
and Table 1). This MCNN also outperformed the Stacked
MCNN, achieving higher sensitivity (Figure 6a). There are
several possible explanations for this: the main challenge of
analyzing the second stage of labor separately is the different
durations of each labor (in our data, 71% of the women
had a second stage of more than 30 minutes); the proposed
Stacked MCNN analyzed strictly only the last 30 minutes
of the second stage (if available), which introduced a gap in
the second stage of labor’s CTG data that was not analyzed
by the Stacked MCNN model (and potentially losing informa-
tion). In addition, as presented in Section IIIB, there was more
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‘zero-padding’ of missing signal data points in the Stacked
MCNN model and the effect of this may be a contributor
to poorer performance in this model. We plan to investigate
in the future more flexible models of the stacked approach,
allowing iterative analysis of the entire CTG available, as well
as more flexibility in processing segments with missing data
points.

Even though it could not outperform the MCNN trained on
the last 60min labor, our Stacked MCNN model performed
comparably. Moreover, to the best of our knowledge, this is a
first attempt to analyze the CTG by estimating the probability
of compromise at a time point, by using probability estimates
from CTG data at an earlier time. We believe that such stacked
models, after further developments, could be clinically rele-
vant and suitable approaches for use at the bedside, building
on the time-series nature of the CTG. These methods require
significant computational resources and time ‘offline’ for
development, optimization and training. But once trained, the
Stacked MCNN could provide analysis of a new CTG trace
in the matter of milliseconds and is thus entirely suitable for
use at the bedside.

Furthermore, we showed that signals of poor quality
adversely affect the performance of all models (Figure 7,
Table 2). Thus, future models could benefit from adjusting the
classification thresholds to the level of signal loss and further
developments should ensure the MCNN models account for
signal quality more flexibly. In particular, further work is
needed to investigate the best way to handle any segments
that are shorter than a predefined duration.

For the Additional Testing Set (n = 885, Figure 6b)
and the detection of severe compromise without acidemia,
all neural networks had low TPR. OxSys 1.5 was the
best with 45% TPR, followed by Clinical Practice with
33% and the deep learning models around 20% TPR, for
the same FPR. Newborns with severe compromise with-
out acidemia are a heterogeneous and challenging group to
detect and are typically excluded from analysis and CTG
datasets [12], [15]-[17], [27]-[29]. Such cases seem better
suited to detection by tailored diagnostic rules, such as the
ones of OxSys 1.5, which incorporates clinical risk factors and
analyzes the entire CTG trace from the very beginning. Thus,
for example, certain pre-existing fetal injuries are detected
by OxSys 1.5 early on in the CTG but are irrelevant to the
proposed here models. In particular, we are working towards
a new generation OxSys system, incorporating the best of
both — the deep learning models and the heuristic, domain-
based knowledge. Finally, our MCNN models convincingly
outperformed the other automated methods when tested on
the two external datasets (SPaM and CTU-UHB).

V. CONCLUSION

We demonstrated that deep learning methods applied to CTG
analysis can strengthen our ability to detect fetal compro-
mise during labor. The reported results showed the proposed
Multimodal Convolutional Neural Network (MCNN, trained
on the last 60 minutes of more than 30000 CTGs) as the
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best performing automated model for the detection of cord
pH < 7.05 achieved to date. It outperformed existing com-
puterized approaches and clinical assessment, when tested on
internal and external data.

Nevertheless, the model is still at an early stage of devel-
opment and we anticipate that substantial future research
(including the addition of more data) should improve its
performance in the following ways:

- The proposed multimodal architecture will permit the
introduction of new inputs, for example, more suitably
structured information about signal quality and clinical
risk factors/characteristics;

- Further experiments and simulations with the network’s
architectures;

- The MCNN and especially the Stacked MCNN could
underpin a Recurrent MCNN, where the network is
updated in real time (for example, every minute) with
new available data and the latest available prediction;

- Developing hierarchical/stacked LSTM models, for
example, using the MCNN risk estimates at different
times as inputs;

- Combining deep learning methods with domain-specific
knowledge and/or existing algorithms that complement
each other to yield risk assessment for different types of
fetal compromise.

Importantly, our deep learning models are currently not suit-
able for the detection of severe fetal injury in the absence of
cord acidemia — a heterogeneous, small, and poorly under-
stood group. We suggest that hybrid approaches to CTG
interpretation in labor, in which different diagnostic models
can estimate the risk for different types of fetal compromise,
incorporating clinical knowledge with data-driven analyses,
are the most promising way forward.
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