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ABSTRACT

Background: Pathogenic variants in the filamin C (FLNC) gene are associated with inherited 

cardiomyopathies including dilated cardiomyopathy with an arrhythmogenic phenotype. We 

evaluated FLNC variants in arrhythmogenic cardiomyopathy (ACM) and investigated the 

disease mechanism at a molecular level.

Methods: 120 gene-elusive ACM patients who fulfilled diagnostic criteria for arrhythmogenic 

right ventricular cardiomyopathy (ARVC) were screened by whole exome sequencing. Fixed 

cardiac tissue from FLNC variant carriers who had died suddenly was investigated by histology 

and immunohistochemistry.

Results: Novel or rare FLNC variants, four null and five variants of unknown significance, 

were identified in nine ACM probands (7.5%). In FLNC null variant carriers (including family 

members, n=16) Task Force diagnostic electrocardiogram repolarization/depolarization 

abnormalities were uncommon (19%), echocardiography was normal in 69%, while 56% had 

>500 ventricular ectopics/24 hours or ventricular tachycardia on Holter and 67% had late 

gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMRI). Ten gene 

positive individuals (63%) had abnormalities on ECG or CMRI that are not included in the 

current diagnostic criteria for ARVC. Immunohistochemistry showed altered key protein 

distribution, distinctive from that observed in ARVC, predominantly in the left ventricle.

Conclusions: ACM associated with FLNC variants presents with a distinctive phenotype 

characterized by Holter arrhythmia and LGE on CMRI with unremarkable ECG and 

echocardiographic findings. Clinical presentation in asymptomatic mutation carriers at risk of 

sudden death may include abnormalities which are currently non-diagnostic for ARVC. At the 

molecular level, the pathogenic mechanism related to FLNC appears different to classic forms 

of ARVC caused by desmosomal mutations.
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ABSTRACT

Background: Pathogenic variants in the filamin C (FLNC) gene are associated with inherited 

cardiomyopathies including dilated cardiomyopathy with an arrhythmogenic phenotype. We 

evaluated FLNC variants in arrhythmogenic cardiomyopathy (ACM) and investigated the 

disease mechanism at a molecular level.

Methods: 120 gene-elusive ACM patients who fulfilled diagnostic criteria for arrhythmogenic 

right ventricular cardiomyopathy (ARVC) were screened by whole exome sequencing. Fixed 

cardiac tissue from FLNC variant carriers who had died suddenly was investigated by histology 

and immunohistochemistry.

Results: Novel or rare FLNC variants, four null and five variants of unknown significance, 

were identified in nine ACM probands (7.5%). In FLNC null variant carriers (including family 

members, n=16) Task Force diagnostic electrocardiogram repolarization/depolarization 

abnormalities were uncommon (19%), echocardiography was normal in 69%, while 56% had 

>500 ventricular ectopics/24 hours or ventricular tachycardia on Holter and 67% had late 

gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMRI). Ten gene 

positive individuals (63%) had abnormalities on ECG or CMRI that are not included in the 

current diagnostic criteria for ARVC. Immunohistochemistry showed altered key protein 

distribution, distinctive from that observed in ARVC, predominantly in the left ventricle.

Conclusions: ACM associated with FLNC variants presents with a distinctive phenotype 

characterized by Holter arrhythmia and LGE on CMRI with unremarkable ECG and 

echocardiographic findings. Clinical presentation in asymptomatic mutation carriers at risk of 

sudden death may include abnormalities which are currently non-diagnostic for ARVC. At the 

molecular level, the pathogenic mechanism related to FLNC appears different to classic forms 

of ARVC caused by desmosomal mutations.
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1. Introduction

Efforts to improve early detection of individuals at risk of life threatening arrhythmia from 

inherited cardiovascular disease are ongoing [1]. Identification of patients who present with 

arrhythmias independent of or not explained by recognised causes of cardiac disease has led to 

the proposal for the term arrhythmogenic cardiomyopathy (ACM) [2-4]. The recognition of a 

number of inherited arrhythmogenic cardiomyopathies has led to the recent broader acceptance 

of this term [1]. Incorporated within this classification are patients who present with ventricular 

arrhythmia in association with right, left or biventricular disease. Arrhythmogenic Right 

Ventricular Cardiomyopathy (ARVC) caused by mutations in desmosomal genes is the most 

studied of the ACMs with well established clinical and pathological diagnostic criteria [5, 6].  

ACM with prominent left ventricle involvement can be indistinguishable from 

arrhythmogenic forms of dilated cardiomyopathy (DCM) both clinically and genetically [7]. 

The FLNC gene, encoding the major cardiac structural protein filamin C, has been implicated 

in inherited forms of cardiomyopathy, including DCM [8]. Recent studies have reported 

truncating variants in FLNC as the cause of DCM with life-threatening ventricular arrhythmia 

[9, 10]. Clinical evaluation of FLNC mutation carriers and molecular characterization of 

cardiac tissue from a patient carrying a truncating variant have shown a link between DCM and 

ARVC, both at the clinical and cellular level [10]. However, to date, the causal role of FLNC 

variants in ACM cases fulfilling Task Force diagnostic criteria for ARVC has not been directly 

investigated. As a result, the clinical and molecular phenotype of FLNC-associated ACM is 

currently unknown.

In this study, we investigate the clinical characteristics of FLNC mutation carriers in ACM 

pedigrees in which the index cases fulfil current diagnostic criteria for ARVC. We also report 
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the distribution of key proteins in myocardial tissue with FLNC variants and compare it with 

that observed in classic forms of the disorder.

2. Methods

2.1 Patient cohort

Genetic screening of 269 ACM patients by targeted next generation sequencing as described 

by Lopes et al [11] identified a group of 120 index cases who were free of potentially 

pathogenic variants in major genes associated with cardiomyopathy, arrhythmia and heart 

failure syndromes. This gene-elusive cohort underwent whole exome sequencing in order to 

identify novel causative ACM genes. 

Patients were referred to the Inherited Cardiovascular Disease Unit at the Heart Hospital 

(prior to 2014) and the Barts Cardiac Centre, St Bartholomew’s Hospital with a suspicion of 

ACM or with a premature sudden cardiac death and/or known ACM in their family. Clinical 

diagnosis of arrhythmogenic cardiomyopathy was based on the Task Force diagnostic criteria 

[6]. Index cases included in this study had a diagnosis of definite or borderline ARVC based 

on the fulfilment of the current Task Force diagnostic criteria for the disorder [6], or had a 

possible diagnosis on account of a first-degree relative who died suddenly aged less than 35 

years with a post mortem (PM) diagnosis of ARVC. Detailed clinical evaluation included 

medical and family history, 12-lead electrocardiogram (ECG), signal averaged ECG (SAECG), 

24-hour ambulatory ECG, standard 2D transthoracic echocardiogram and cardiac magnetic 

resonance imaging (CMRI). When appropriate clinical phenotyping and genetic testing was 

offered to extended relatives within pedigrees.

This study conforms with the ethical guidelines of the 1975 Declaration of Helsinki and has 

received approval by the National Health Service (NHS) Ethics Committees (REC ID: 

15/LO/0549, UK) and CEIC Hospital Virgen de la Arrixaca (Spain) and CEIC Hospital 
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Universitario y Politécnico La Fe (Spain). Informed written consent for inclusion in the study 

was obtained from all participants or, in cases of minors or deceased individuals, from first-

degree family members. 

2.2 Whole exome sequencing (WES)

In this study we performed whole exome sequencing on DNA samples from ACM index cases 

and family members. DNA from whole blood, paraffin-embedded cardiac tissue and saliva 

samples was extracted utilizing kits and protocols from Qiagen and DNA Genotek. Genomic 

DNA was subjected to sample preparation as per the protocol recommended by Agilent for the 

SureSelectXT Target Enrichment for Illumina paired-end multiplexed sequencing method. 

Targeted exonic regions were captured using the Agilent SureSelectXT Human Exon V5 

following the manufacturer’s protocol. Enriched DNA libraries were exome sequenced on the 

Illumina NextSeq500 platform as paired-end 75 base reads at a minimum of 30x coverage. 

Bioinformatic analysis of WES data including copy number variation was based on an in-house 

developed pipeline (Supplementary material, Appendix).

2.3 Immunohistochemistry

As cardiac tissue was not available from British patients screened by WES, in order to 

determine the effects of FLNC mutations at the level of the intercalated disc, post mortem 

cardiac tissue from patients with FLNC variants was sourced from a Spanish clinicopathology 

consortium. Right and left ventricle (RV and LV) specimens from eleven sudden cardiac death 

(SCD) victims with a diagnosis of arrhythmogenic cardiomyopathy carrying potentially 

pathogenic FLNC variants were included in this study. Post-mortem (PM) examination 

protocol was in keeping with published guidelines. The patients, all male, (aged 16–52, mean 

age of death 33.5 years) had a diagnosis of ARVC or left dominant arrhythmogenic 

cardiomyopathy at autopsy due to the presence of fibrosis and fat infiltration (nine cases) and 
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predominant fibrosis (3 cases). Cardiac samples from those cases were fixed in formalin and 

preserved in paraffin blocks. Immunohistochemical analysis of key proteins previously 

implicated in the molecular pathogenesis of classical ARVC in myocardial tissue was carried 

out based on the protocol developed by Asimaki et al [12]. Detailed description of the method 

is provided in the Appendix. Tissue samples from age-matched individuals with no clinical or 

pathological evidence of heart disease were subjected to the same protocol and used as negative 

controls (n=5). In summary, RV and LV specimens from each SCD case were stained for 

filamin C, plakoglobin, desmoplakin, connexin 43, synapse-associated protein SAP97 and 

glycogen synthase kinase 3β, GSK3β.

3. Results

3.1 FLNC variants

WES of a cohort of 120 gene-elusive ACM index cases identified seven novel and two rare 

FLNC variants (7.5%). They include four null variants (three nonsense and one splice site 

variant) which are predicted to be pathogenic based on the American College of Medical 

Genetics and Genomics (ACMG) guidelines and five variants of unknown significance (VUS, 

one in-frame deletion and four missense variants) [13]. Details of these variants are given in 

Appendix Table A1. FLNC variants identified by WES were confirmed by Sanger DNA 

sequencing. There were no FLNC copy number variants identified in the cohort.

3.2 Clinical phenotypes of FLNC variant carriers

Index cases carrying FLNC variants had a diagnosis of definite (n=4), borderline (n=2) or 

possible (n=3) ARVC based on the Task Force diagnostic criteria [6]. All had at least one 
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sudden cardiac death victim in their extended families ranging from 20 to 71 years (median 

40yrs) and ARVC or arrhythmogenic left ventricular cardiomyopathy (ALVC) was diagnosed 

at PM in six deceased family members (Appendix Table A2).

Segregation analysis and cascade genetic screening with clinical evaluation of relatives in 

pedigrees was feasible in the four families carrying the null FLNC variants (Figure 1). Detailed 

clinical features for FLNC variant carriers in Families A-D are provided in Table 1. For the 

VUS variants, pedigree analysis was possible in only two cases (Families E and F) which 

carried the p.59_62DLQRdel and p.K2260R variants respectively (Appendix Figure A1). No 

family members of index cases G, H and I were available. Clinical characteristics of FLNC 

VUS carriers are given in Appendix Table A3. There was no evidence of skeletal muscle 

abnormalities in ACM index cases or their relatives and serum creatine kinase levels were 

normal in those tested. In addition to ACM index cases, another 26 relatives were clinically 

evaluated and genotyped for FLNC variants; fourteen of them were genotype positive. DNA 

from two SCD cases was available and those individuals were also found to be FLNC variants 

carriers (Figures 1 and A1 and Tables 1 and A3).

Due to the limited clinical information on pedigrees with FLNC VUS variants and the 

ambiguity regarding possible pathogenicity of such variants, analysis focused on the ACM 

families with FLNC null variants (index cases and relatives, n=16). In this cohort the presence 

of Task Force diagnostic ECG repolarization and depolarization abnormalities were 

uncommon, n=2 (12.5%) and n=1 (6.25%) respectively. ECG was unremarkable in 5 genotype 

positive individuals (31%), abnormalities in the remaining included low voltage 5/16 (32%) 

and poor R wave progression across anterior chest leads 1/16 (6%). In the majority of cases 

echocardiogram did not reveal overt abnormalities (n=11, 69%). Clinical presentation with 

palpitation and/or syncope was uncommon, however, 7 patients (44%) had non sustained VT 

and/or >500 VES/24 hours and 2 (12.5%) presented with sustained VT. Of 15 FLNC null 
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variant carriers who had cardiac MRI, the majority (n=10, 67%) showed late gadolinium 

enhancement (LGE). Characteristic ECG and CMR images from a FLNC variant carrier are 

shown in Figure 2.

3.3 Immunohistochemical analysis of fixed myocardial tissue

Histological examination of eleven cardiac specimens from sudden death victims (numbered 

1 to 11, Appendix Table A4) carrying FLNC mutations was performed at post mortem. Mean 

weight was 471.3 ± 58.9 g. All but two cases had normal internal left ventricular measurements 

(mean LV diameter 37.4 ± 11.0 mm). Wall thickness was within normal limits in all hearts (11-

13 mm).

Evidence of fibrosis was present in both ventricles in ten samples; fibrofatty replacement 

was evident in three samples whilst four specimens showed signs of fibrosis and inflammation, 

mainly in the left ventricle.  Distribution of fibrofatty infiltration in the left ventricle was 

circumferential in 7 (mesocardial in 4 and subepicardial in 3) and inferolateral subepicardial in 

4 cases. Infiltration which was predominant in the inferolateral wall, extended from the basal 

to the apical segments. Inflammatory infiltrates affecting the left ventricle were multifocal in 

2 and extensive in another 2. There was only one specimen (case no 9) with remarkable 

inflammatory infiltrates in the right ventricle, which also had extensive left involvement. The 

same sample had no evidence of fibrosis at PM, however, fat infiltration was present. 

Characteristic histology images are shown in Appendix Figure A2. 

Cardiac specimens used for immunohistochemistry experiments originated from ACM 

patients with FLNC variants who had suffered sudden cardiac death. Those included three 

deletions and eight single nucleotide substitutions (two splice site, four termination and two 
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missense variants). Two unrelated cases carried the same nonsense mutation: c.5398G>T; 

p.G1800X. A list of FLNC variants in fixed tissue samples is given in Appendix Table A4.

Immunoreactive signal for filamin C was strong and indistinguishable from controls in RV 

samples from ten ACM cases but it was found to be reduced in LV specimens from all eleven 

cases. The signal for plakoglobin was strong and indistinguishable from controls in nine cases 

in both RV and LV samples. Junctional signal for Cx43 was reduced in two RV samples and 

six LV samples. Moreover, signal for the desmosomal protein desmoplakin was found to be 

reduced at cell-cell junctions in eight RV samples and five LV samples. In contrast, GSK3β 

was present in the cytosol in all FLNC cases examined as in control myocardium samples. 

Finally, immunoreactive signal for SAP97 appeared reduced in the majority of RV and LV 

samples whilst in two cases this protein was only detected in the sarcomere. Characteristic 

confocal microscopy images from case no 6 are displayed in Figure 3. Immunohistochemistry 

data from RV and LV specimens from all eleven cases are summarised in Appendix Figure 

A3.

4. Discussion 

For the first time we performed clinical characterization of FLNC variants in an ACM 

cohort; previous studies have focused on pure DCM or DCM with an arrhythmogenic 

component [8-10]. We observed marked phenotypic differences in ACM associated with FLNC 

null variants compared to classic ARVC caused by desmosomal gene mutations.

Repolarization (e.g. T wave inversion) and depolarization (such as prolonged terminal 

activation duration and epsilon waves) abnormalities are considered typical diagnostic features 

for classic forms of ARVC [6]. However, in our FLNC cohort only three patients (19%) had 

Task Force diagnostic ECG repolarization and depolarization abnormalities. In contrast, the 

majority of FLNC null variant carriers (69%) had ECG repolarization and depolarization 
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abnormalities, such as right bundle branch block (RBBB) and loss of inferior R waves, which, 

in isolation, are not considered diagnostic criteria [6]. Similarly, standard echocardiographic 

imaging has been shown to detect structural abnormalities in the majority of ARVC patients 

[14] but 69% of our cases had no detectable echocardiographic disease features. Moreover, the 

most striking observation was that MRI showed the presence of LGE with preserved ventricular 

function in all index cases and the majority of gene positive family members, a clinical feature 

which is not currently a diagnostic criterion for ARVC [6]. Consequently, in these cases, strict 

adherence to the Task Force diagnostic criteria, can lead to individuals at risk being incorrectly 

classified as either unaffected or being at low risk of complications. This highlights the 

importance of genetic evaluation of asymptomatic family members and the need of more 

detailed phenotyping targeting recognized features of particular subtypes of ACM. In this study 

familial evaluation limited to ECG and echocardiography would not have identified the 

majority of at-risk individuals whereas significant abnormalities were detected with ECG 

monitoring and CMRI, for example individuals IV:1 (Family A) and II:1 and III:4 (Family C).

In summary, we present the clinical phenotype of FLNC families with index cases who fulfil 

Task Force diagnostic criteria for ARVC. It is characterized by predominant LV involvement; 

frequently non-diagnostic electrocardiography and echocardiography; frequent ventricular 

ectopy or non-sustained VT on 24-hour Holter monitoring and fibrosis (late gadolinium 

enhancement) on MRI. Notably there is a high incidence of adverse cardiovascular events, 

highlighted in our cohort with a family history of multiple sudden cardiac death victims at a 

young age. This clinical pattern appears similar to emerging experience of other genetically 

determined arrhythmogenic cardiomyopathies caused by mutations in TMEM43, 

phospholamban, desmin and lamin A/C [15-18]. All may present with life threatening 

arrhythmia, myocardial structural abnormalities, usually predominantly of the left ventricle, 

though patients have been reported who fulfil Task Force diagnostic criteria. This highlights 
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the need for evolution of the current classification with use of the term ‘arrhythmogenic 

cardiomyopathy’ which incorporates ARVC as well as other inherited and acquired forms of 

ACM. The recent Heart Rhythm Society guidelines for the diagnosis and management of 

arrhythmogenic cardiomyopathy recognize this evolving scenario [1].

Previous studies have highlighted the importance of immunohistochemistry of cardiac tissue 

from mutation carriers in investigating the disease mechanisms related to ACM [19, 20]. In 

this study, we sought to characterize the molecular profile of fixed RV and LV specimens from 

ACM sudden death cases. It has been previously shown that filamin C displays a strong 

localisation at the intercalated disc that decreases or is completely absent in patients with 

restrictive and dilated cardiomyopathy carrying FLNC mutations [8, 21]. Here, staining for 

FLNC showed a decreased immunoreactive signal intensity in the left ventricle in all eleven 

ACM cases highlighting a predominant left ventricle disease pattern associated with mutations 

in this gene. This is consistent with a recent study that reported reduced immunohistochemical 

staining signal for filamin C in left ventricle samples from an arrhythmogenic DCM patient 

who carried the p.G1891Vfs61X mutation [10].

It is now well established that in ARVC plakoglobin translocates from the intercalated discs 

to intracellular pools [19], an observation that is considered as a “hallmark” of disease 

pathogenesis [22]. However, the signal for plakoglobin was strong and indistinguishable from 

controls in nine cases (82%) examined in our FLNC cohort in both left and right ventricular 

samples. Interestingly, signal for plakoglobin was decreased in both RV and LV specimens 

carrying the two missense variants (p.K35N and p.T160K). However, at present, the 

significance of this finding is unclear. Similar to plakoglobin mislocalization, the enzyme 

GSK3β is re-distributed from the cytosol to the intercalated disc in classic ARVC [23]. 

However, none of the eleven FLNC cases examined showed this re-distribution.
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 Immunoreactive signal for the major gap junction protein Cx43 is usually significantly 

depressed at cardiac intercalated discs in patients with ARVC [23]. In our FLNC cohort, 

junctional signal for Cx43 was reduced only in two (20%) RV and six LV (60%) cases. 

Considering the advanced disease state and predominant LV involvement in all our FLNC 

cases, it is unclear whether Cx43 remodelling played a primary role in ACM pathogenesis or 

was a result of the histological changes in the myocardium. The signal for the desmosomal 

protein desmoplakin was found to be reduced at cell-cell junctions mainly in RV samples 

(80%) and when DSP staining intensity was reduced in the left ventricle, the corresponding 

RV signal for the same case was also reduced. Altered desmoplakin localisation has been 

reported in left dominant arrhythmogenic cardiomyopathy [24] and, as our FLNC cases had a 

predominantly left dominant pattern of disease, the observed reduction of desmoplakin signal 

is in line with this phenotype. 

SAP97 is a membrane-associated guanylate kinase reported to show consistently decreased 

immunohistochemistry staining intensity in both the sarcomeric and junctional pools in the 

myocardium of desmosomal ACM patients independently of the specific causative mutation 

[25]. In our cohort SAP97 was reduced in the majority of RV and LV specimens whilst in two 

cases SAP97 signal was detectable in the sarcomeres but not at the intercalated discs. This 

finding is consistent with previous reports on myocardial samples from patients with end-stage 

ischemic, dilated and hypertrophic cardiomyopathy [25]. 

Overall, we observed a specific localization pattern in our cohort for three proteins: FLNC 

signal was reduced in all cases; plakoglobin signal was normal in the large majority of RV and 

LV specimens and GSK3β signal was normal in all cases tested. All these findings point to a 

disease pattern different to classic ARVC and are consistent with the hypothesis that ACM 

associated with FLNC variants presents with a left dominant arrhythmogenic cardiomyopathy 

phenotype which may manifest via a different mechanism to typical right ventricular 
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arrhythmogenic cardiomyopathy. Begay et al 2018 observed similar immunohistochemistry 

results to our data for a patient with the p.G1891Vfs61X FLNC mutation, namely normal 

plakoglobin immunostaining signal, typical GSK3β cytoplasmic distribution and reduced DSP 

signal compared to control samples [10]. 

Collectively, our analysis suggests that the clinical and molecular “signature’ of FLNC 

cardiomyopathy is distinct to that of ARVC. These results indicate that these two clinical 

entities reflect different molecular mechanisms of pathogenesis.

4.1 Limitations

This study is limited by the small number of recruited FLNC variant carriers which, in part, 

is attributed to the low frequency of causative FLNC variants in ACM and the high genetic 

heterogeneity that characterizes the disorder. As it is common in studies of cardiomyopathy 

patients, small family sizes have restricted our ability to perform extensive segregation analysis 

in all FLNC cases. 

Immunohistochemical analysis relied on the availability of paraffin fixed tissue. The 

challenges in collecting human heart samples are well known. Therefore, this study was also 

hindered by limited quantity of tissue for each case and some samples were not immunostained 

for a complete set of proteins. 

5. Conclusion

ACM related to FLNC variants presents with a distinctive phenotype that may not be 

recognized by current Task Force ARVC diagnostic criteria or by familial evaluation limited 

to ECG or echocardiography. Physicians should be aware of “non-diagnostic” disease features 

in asymptomatic gene positive individuals. 
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The molecular mechanism of pathogenesis of this form of ACM is markedly different to 

classic ARVC and does not involve mislocalization of plakoglobin or GSK3β.
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Figure legends

Fig. 1. Pedigrees of ACM families with FLNC variants.

Squares indicate males; circles, females; slashes, deceased individuals; black symbols, definite 

diagnosis of ARVC based on current Task Force diagnostic criteria [6] or evidence of ARVC 

at post mortem; grey symbols, borderline diagnosis of ARVC; hatched symbols, gene positive 

individuals with possible diagnosis of ARVC; (+), positive genotype for FLNC variant; (-), 

negative genotype for FLNC variant; Arrows indicate the index case in each family. ALVC, 

arrhythmogenic left ventricular cardiomyopathy; PM, post mortem; SCD, sudden cardiac 

death. Gene negative individuals with a possible diagnosis of ARVC based solely on family 

history are depicted as unaffected.

Fig. 2. ECG and cardiac MR images from individual IV:1 (Family A) who was clinically 

screened due to family history of ACM.

A). Electrocardiogram showing inferior lead T-wave inversion (III and aVF).

B). CMRI two-chamber view of the left ventricle (left image) and short axis view (right image) 

showing basal lateral subepicardial late gadolinium enhancement (white arrows).

Fig. 3. Immunohistochemistry staining of paraffin-embedded cardiac specimens from case no 

6 carrying the p.Y705X FLNC variant. 

Top panel, control sample; middle panel, RV sample; bottom panel, LV sample. 

Immunoreactive signal for plakoglobin and GSK3β at the intercalated discs appear normal 

compared control samples. Signal for FLNC appears normal in the RV but reduced in the LV. 
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Signal for connexin 43, desmoplakin, and SAP97 is reduced in both RV and LV. N-cadherin 

is used as a marker of tissue quality and is normal in all specimens.
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Table 1 

Clinical characteristics of FLNC null variant carriers in families A-D. 

Family -
Individual

FLNC 
Genotype

NYHA class / 
Symptoms

Age Sex ECG Echocardiography Arrhythmia CMRI Task Force 
Diagnostic 
Criteria  
(m, M) / 
Diagnosis

Description LVEF

(%)

24 hr VE 
count / type 
of arrhythmia

RV 
EDV 
(ml)

RVEF (%) LV 
EDV 
(ml)

LVEF 
(%)

LGE 
distribution

Family A 
II:2

(index 
case)

p.Arg991X NYHA II 76 F Permanent AF, 
low QRS voltage 
in limb leads

Late potentials

Borderline LV 
dilatation with 
mild LV systolic 
dysfunction

50 19,248 

Non-
sustained VT

146 49 122 41 Basal lateral 
LGE

2m and 1M

Definite

Family A 
III:2

p.Arg991X Asymptomatic 44 F Low QRS 
voltage in limb 
leads

Normal 
biventricular 
size and 
function

55-60 12,935 Normal Normal 172 52 Normal / No 
LGE

1m and 1M

Borderline

Family A 
IV:1

p.Arg991X Palpitations 20 F T-wave 
inversion 
inferior leads

Normal 
biventricular 
size and 
function

55-60 69

Sustained VT 
presentation, 
RBBB 
morphology

212 54 206 59 Basal lateral 
sub-epicardial 
LGE

2m

Possible

Family A 
IV:2

p.Arg991X Asymptomatic 18 F Unremarkable Normal 
biventricular 
size and 
function

55-60 1 168 58 184 56 Normal / No 
LGE

1m

Unaffected
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Family B 
II:1

c.7252-1G>A Presyncope 64 M Incomplete 
RBBB

Normal 
biventricular 
size and 
function

55-60 535 2m

Possible

Family B 
II:2

(index 
case)

c.7252-1G>A Asymptomatic 62 M Low QRS 
voltage 

Normal 
biventricular 
size and 
function

55-60 22 210 61 209 65 Sub-epicardial 
LGE basal-mid 
anterolateral 
and 
inferolateral 
walls

1M*

Possible

Family C 
II:1

p.L1573X Asymptomatic 76 M Loss of inferior 
R waves

Normal 
biventricular 
size and 
function

59 0 147 67 156 64 Basal lateral 
epicardial LGE

None

Unaffected

Family C 
III:1

(index 
case)

p.L1573X Syncope 54 M Low QRS 
voltage in limb 
leads

Non-dilated LV 
with mild LV 
dysfunction

RV regional wall 
motion 
abnormality 
(dyskinetic 
RVOT and RV 
free wall)

45-50

Sustained VT 
of LBBB 
morphology 
with superior 
axis

211 51 183 51 Extensive basal 
to mid sub-
endocardial LGE 
in the 
anterolateral 
and 
inferolateral 
walls

1m and 1M

Borderline

Family C 
III:4

p.L1573X Palpitations 50 F T wave 
inversion V6

Normal 
biventricular 
size and 
function

60 166 Normal Normal 112 70 Equivocal basal 
LGE

1m

Unaffected

Family C 
IV:1

p.L1573X Asymptomatic 19 M Unremarkable Normal 
biventricular 
size and 
function

59 3 180 54 173 57 Normal / No 
LGE

None

Unaffected
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Family C 
IV:3

p.L1573X Asymptomatic 26 F Poor R-wave 
progression in 
anterior leads

Normal 
biventricular 
size and 
function

60 0 141 64 161 60 Normal / No 
LGE

None

Unaffected

Family D 
II:1

p.Arg482X Asymptomatic 73 M Unremarkable Non-dilated LV 
and mild LV 
dysfunction

45 1,093 141 41 196 48 Circumferential 
basal LGE and 
mid-inferior 
and 
inferolateral 
LGE

1m and 1M

Borderline

Family D 
II:4

p.Arg482X NYHA II SCD 
71

M T-wave 
inversion V6

Dilated LV and 
severe LV 
dysfunction

35 9,249

Non-
sustained VT

Normal normal 257 52 Extensive 
inferior and 
inferolateral 
subepicardial 
basal LGE

2m and 1M

Definite

Family D 
III:2

p.Arg482X Asymptomatic 46 F Unremarkable Normal 
biventricular 
size and 
function

60-65 6

Non-
sustained VT

131 71 149 68 Normal / No 
LGE

2m 

Possible

Family D 
III:3

p.Arg482X Asymptomatic 43 M Unremarkable Normal 
biventricular 
size and 
function

60-65 3 161 57 146 68 Subtle streak of 
non-ischaemic 
LGE in the basal 
inferolateral 
wall

1m

Unaffected

Family D 
III:6

(index 
case)

p.Arg482X NYHA II 50 F Low QRS 
voltage in 
precordial leads

Borderline LV 
dilatation with 
mild to 
moderate LV 
systolic 
dysfunction

40-45 5,197 227 62 187 62 Basal 
inferolateral 
and inferior 
wall LGE

1m and 1M

Borderline

AF, atrial fibrillation; CMRI, cardiac magnetic resonance imaging; SCD, sudden cardiac death; ECG, electrocardiogram; EDV, end diastolic 

volume; EF, ejection fraction; NYHA, New York Heart Association classification; LBBB, left bundle branch block; LGE, late gadolinium 
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enhancement; LV, left ventricle; LVEF, left ventricular ejection fraction; LVIDD, end-diastolic internal dimension; m, minor Task Force ARVC 

diagnostic criterion; M, major Task Force ARVC diagnostic criterion; RBBB, right bundle branch block; RV, right ventricle; RVEF, right 

ventricular ejection fraction; RVOT, right ventricle outflow tract; VE, ventricular ectopic; VT, ventricular tachycardia; * one major diagnostic 

criterion due to family history.
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Appendix

Supplementary methods 

Clinical testing

ECGs were recorded at rest using a standard protocol (10mm/mV in speed 25mm/s) in the 

standard lead position. Incomplete RBBB was defined in this study as QRS width <120ms 

with an R wave peak time in V1 or V2>50ms. Low voltage was defined as QRS voltage less 

than 5mm in all limb leads and less than 10mm in all precordial leads. Poor R-wave progression 

was defined by R wave height ≤ 3mm in V3. Epsilon waves (reproducible low-amplitude 

signals between the end of QRS complex and the onset of T wave) and T-wave inversion were 

studied on all leads. T-wave inversion was defined as T-waves of negative amplitude ≥0.1mV. 

QRS duration in leads V1–V6 and terminal activation duration of QRS complex (TAD) in leads 

V1–V3 (from the nadir of S wave to the end of QRS, including R′) were measured. Signal 

averaged electrocardiograms were performed using time-domain analysis with a bandpass filter 

of 40Hz in individuals with QRS complex duration <110ms on standard ECG. 24h Holter 

monitoring was recorded on an outpatient basis. Ventricular extrasystoles and episodes of 

ventricular tachycardia (≥3 consecutive ventricular complexes at a rate of ≥100 beats/min) were 
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noted. No individual was receiving antiarrhythmic or other drugs known to affect the QRS 

complex at the time of acquisition of the ECG tracings.

All individuals underwent echocardiography included standard 2-dimensional measurements 

of left ventricular end-diastolic diameter (LVEDd) and left ventricular ejection fraction (LVEF) 

by the Simpson bi-plane method. Henry’s formula was used to correct dimensions for age and 

body surface area. Right ventricular (RV) outflow-tract end-diastolic diameter was measured 

on parasternal long-axis view (RVOT-PLAX). Wall motion abnormalities (hypokinesia, 

akinesia, dyskinesia, and aneurysm) of the right and left ventricles were documented. 

CMRI was being performed on a 1.5 Tesla scanner (Magnetom Avanto, Siemens Medical 

Solutions) using a cardiac 32-channel phased array coil. Balanced steady-state free precession 

cine imaging are used to acquire 10–12 short axis slices (8mm slice thickness, 2mm gap) with 

one slice per breath-hold. Four-chamber, two-chamber and LV inflow/outflow views and a 

short-axis stack from mitral annulus to apex were obtained. Sequence parameters are 1.5ms 

echo time, 3.1ms repetition time, and acquired voxel size usually were 1.9 × 1.9mm with a 

typical FOV of 350mm in the phase encoding direction. Late gadolinium enhancement (LGE) 

imaging was acquired with a standard segmented ‘fast low-angle shot’ two-dimensional 

inversion-recovery gradient echo sequence or a respiratory motion-corrected, free-breathing 

single shot SSFP averaged phase sensitive inversion recovery (PSIR) sequence at 15 minutes 

following the injection of 0.1 mmol/kg of a gadolinium based contrast medium. Volumetry and 

all tissue characterisation analyses were performed on a standard post-processing platform 

(cvi42, version 5.6.5, Circle Cardiovascular imaging, Calgary, Canada). Manual epicardial and 

endocardial contours were drawn on the LV-SAX stack to measure LV volumes at end-diastole 

and end-systole. Papillary muscles and trabeculae were included within the LV cavity volume. 

LGE was deemed present if viewed on SAX stack imaging with verification in one LAX view, 

LGE will be recorded on 16 segments according to the American Heart Association 17 segment 
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model (segment 17 not assessed) along with the location (sub-endocardial, sup-epicardial, mid-

wall or transmural) and pattern of fibrosis.

Bioinformatics analysis of WES data and variant filtering

Paired-end sequence reads were aligned with NovoAlign (Novocraft Technologies) against 

the reference human genome assembly GRCh37 (hg19). Duplicate reads removal, format 

conversion and indexing were performed with Picard (http://picard.sourceforge.net/). The 

Genome Analysis Toolkit (GATK) (https://www.broadinstitute.org/gatk/) was used to 

recalibrate base quality scores and to perform local realignments around possible indels. The 

HaplotypeCaller 3.1 package in GATK was used to call variants and to generate a multi-sample 

joint genotyping.

Variants were annotated using ANNOVAR software [1] and the Variant Effect Predictor 

(VEP) [2] tool from Ensembl. Pathogenicity of the identified missense variants was predicted 

using multiple bioinformatics in silico tools, namely HumVar-trained PolyPhen-2 model [3], 

SIFT [4] and MutationTaster [5].Variants were also annotated with frequencies as reported in 

large sequencing studies, with the Genome Aggregation Database (gnomAD, 

http://gnomad.broadinstitute.org/) [6] being the largest. Variants identified by WES with a 

minor allele frequency (MAF) higher or equal to 0.001 (0.1%) in the publically available 

gnomAD database were removed from further analysis. Variants outside of the coding and 

splice site regions were also filtered out. Remaining genetic changes were filtered by their 

predicted functional effect, which prioritized variants that are likely to result in a loss-of-

function (stop gain, frameshift deletion or insertion), non-synonymous or altering splicing.

Copy number variants (CNVs) analysis

The analysis of large rearrangements in the coding regions of genes was performed using a 

read depth strategy designed to overcome biases associated with sequence capture and high-

http://gnomad.broadinstitute.org/
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throughput sequencing. This set of tools is implemented in the ExomeDepth software package 

(freely available at the Comprehensive R Archive Network) [7].

Immunohistochemistry

Formalin-fixed, paraffin-embedded tissue sections (5μm) were deparaffinised, dehydrated, 

rehydrated and heated in citrate buffer (10mmol/l, pH 6.0) to enhance specific immunostaining. 

After being cooled to room temperature, the tissue sections were simultaneously permeabilized 

and blocked by incubation in phosphate-buffered saline (PBS) containing 1% Triton X-100, 

3% normal goat serum and 1% bovine serum albumin [8]. The sections were then incubated 

first with a primary antibody and then with indocarbocyanine-conjugated goat anti-mouse or 

anti-rabbit rabbit IgG. Primary antibodies included mouse monoclonal N-cadherin (Sigma, 

concentration 1:400), rabbit polyclonal Cx43 (Sigma, 1:400), mouse monoclonal plakoglobin 

(Sigma, 1:1000), mouse monoclonal desmoplakin (Fitzgerald, 1:10), rabbit polyclonal SAP97 

(Santa Cruz Biotechnology, 1:50), rabbit polyclonal anti-GSK3β (Cell Signaling Technology, 

1:80) and rabbit monoclonal anti-FLNC (Abcam, 1:200).
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Fig. A1. Pedigrees of ACM families with FLNC VUS variants.

Squares indicate males; circles, females; slashes, deceased individuals; black symbols, definite 

diagnosis of ARVC based on current Task Force diagnostic criteria [9] or evidence of ARVC 

at post mortem; grey symbols, borderline diagnosis of ARVC; hatched symbols, gene positive 

individuals with possible diagnosis of ARVC; (+), positive genotype for FLNC variant; (-), 

negative genotype for FLNC variant. Arrows indicate the index case in each family. PM, post 

mortem; SCD, sudden cardiac death. Gene negative individuals with a possible diagnosis of 

ARVC based solely on family history are depicted as unaffected.

Fig. A2. Masson’s trichrome staining histology images of left ventricular myocardium 

obtained at post mortem from a carrier of the R1370X FLNC variant (case no 8) showing A). 

Fatty (asterisks) and fibrous infiltration (arrow heads) (x250) and B). Additionally patchy 

degeneration of cardiomyocytes (arrows) (x400).

Fig. A3. Summary of immunohistochemistry staining data for RV and LV fixed tissue 

specimens from ACM cases with FLNC variants.
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Table A1 

FLNC variants identified by WES in cohort of ACM patients without pathogenic variants in 

known cardiomyopathy and arrhythmia genes.

Variant classification according to ACMG guidelines was performed using the InterVar online 

tool [10, 11]. VUS, variant of unknown significance. *predicted effect on exon splicing by 

NETGENE2 (http://www.cbs.dtu.dk/services/NetGene2/) [12] and Berkeley Drosophila 

Genome project (BDGP; http://www.fruitfly.org/seq_tools/splice.html) [13].

Sample ID
FLNC cDNA 

change

FLNC amino acid 

change

gnomAD

frequency [6]

ACMG classification 

[10, 11]

Family A II:2 c.2971C>T p.R991X Novel Pathogenic

Family B II:2 c.7252-1G>A

Predicted abnormal 

exon splicing* Novel Pathogenic

Family C III:1 c.4718T>A p.L1573X Novel Pathogenic

Family D III:6 c.1444C>T p.R482X Novel Pathogenic

Family E

II:3 c.174-185del p.59_62DLQRdel Novel VUS

Family F

II:2 c.6779A>G p.K2260R 4.554 x 10-5 VUS

Index case G c.6173A>G p.Q2058R Novel VUS

Index case H c.2141T>C p.I714T Novel VUS

Index case I c.5644A>G p.I1882V 0.001122 VUS

http://www.cbs.dtu.dk/services/NetGene2/
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Table A2

Incidents of sudden cardiac death in families with FLNC variants.

Family
Documented SCD

(n)

Age at death 

(yrs)
PM report Comment

20 ALVC Individual III:3

A
2

59 N/A
Not shown in 

pedigree

B
1 20 ACM

Individual III:1

FLNC c.7252-1G>A 

carrier

40
N/A Not shown in 

pedigree

60
N/A Not shown in 

pedigree
C

3

70
N/A Not shown in 

pedigree

27 Biventricular dilatation
Individual III:5

29 N/A
Individual II:5

D

3

71 N/A

Individual II:4

Definite diagnosis, 

FLNC R482X 

carrier

E
1

40 N/A
Individual II:1
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F
1 36 ACM

Individual III:1

FLNC K2260R 

carrier

26 ACM Pedigree not shown

G 2 60 N/A Pedigree not shown

H 1 42 N/A Pedigree not shown

I 1 47 N/A Pedigree not shown

ACM, arrhythmogenic cardiomyopathy; ALVC, arrhythmogenic left ventricular 

cardiomyopathy; PM, post mortem; SCD, sudden cardiac death.
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Table A3 

Clinical characteristics of FLNC VUS variant carriers in cases E-I. 

Echocardiography Arrhythmia CMRI Task Force 
Criteria 
(m, M) / 
Diagnosis

Family -
Individual

FLNC 
Genotype

NYHA class-
Symptoms

Age Sex ECG

Description LVEF
(%)

24 hr VE 
count / 
Type of 
arrhythmia

RV 
EDV 
(ml)

RVEF 
(%)

LV EDV 
(ml)

LVEF 
(%)

LGE 
distribution

Family E 
II:3
(index 
case)

p.59_62 
DLQRdel

palpitations 
NYHA I

68 F Inferolateral T-
wave inversion, 

late potentials

Moderate to 
severe LV 
dysfunction

RV regional 
wall 
abnormality 
(dyskinesia 
plus RV 
dilatation)

35-40 AF, 
Non- 
sustained 
VT

N/A N/A N/A N/A N/A 3m and 1M

Definite

Family E 
III:1

p.59_62 
DLQRdel

Asymptomatic 38 F Unremarkable Unremarkable 55 750, 
Non- 
sustained 
VT

N/A N/A N/A N/A N/A 1m and 1M

Borderline

Family F 
II:2
(index 
case)

p.K2260R Asymptomatic 74 F Low QRS 
voltage and 
poor R wave 
progression, 
SAECG normal

Unremarkable 55 1 89 69 77 75 Sub-
epicardial 
at basal 
mid to 
inferior 
wall

1M

Possible

Family F 
IV:2

p.K2260R Asymptomatic 16 F Unremarkable Unremarkable 60 0 Normal Normal 141 63 No LGE 1M*
Possible

Index 
case G

p.Q2058R Palpitations 67 F Low QRS 
voltages

Unremarkable 55 paroxysmal  
AF, 84

Normal Normal 112 69 Basal 
lateral non-
infarct 
fibrosis

1M*
Possible

Index 
case H

p.I714T NYHA II and 
Syncope

64 M T-wave 
inversion V1-V4

Dilated RV, 
RV lateral wall 
akinesia

50 138 290 44% 227 57 No LGE 1m and 2M

Definite
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Non- 
sustained 
VT

Index 
case I

p.I1882V NYHA I 78 M Unremarkable 
ECG

Late potentials

Moderate RV 
dilatation and 
RV aneurysm

55 N/A N/A N/A N/A N/A N/A 1m and 2M*

Definite

AF, atrial fibrillation; CMRI, cardiac magnetic resonance imaging; ECG, electrocardiogram; EDV, end diastolic volume; EF, ejection fraction; 

NYHA, New York Heart Association classification; LGE, late gadolinium enhancement; LV, left ventricle; m, minor Task Force ARVC diagnostic 

criterion; M, major Task Force ARVC diagnostic criterion; RV, right ventricle; SAECG, signal averaged electrocardiogram; VE, ventricular 

ectopics; VT, ventricular tachycardia; * one major diagnostic criterion due to family history (pedigree not shown for index case G).
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Table A4

FLNC variants identified in cardiac tissue samples used in immunohistochemistry analysis.

Case no
FLNC genomic or cDNA 

change

FLNC amino 

acid change

gnomAD

frequency [6]

ACMG 

classification 

[10, 11]

1
g.128470694_128498579del ^

(c.3_*2del)
p.0? Novel Pathogenic

2 c.105G>C p.K35N Novel VUS

3 c.249C>G p.Y83X Novel Pathogenic

4 c.479C>A p.T160K Novel VUS

5 c.1965_1966delTG p.A656PfsX8 Novel Pathogenic

6 c.2115_2120delTGCCCA p.Y705X Novel Pathogenic

7 c.4288+2T>G

Predicted 

abnormal exon 

splicing *

Novel Pathogenic

8 c.4108C>T p.R1370X Novel Pathogenic

9 c.5398G>T p.G1800X Novel Pathogenic

10 c.5398G>T p.G1800X Novel Pathogenic

11 c.5298+21C>T

Predicted 

abnormal exon 

splicing *

Novel VUS

Variant classification according to ACMG guidelines was performed using the InterVar online 

tool [10, 11]. VUS, variant of unknown significance. *predicted effect on exon splicing by 

NETGENE2 (http://www.cbs.dtu.dk/services/NetGene2/) [12] and Berkeley Drosophila 

Genome project (BDGP; http://www.fruitfly.org/seq_tools/splice.html) [13]. ^Genomic 

coordinates of the FLNC gene according to Ensembl human genome assembly GRCh37.p13.

http://www.cbs.dtu.dk/services/NetGene2/
http://www.fruitfly.org/seq_tools/splice.html

