1

Cellular senescence: defining a path forward

- 2 Vassilis Gorgoulis¹*, Peter D. Adams², Andrea Alimonti³, Dorothy C. Bennett⁴, Oliver Bischof⁵,
- 3 Cleo Bishop⁶, Judith Campisi⁷, Manuel Collado⁸, Konstantinos Evangelou⁹, Gerardo Ferbeyre¹⁰,
- 4 Jesús Gil¹¹, Eiji Hara¹², Valery Krizhanovsky¹³, Diana Jurk¹⁴, Andrea B. Maier¹⁵, Masashi
- 5 Narita¹⁶, Laura Niedernhofer¹⁷, João F. Passos¹⁴, Paul D. Robbins¹⁷, Clemens A. Schmitt¹⁸, John
- 6 Sedivy¹⁹, Konstantinos Vougas²⁰, Thomas von Zglinicki²¹, Daohong Zhou²², Manuel Serrano²³*,
- 7 Marco Demaria²⁴*
- ⁸ ¹Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School,
- 9 National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer
- 10 Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester,
- 11 UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Center for New
- 12 Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University
- 13 of Athens, Athens, Greece
- ¹⁴ ²Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK; CRUK Beatson
- 15 Institute, Glasgow G61 1BD, UK; Sanford Burnham Prebys Medical Discovery Institute, La
- 16 Jolla, CA 92037, USA
- ¹⁷ ³Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona,
- 18 Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, Lugano,
- 19 Switzerland; Department of Medicine, University of Padova, Padova, Italy; Veneto Institute of
- 20 Molecular Medicine, Padova, Italy;
- ⁴Molecular and Clinical Sciences Research Institute, St. George's, University of London,
 London SW17 0RE, UK
- ⁵Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and
 Infection, INSERM U.993, Institute Pasteur, Paris, France
- ⁶Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts & The London School
- of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London, E1 2AT
- ⁷Buck Institute for Research on Aging, Novato CA, USA
- ⁸Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital
- 29 (CHUS), Santiago de Compostela, Spain
- ⁹Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School,
- 31 National and Kapodistrian University of Athens, Athens, Greece;
- ³² ¹⁰Faculty of Medicine, Department of Biochemistry, Université de Montréal and CRCHUM,
- 33 Montreal, Quebec, Canada
- ¹¹MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, UK; Institute of
- Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London,
- 36 UK

- ¹²Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka
- 38 University, Osaka, Japan
- ¹³Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- 40 ¹⁴Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota.
- 41 ¹⁵Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences,
- 42 Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands; Department
- 43 of Medicine and Aged Care, The Royal Melbourne Hospital, The University of Melbourne,
- 44 Melbourne, Victoria, Australia.
- 45 ¹⁶Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge,
- 46 Cambridge CB2 0RE, United Kingdom
- ¹⁷Institute on the Biology of Aging and Metabolism, University of Minnesota
- 48 ¹⁸Charité University Medical Center, Department of Hematology, Oncology and Tumor
- 49 Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, Berlin, Germany;
- 50 Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- 51 Kepler University Hospital, Department of Hematology and Oncology, Johannes Kepler
- 52 University, Linz, Austria
- ¹⁹Department of Molecular Biology, Cell Biology and Biochemistry, and Center for the Biology
- 54 of Aging, Brown University, Providence RI, USA
- ²⁰Biomedical Research Foundation, Academy of Athens, Athens, Greece
- ²¹Newcastle University Institute for Ageing, Institute for Cell and Molecular Biology, Campus
- 57 for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- ²²Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville
 FL, USA
- ²³Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and
- Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies
 (ICREA), Barcelona, Spain.
- ²⁴University of Groningen (RUG), European Research Institute for the Biology of Aging
 (ERIBA), University Medical Center Groningen (UMCG)
- 65
- 66
- 67
- 68 **correspondence to:* Vassilis Gorgoulis: <u>vgorg@med.uoa.gr</u>; Manuel Serrano:
- 69 <u>manuel.serrano@irbbarcelona.org;</u> Marco Demaria: <u>m.demaria@umcg.nl</u>
- 70
- 71

72 ABBREVIATIONS

DDR: DNA damage response, CDKs: cyclin-dependent kinases, ROS: Reactive oxygen species, 73 MMPs: Matrix metalloproteinases, TGFβ; Transforming growth factor-β, SASP: Senescent 74 associated secretory phenotype, SMS; Senescence messaging secretome, mTOR: Mammalian 75 76 target of rapamycin, CCF: Cytoplasmic chromatic fragments, cGAS-STING: cyclic GMP-AMP synthase linked to stimulator of interferon genes, DAMPs: Damage-associated molecular 77 patterns, scRNA-Seq: Single cell RNA-Sequencing, DSB: Double-strand break, TIFs: Telomere 78 79 dysfunction-induced foci, TAFs: Telomere-associated foci, OIS: Oncogene-induced senescence, 80 DNA-SCARS: DNA segments with chromatin alterations reinforcing senescence, PTP: Protein tyrosine phosphatases, DUSP: Dual specificity phosphatases, ERK: Extracellular signal 81 regulated kinases, BPH: Benign prostatic hyperplasia, UPS: Ubiquitin proteasome system, PML: 82 Promyelocytic leukemia protein, 4-HNE: 4-hydroxy-2-nonenal, EPA: eicosapentaenoate, 7-83 HOCA: 7-alpha-hydroxy-3-oxo-4-cholestenoate, TCA: tricarboxylic acid, ETC: Electron TH 84 85 chain, AMPK: AMP-activated protein kinase, TASCC: TOR-autophagy spatial-couplingcompartment, SA-β-gal: senescence-associated β-galactosidase, CDK: cyclin-dependent kinase 4 86 87 and 6, HUCA: Mammalian histone chaperone complex composed of HIRA: Histone cell cycle regulation defective homolog A protein/UBN-1: Ubinuclein-1/CABIN11: Calcineurin-binding 88 89 protein cabin1/ASF1a: Anti-silencing function protein 1, SAHF: Senescence-associated heterochromatin foci, SADS: senescence-associated distension of satellites, Hi-C: genome-wide 90 mapping of chromatin contacts, miRNAs: microRNAs, PcG: Polycomb group, AGO2: 91 Argonaute 2 (also known as eukaryotic translation initiation factor 2C, let-7f: member of the let-92 93 7 miRNA family, lncRNAs: Long-non coding RNAs, HGPS: Hutchinson-Gilford progeria syndrome, TTD: trichothiodystrophy, DRI: D-retro inverso, CYTOF: Cytometry by Time-Of-94 Flight, SBB: Sudan Black B, HRS cells: Hodgkin and Reed-Sternberg cells, cHL: classical 95 96 Hodgkin Lymphoma, ssDNA: single stranded DNA.

- 97
- 98 99
- 55
- 100

101 ABSTRACT

Cellular senescence is a cell state implicated in various physiological processes and a wide 102 spectrum of age-related diseases. Thus, accurate detection of senescent cells, especially in vivo, 103 104 is essential especially since the field of senotherapeutics is growing rapidly. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing 105 key cellular and molecular features of senescence and offering recommendation on how to use 106 107 them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence (SeneQuest, available at http://Senequest.net). Lastly, we propose an 108 algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo. 109

110

112 MAIN TEXT

113 **1. Cellular senescence: walking a line between life and death**

Cell states link both physiological and stress signals to tissue homeostasis and organismal 114 health. In both cases, the outcomes vary and are determined by the signal characteristics (type, 115 magnitude and duration), spatiotemporal parameters (where and when) and cellular capacity to 116 respond (Gorgoulis et al., 2018). In the case of potentially damaging stress, damage can be 117 reversed and cells restored structural and functional integrity. Alternatively, damage can be 118 irreversible and cells activate death mechanisms mainly to restrict the impact on tissue 119 120 degeneration. Between these extremes, cells can acquire other states, often associated with survival, but also with permanent structural and functional changes. An example is the non-121 proliferative but viable state, distinct from G0 quiescence and terminal differentiation, termed 122 cellular senescence (Rodier and Campisi, 2011). Formally described in 1961 by Hayflick and 123 colleagues, cellular senescence derived from the latin word "senex" meaning "old" (Hayflick 124 and Moorhead, 1961), was originally observed in normal diploid cells that ceased to proliferate 125 126 after a finite number of divisions (Hayflick limit), later attributed to telomere shortening (see section "Cell cycle withdrawal"). 127

Cellular senescence has since been identified as a response to numerous stressors, including exposure to genotoxic agents, nutrient deprivation, hypoxia, mitochondrial dysfunction and oncogene activation (**Table 1: Senescence inducers**). Over the last decade, improved experimental tools and the development of reporter/ablation mouse models have significantly advanced our knowledge about causes and phenotypic consequences of senescent cells. However, the lack of specific markers and absence of a consensus definition senescent cells are lacking. Further, although a link to organismal aging is clear, aging and senescence are not 135 synonymous (Rodier and Campisi, 2011). Indeed, cells can undergo senescence, regardless of 136 organismal age, due to myriad signals, including those independent of telomere shortening. Consequently, senescent cells are detected at any life stage, from embryogenesis, where they 137 contribute to tissue development, to adulthood, where they prevent the propagation of damaged 138 cells and contribute to tissue repair and tumor suppression. Thus, cellular senescence might be 139 an example of evolutionary antagonistic pleiotropy or an abortive cellular program with 140 detrimental effects. Here, we clarify the nature of cellular senescence by: i) presenting key 141 features of senescent cells; ii) providing a comprehensive definition of senescence, iii) including 142 143 means to identify senescent cells; iv) delineating their role in physiological and pathological processes, and \mathbf{v}) paving the way for new therapeutic strategies. 144

145

146 **2. Definition and characteristics of cellular senescence**

147 Cellular senescence is a cell state triggered by stressful insults and certain physiological 148 processes, characterized by a prolonged –and generally irreversible- cell-cycle arrest with 149 secretory features, macromolecular damage and altered metabolism (**Figures 1-2**). These 150 features can be inter-dependent but for clarity are described here separately.

151

• *Cell cycle arrest* (Figures 1 and 2)

One common feature of senescent cells is an essentially irreversible cell cycle arrest which can be an alarm-response instigated by deleterious stimuli or aberrant proliferation. This cell cycle withdrawal differs from quiescence and terminal differentiation (He and Sharpless, 2017). Quiescence is a temporary arrest state, with proliferation re-instated by appropriate stimuli; terminal differentiation is the acquisition of specific cellular functions, accompanied by a durable cell cycle arrest mediated by pathways distinct from those of cellular senescence (Figure 1). In turn, senescent cells acquire a new phenotype, which can lead to an abortive
differentiation program. Although the senescence cell cycle arrest is generally irreversible, cell
cycle re-entry can occur under certain circumstances, particularly in tumor cells (Galanos et al.,
2016; Milanovic et al., 2018; Patel et al., 2016; Saleh et al., 2019) (Figure 1).

In mammalian cells, the retinoblastoma (RB) family and p53 protein are important for 162 establishing the senescence arrest (Rodier and Campisi, 2011). RB1 and its family members 163 p107 (RBL1) and p130 (RBL2) are phosphorylated by specific CDKs (CDK4, CDK6, CDK2). 164 This phosphorylation reduces the ability of RB family members to repress E2F-family 165 166 transcription factor activity, which is required for cell cycle progression (Sharpless and Sherr, 2015). In senescent cells, however, the CDK2 inhibitor p21^{WAF1/Cip1} (CDKN1A) and CDK4/6 167 inhibitor p16^{INK4A} (CDKN2A) accumulate. This accumulation results in persistent activation of 168 169 RB-family proteins, inhibition of E2F transactivation and consequent cell cycle arrest, which, in time, cannot be reversed by subsequent inactivation of RB-family proteins or p53 (Beausejour et 170 al., 2003). This persistence is enforced by heterochromatinization of E2F target genes (Salama 171 172 et al., 2014), the effects of cytokines secreted by senescent cells (Rodier and Campisi, 2011), and/or enduring ROS production (Takahashi et al., 2006). Notably, in senescent murine cells, 173 ARF, an alternate reading frame protein of the $p16^{INK4a}$ gene locus that activates p53, also has an 174 important role in regulating cell cycle arrest (Sharpless and Sherr, 2015). 175

Additional features of the senescent cell-cycle arrest include ribosome biogenesis defects and derepression of retrotransposons (De Cecco et al., 2019; Lessard et al., 2018). However, currently no specific marker of the senescent cell-cycle arrest has been identified (Hernandez-Segura et al., 2017). For example, RB and p53 activation also occurs in other forms of cell-cycle arrest (Rodier and Campisi, 2011). Even p16^{INK4A}, which is considered more specific to 181 senescence, is expressed in certain non-senescent cells (Sharpless and Sherr, 2015), and is not 182 expressed by all senescent cells (Hernandez-Segura et al., 2017). Thus, detecting a senescenceassociated cell cycle arrest requires quantification of multiple factors/features. 183

184

• Secretion (Figure 2)

Senescent cells secrete a plethora of factors, including pro-inflammatory cytokines and 185 chemokines, growth modulators, angiogenic factors and matrix metalloproteinases (MMPs), 186 collectively termed the Senescent Associated Secretory Phenotype (SASP or Senescence 187 Messaging Secretome (SMS) (Table 2) (Coppe et al., 2010; Kuilman and Peeper, 2009). The 188 SASP constitutes a hallmark of senescent cells and mediates many of their patho-physiological 189 effects. For example, the SASP reinforces and spreads senescence in autocrine and paracrine 190 fashions (Acosta et al., 2013; Coppe et al., 2010; Kuilman and Peeper, 2009), and activates 191 192 immune responses that eliminate senescent cells (Krizhanovsky et al., 2008a; Munoz-Espin and Serrano, 2014). SASP factors mediate developmental senescence (Munoz-Espin et al., 2013; 193 194 Storer et al., 2013), wound healing (Demaria et al., 2014) and tissue plasticity (Mosteiro et al., 2016), and contribute to persistent chronic inflammation (known as inflammaging) (Franceschi 195 196 and Campisi, 2014). Thus, the SASP can explain some of the deleterious, pro-aging effects of 197 senescent cells. Further, the SASP can recruit immature immune-suppressive myeloid cells to prostate and liver tumors (Di Mitri et al., 2014; Eggert et al., 2016) and stimulate tumorigenesis 198 199 by driving angiogenesis and metastasis (Coppe et al., 2010).

200 While the senescent cell cycle arrest is regulated by the p53 and p16^{INK4A}/Rb tumor 201 suppressor pathways, the SASP is controlled by enhancer remodeling and activation of transcription factors such as NF-κB, C/EBPβ and GATA4 (Ito et al., 2017; Kang et al., 2015; 202 Kuilman and Peeper, 2009; Salama et al., 2014), and the mTOR (mammalian target of 203

rapamycin) and p38MAPK signaling pathways (Freund et al., 2011; Ito et al., 2017; Kuilman and
Peeper, 2009). Upstream signals triggering SASP activation are multiple, and differ depending
on the senescence inducer, but include DNA damage, cytoplasmic chromatin fragments (CCFs)
that trigger a type1 interferon response, and damage-associated molecular patterns (DAMPs) that
activate the inflammasome (Acosta et al., 2013; Davalos et al., 2013; Li and Chen, 2018).

The SASP composition and strength varies substantially, depending on the duration of 209 senescence, origin of the pro-senescence stimulus and cell type (Childs et al., 2015). Further, 210 single cell RNA-Seq reveals considerable cell-to-cell variability of SASP expression (Wiley et 211 al., 2017b). For example, transition from an early TGF- β -dependent to a pro-inflammatory 212 secretome is governed by fluctuation of Notch1 activity (Ito et al., 2017). Moreover, an 213 interferon type I response occurs as a later event, and is driven in part by derepression of LINE-1 214 215 retrotransposable elements (De Cecco et al., 2019). Senescent cells also communicate with their microenvironment through juxtacrine NOTCH/JAG1 signalling (Ito et al., 2017), release of ROS 216 (Kuilman et al., 2010), cytoplasmic bridges (Suppl. Video 1) (Biran et al., 2015) and 217 extracellular vesicles, such as exosomes (Takasugi et al., 2017). Overall, defining the senescent 218 secretome in each biological context will help identify senescence-based molecular signatures. 219

• *Macromolecular damage* (Figure 2)

221 <u>DNA damage</u>

The first molecular feature associated with senescence was telomere shortening, a result of the *DNA end-replication problem*, during serial passages (Shay and Wright, 2019). Telomeres are repetitive DNA structures, found in terminal loops at chromosomal ends, and stabilized by the Shelterin protein complex. This organization renders telomeres unrecognizable by the DDR and DSB repair pathways (de Lange, 2018; Shay and Wright, 2019). Telomerase, the enzyme that maintains telomere length, is not expressed by most normal somatic (non-stem) cells, but is
expressed by most cancer cells that have overcome senescence. Moreover, telomerase activity
reconstitution in normal cells leads to telomere elongation, extending their replicative life-span
in culture (Bodnar et al., 1998; Shay and Wright, 2019).

Telomere shortening during proliferation culminates in telomeric DNA loop destabilization and telomere uncapping, generating Telomere dysfunction-Induced Foci (TIFs) that activate the DDR, eventually causing cell-cycle arrest. This response can also be elicited by inhibiting or altering genes involved in telomere maintenance (d'Adda di Fagagna, 2008). Another form of DNA damage, termed Telomere-Associated Foci (TAFs), can exist at telomeres due to oxidative DNA damage at telomeric G-reach repeats, irrespective of telomere length or Shelterin loss (de Lange, 2018; Shay and Wright, 2019).

Although half the persistent DNA damage foci in senescent cells localize to telomeres, 238 other stressful subcytotoxic insults can trigger senescence by inducing irreparable DNA damage. 239 Numerous genotoxic agents, including radiation (ionizing and UV), pharmacological agents 240 (e.g., certain chemotherapeutics), oxidative stress and others trigger senescence by causing DNA 241 damage. Moreover, activated oncogenes can induce senescence (known as OIS) as a tumor 242 243 suppressive response, restricting the uncontrolled proliferation of potentially oncogenic cells. OIS is often mediated by the tumor suppressors p16^{INK4A} and ARF, both encoded by the 244 CDKN2A locus, imposing a cell-cycle arrest (Kuilman et al., 2010; Serrano et al., 1997). But the 245 DDR also plays a major role in triggering OIS (Gorgoulis and Halazonetis, 2010; Gorgoulis et 246 al., 2018; Halazonetis et al., 2008). In this case, the damage signal originates at collapsed 247 248 replication forks as a result of oncogene-driven hyperproliferation. Recently, it was shown that the DDR and ARF pathways can act in concert during OIS with the former requiring a loweroncogenic load than the latter (Gorgoulis et al., 2018).

Senescent cells harbor persistent nuclear DNA damage foci termed DNA-SCARS. DNA-251 SCARS are distinct from transient damage foci; unlike transient foci, they specifically associate 252 with promyelocytic leukemian (PML) nuclear bodies, lack the DNA repair proteins RPA and 253 RAD51 and ssDNA and contain activated forms of the DDR mediators CHK2 and p53 (Rodier 254 et al., 2011). DNA-SCARS are dynamic structures, with the potential to regulate multiple 255 aspects of the senescent cells, including the growth arrest and SASP (Rodier et al., 2011). 256 257 However, as not all senescence-inducing stimuli generate a persistent DNA damage response, DNA-SCARS are not a global feature of the senescent cells. CCF are another type of DNA 258 damage in senescent cells (Ivanov et al., 2013). These cytoplasmic chromatin fragments activate 259 a proinflammatory response, mediated by the cGAS-cGAMP-STING pathway (Ivanov et al., 260 2013; Li and Chen, 2018), that can serve as another non-inclusive senescence-associated marker. 261 Protein damage 262

Proteotoxicity is a hallmark of aging and cellular senescence (Kaushik and Cuervo, 263 2015). Hence, damaged proteins help identify senescent cells. A prominent source of protein 264 265 damage is ROS, which oxidize both methionine and cysteine residues and alter protein folding and function (Hohn et al., 2017). Many protein tyrosine phosphatases (PTPs) contain cysteine 266 residues in their active sites that can be inactivated by oxidation. This inactivation can trigger 267 268 senescence by hyperactivating ERK signaling, similar to the effect of activated oncogenes (Deschenes-Simard et al., 2013). High phospho-ERK levels were detected in pre-neoplastic 269 270 lesions, rich in senescent cells, such as melanocytic nevi and benign prostatic hyperplasia (BPH) 271 (Deschenes-Simard et al., 2013) and are a characteristic of therapy-induced senescence

(Haugstetter et al., 2010). The PTP oxidation pattern (the oxPTPome) can be revealed by a
monoclonal antibody that recognizes oxidized cysteine (Karisch et al., 2011).

ROS, in the presence of metals, can carbonylate proline, threonine, lysine and arginine 274 residues. Protein carbonylation exposes hydrophobic surfaces, leading to unfolding and 275 aggregation, and protein carbonyl residues can be specifically detected using antibodies 276 (Nystrom, 2005). Moreover, carbonyl residues can react with amino groups to form Schiff-277 bases, contributing to protein aggregation. Subsequent cross-linking with sugars and lipids 278 forms insoluble aggregates, termed lipofuscin from the Greek "lipo" meaning fat and "fuscus" 279 280 meaning dark. Lipofuscin can be visualized in lysosomes by light microscopy or a histochemical method using a biotinylated Sudan Black-B analogue (GL13) (Evangelou et al., 2017). The 281 latter is emerging as a another indicator of senescent cells in culture and in vivo (Evangelou et 282 al., 2017; Gorgoulis et al., 2018; Myrianthopoulos et al., 2019). It should be noted that damage 283 accumulation continues, even when cell division ceases, and can continue for months or even 284 285 years.

Most protein oxidative damage is not reversible, and degradation by the ubiquitin proteasome system (UPS) or autophagy often eliminates these proteins. As UPS (Deschenes-Simard et al., 2013) and autophagy are active in senescent cells, they could prove to be useful in chacterizing the senescent state (Ogrodnik et al., 2019a). Similarly, PML bodies act as sensors of reactive oxygen species and oxidative damage (Niwa-Kawakita et al., 2017) and can also be non-exclusive biomarkers of cellular senescence (Vernier et al., 2011).

292 <u>Lipid damage</u>

Lipids are essential for cell membrane integrity, energy production and signal
 transduction. Some age-related diseases are characterized by altered lipid metabolism, resulting

in lipid profile changes (Ademowo et al., 2017). Although, senescent cells are marked bychanges in lipid metabolism, it is unclear how this contributes to the senescent phenotype.

Mitochondrial dysfunction during senescence can result in ROS-driven lipid damage, lipid deposits (Correia-Melo et al., 2016; Ogrodnik et al., 2017) and lipofucin accumulation (Gorgoulis et al., 2018). Apart from oxidation, modifications, such as lipid-derived aldehydes le.g., 4-hydroxy-2-nonenal (4-HNE)] have been reported in senescent cells (Ademowo et al., 2017; Jurk et al., 2012).

Lipid accumulation in senescent cells can be visualized using various commercial dyes and assays (Ogrodnik et al., 2017) or immunostaining for lipid associated proteins such as Perilipin 2 (Ogrodnik et al., 2017). Importantly, genetic or pharmacological clearance of senescent cells in obese and aging mice reduced lipid deposits in liver (Ogrodnik et al., 2017) and brain (Ogrodnik et al., 2019b).

Despite the association with lipid accumulation, our knowledge about specific lipid 307 metabolite composition in senescent cells is sparse. Fatty acids, their precursors and 308 309 phospholipid catabolites, such as eicosapentaenoate (EPA), malonate, 7-alpha-hydroxy-3-oxo-4cholestenoate (7-HOCA) and 1-stearoylglycerophosphoinositol increase in senescent fibroblasts, 310 311 whereas linoleate, dihomo-linoleate and 10-heptadecenoate decline (James et al., 2015). Moreover, free cholesterol rises, accompanied by reduced phospholipids and cholesteryl esters 312 derived from acetate, while fatty acid synthase and stearoyl-CoA desaturase-1 declines (Maeda 313 314 et al., 2009). Several methods are available to detect lipid changes in tissues and cells, but their use as senescence biomarker remains limited due to high variability of the senescence-associated 315 lipid profile. For example, lipid metabolites vary significantly between oncogene-induced 316 317 senescence and replicative senescence (Quijano et al., 2012).

318 • *Deregulated metabolic profile*

319 <u>Mitochondria</u>

320 Senescent cells exhibit several changes in mitochondrial function, dynamics and morphology. Mitochondria in senescent cells are less functional, showing decreased membrane 321 potential, increased proton leak, reduced fusion and fission rates, increased mass and abundance 322 of tricarboxylic acid (TCA) cycle metabolites (Kaplon et al., 2013; Passos et al., 2010). While 323 mitochondrial are more abundant, it appears their ability to produce ATP is compromised (Birch 324 and Passos, 2017; Korolchuk et al., 2017). In contrast, senescent cells often produce more ROS, 325 which can cause protein and lipid damage, as discussed in previous sections (see 'protein 326 damage' and 'lipid damage'), but also telomere shortening and DDR activation (Passos et al., 327 2007). Targeting aspects of mitochondrial biology, such as the electron transport chain (ETC), 328 329 complex I assembly, mitochondrial fission rates and biogenesis, mitochondrial sirtuins and/or disruption of the TCA cycle can trigger senescence (Correia- Melo et al., 2016; Jiang et al., 330 331 2013; Kaplon et al., 2013; Miwa et al., 2014; Moiseeva et al., 2009; Park et al., 2010; Wiley et al., 2016). Altered AMP:ATP and ADP:ATP ratios during senescence contribute to cell-cycle 332 333 withdrawal by activating AMPK, a main sensor of energy deprivation (Birch and Passos, 2017).

Mitochondrial dysfunction during senescence is also implicated in SASP regulation. Mitophagy (mitochondrial clearance) in senescent cells appears to suppress the SASP (Correia- Melo et al., 2016). Genetic or pharmacological inhibition of the ETC can induce senescence, with cells lacking expression of key pro-inflammatory SASP factors, such as IL-6 and IL-8 (Wiley et al., 2016). NAD⁺/NADH ratios are reduced in senescent cells (Wiley et al., 2016), which could alter the activity of poly-ADP ribose polymerase (PARP) and sirtuins, both involved in activation of the SASP-regulator NF-kB (Birch and Passos, 2017).

While substantial data support a role for mitochondria in senescence in culture, less is known *in vivo*. Mouse models of mitochondrial dysfunction and enhanced oxidative stress show increased senescence (Wiley et al., 2016), but a detailed characterization of mitochondrial function in senescent cells *in vivo* is lacking. Because mitochondrial dysfunction characterizes other cellular processes (Eisner et al., 2018), like others, it is not a consistent biomarker of senescence. Finally, it is not clear whether senescent cells contribute to declined mitochondrial function observed during aging and age-related diseases (Srivastava, 2017).

348 *Lysosomes*

349 Secretion requires simultaneous activation of anabolic and catabolic processes (see "Secretion") (Salama et al., 2014). Increased catabolism provides energy and raw materials, and 350 is favored by the lysosome, the end-degradation compartment of phagocytosis, endocytosis and 351 autophagy (Settembre and Ballabio, 2014). Lysosome biogenesis is transcriptionally-driven, and 352 depends on the cellular energetic or degradative needs (Settembre and Ballabio, 2014). 353 Intriguingly, when amino acid levels in the lysosomal lumen are high, mTOR1 is recruited and 354 activated and vice versa (Settembre and Ballabio, 2014). Additionally, lysosomes interact with 355 mitochondria to preserve mitochondrial homeostasis (see "Mitochondria") (Park et al., 2018). 356

Lysosomes in senescent cells increase in number and size, evident by the cytoplasmic granularity seen microscopically (Robbins et al., 1970); **Suppl Video 1,** for non-senescent cells see **Suppl Video 2**). The increased lysosomal number might reflect an attempt to balance the gradual accumulation of dysfunctional lysosomes by producing more new lysosomes. Thus, the balance between anabolism and catabolism, vital for secretion, is extended. This balance is maintained during OIS through TOR-autophagy spatial-coupling-compartment (TASCC), which coordinates the production of SASP factors (Salama et al., 2014). 364 The elevated lysosomal content does not necessarily reflect increased activity, as the degradation stage of autophagy also declines (Park et al., 2018). Thus, the lysosome-365 mitochondrial axis degrades, leading to pathological mitochondrial turnover that increases ROS 366 production. Subsequently, ROS targets cellular structures, including lysosomes, forming a 367 vicious feedback loop that induces more damage (Park et al., 2018). The increased lysosomal 368 mass has been linked to SA-β-gal activity (Hernandez-Segura et al., 2018), a senescence 369 biomarker. However, although the SA- β -gal is prominent in senescent cells (Dimri et al., 1995; 370 Hernandez-Segura et al., 2018), it is neither required nor a determinant of the senescent 371 372 phenotype (Hernandez-Segura et al., 2018). From a therapeutic viewpoint, the enlarged lysosomal compartment offers an increased capacity to trap drugs that can be protonated, such as 373 the selective CDK4/6 inhibitors palbociclib, ribociclib and abemaciclib. This capacity reduces 374 their effective concentration in the cytosol and nucleus, but counteracted by the slow release of 375 the drugs from the lysosomes, thereby increasing drug exposure time (Llanos et al., 2019). 376 Another senescence trait, related to lysosomal malfunction, is the intra-lysosomal accumulation 377 378 of lipofuscin aggresomes (see "Protein damage" and "Lipid damage", reviewed in (Gorgoulis et al., 2018). Interestingly, lipofuscin was reported to stimulate expression of the anti-apoptotic 379 factor Bcl-2, conferring resistance to apoptosis, another characteristic of senescent cells 380 (McHugh and Gil, 2018). Lysosomes in senescent cells also participate in chromatin processing 381 (CCFs) (see "DNA damage" and "Secretion") (Ivanov et al., 2013). 382

383

384 **3.**Senescence-associated (epi)-genetic and gene expression changes (Figure 2)

The features listed above are associated with changes in gene expression, determined by transcriptional regulation of coding and non-coding RNAs, which can be exploited for senescence detection. Here, we discuss such major alterations, and describe a novel database
that can aid the identification of genes associated with senescence, termed SeneQuest
(http://Senequest.net) [see Supplementary Information and Suppl. Table 1].

Chromatin landscape

Epigenetic modifications occur during senescence, but are mostly context-dependent 391 (Cheng et al., 2017). For example, replicative senescence has been correlated with global loss of 392 DNA methylation at CpG sites (Cheng et al., 2017). In addition to the global loss of DNA 393 methylation, cellular senescence is entails focal increases in DNA methylation at certain CpG 394 islands (Cruickshanks et al., 2013). Interestingly, this DNA methylation profile somewhat 395 resembles the cancer- and aging-associated methylome patterns (Cruickshanks et al., 2013; Xie 396 397 et al., 2018). Cells undergoing OIS fail to show such alterations in DNA methylation (Xie et al., 2018), reinforcing the diverse nature of epigenetic alterations during senescence. 398

Senescent cells also exhibit a global increase in chromatin accessibility, but the genome-399 400 wide profile varies depending on the stimulus (De Cecco et al., 2013). Individual histone modifications and variants (Cheng et al., 2017; Hernandez-Segura et al., 2018; Rai et al., 2014) 401 402 demonstrate alterations during senescence. For instance, H4K16ac is often enriched at active 403 promoters in senescent, but not proliferating, cells (Rai et al., 2014). Its accumulation correlates 404 closely with histone variant H3.3, which is deposited into chromatin in a DNA replication-405 independent manner by the HIRA/UBN1/CABIN1 and ASF1a chaperones (Rai et al., 2014). Notably, N-terminus proteolytic cleavage of H3.3 correlates with gene repression in a different 406 407 subset of genes during senescence (Ivanov et al., 2013). Global loss of linker histone H1 is another senescence feature (Funayama et al., 2006). Certain histone modifications are vital, such 408 as elevated H4K20me3 and H3K9me3, which contribute to the proliferation arrest (Cheng et al., 409

2017; Di Micco et al., 2011; Salama et al., 2014), whereas elevated H3K27ac at gene enhancers
promotes a SASP (Hernandez-Segura et al., 2018).

Senescence is also associated with chromatin morphological changes. 412 Senescenceassociated heterochromatin foci (SAHF), visualized as DAPI-dense foci, are enriched in 413 Heterochromatin Protein (HP) 1. SAHFs derive from chromatin factors, including RB, histone 414 variant macroH2A, high mobility group A proteins, the HIRA/UBN1/CABIN1 and ASF1a 415 chaperones, and increased nuclear pore density (Boumendil et al., 2019; Salama et al., 2014). 416 SAHFs were initially hypothesized to contribute to gene regulation (Salama et al., 2014). 417 However, SAHFs were since shown to comprise largely late-replicating gene poor 418 heterochromatic regions, even in proliferating cells, suggesting a small role in senescence-419 associated gene expression (Salama et al., 2014). Senescence is also correlated with global loss 420 of linker histone H1 (Funayama et al., 2006). Notably, SAHFs seem to be cell type- and 421 stimulus-dependent, as they are not seen in all senescent cells (Di Micco et al., 2011; Kennedy et 422 al., 2010; Sharpless and Sherr, 2015), rendering them useful for senescence identification, while 423 424 the functional significance remains to be elucidated

Another chromatin feature termed, senescence-associated distension of satellites (SADS), 425 426 corresponds to de-compaction of (peri-)centric constitutive heterochromatin (Cruickshanks et al., 2013; De Cecco et al., 2013; Swanson et al., 2013). SADS precede SAHF formation and might 427 be widely linked to senescence (Swanson et al., 2013). Retrotransposable elements are another 428 429 type of constitutive heterochromatin related to senescence. The normally-repressed retrotransposon Line 1 (L1) are activated, stimulating the cGAS-STING pathway that elicits a 430 type I interferon response (see "Secretion") (De Cecco et al., 2013). Hence, in addition to 431 triggering genomic instability, these elements fuel the SASP (Criscione et al., 2016). 432

433 Downregulation of lamin B1, a major component of the nuclear lamina, is another key feature of senescence (Dou et al., 2015; Freund et al., 2012; Shah et al., 2013; Shimi et al., 434 2011). Lamin B1 loss correlates with epigenetic profiles (Salama et al., 2014), as well as 435 436 senescence-associated chromatin structures (SAHF and SADS) (Salama et al., 2014; Swanson et al., 2013). Its reduction occurs predominantly at H3K9me3-rich regions, a process that appears 437 to liberate H3K9me3 from the nuclear lamina promoting spatial rearrangement of H3K9me3-438 heterochromatin to form SAHF (Salama et al., 2014). Hi-C analysis (genome-wide mapping of 439 chromatin contacts) in OIS revealed a reduction in local connectivity at regions enriched for 440 441 H3K9me3 and lamin B1, perturbing these long-range interactions (Chandra et al., 2015). Replicative senescence, on the other hand, showed loss of long-range and gain of short-range 442 interactions within chromosomes (Criscione et al., 2016), implying that the nature of senescence-443 associated high-order chromatin interactions is stimulus and context-dependent (Zirkel et al., 444 2018). Furthermore, lamin B1 loss and reduced nuclear integrity is suggested to fuel the SASP 445 by contributing to CCF formation (Dou et al., 2015; Ivanov et al., 2013), thereby stimulating the 446 cGAS-STING pathway and interferon response (see "Secretion")") (Li and Chen, 2018). 447 Autophagy-mediated CCF formation (Dou et al., 2015) together with reduced histone synthesis 448 449 (O'Sullivan et al., 2010) might also lead to a global loss of core histories during senescence, affecting the chromatin landscape (Chan and Narita, 2019; Ivanov et al., 2013). 450

451

• Transcriptional signatures

452 Several genes linked to the cell cycle arrest and SASP are frequently interrogated in 453 combination with other biomarkers to validate the senescence phenotype or type of senescence. 454 For example, increased expression of the cyclin-dependent kinase inhibitors CDKN1A 455 (p21^{WAF1/Cip1}), CDKN2A (p16^{INK4A}) and CDK2B (p15^{INK4B}) and a subset of SASP genes, along with decreased expression of cyclins CCNA2 and CCNE2 and LMNB1 should be determined.
In addition, the transcriptome of putative senescent cells should be established, which can then
be compared with the increasing number of existing senescence transcriptomes (HernandezSegura et al., 2018).

Whole-transcriptome studies have been instrumental in defining major signaling 460 pathways involved in establishing senescence phenotypes, and in some cases predicting drug 461 targets (Zhu et al., 2015). A set of 13 genes was differentially regulated in several cell types 462 undergoing distinct forms of senescence, including oncogene-, replicative- and DNA damage-463 induced senescence (Hernandez-Segura et al., 2017). More recently, a similar study, which 464 considered only fibroblasts and endothelial cells, also attempted at defining senescence-465 associated transcriptome signatures (Casella et al., 2019). Due to the current paucity of 466 transcriptome data sets, and the availability of more single-cell studies that allow evaluation of 467 intra-population variability (Wiley et al., 2017a; Zirkel et al., 2018), these gene signatures will 468 likely change in coming years. But ultimately a senescence gene expression signature will prove 469 470 valuable for identifying senescence under many conditions in culture and *in vivo*.

471

• miRNAs and non-coding RNAs

Non-coding RNAs, particularly microRNAs (miRNAs), can influence the senescence
program, alone or in concert. Functional studies revealed several miRNAs that directly or
indirectly modulate the abundance of key senescence effectors, including p53, p21^{WAF1/Cip1} and
SIRT1 (Suh, 2018). miR-504 targets the p53 3'UTR, reducing p53 abundance and activity (Hu
et al., 2010). Also, Gld2-mediated stabilization of miR-122 enables its binding to the CBEP
3'UTR, resulting in decreased p53 mRNA polyadenylation and translation (Burns et al., 2011).
Conversely, miR-605 targets MDM2, triggering p53-mediated senescence (Xiao et al., 2011),

and multiple miRNAs downregulate p21^{WAF1/Cip1}, including 28 miRNAs that block OIS 479 (Borgdorff et al., 2010). Likewise, miR-24 suppresses p16^{INK4a} in cells (Lal et al., 2008) and 480 disease models, including osteoarthritis (Philipot et al., 2014). Intricate miRNA feedback loops 481 482 can modulate senescence programs. For example, a p53/miRNA/CCNA2 pathway drives senescence independently of the p53/p21^{WAF1/Cip1} axis (Xu et al., 2019). Similarly, p53-483 dependent upregulation of miR-34a/b/c downregulates cell proliferation and survival factors 484 (Hermeking, 2010). Non-coding RNAs also regulate the SASP (Panda et al., 2017). MiR-485 146a/b, for example, increases weeks after senescence induction and dampens a proinflammatory 486 arm of the SASP (Bhaumik et al., 2009). miRNAs also downregulate repressors of senescence, 487 including Polycomb Group (PcG) members CBX7, EED, EZH2 and SUZ12 (miR-26b, 181a, 488 210 and 424), leading to p16^{INK4a} derepression and senescence initiation (Overhoff et al., 2014). 489 Finally, the role of miRNAs in senescence extends beyond their classical functions. For 490 example, Argonaute 2 (AGO2) binds let-7f in the nucleus, forming a complex with RB1 (pRB), 491 resulting in repressive chromatin at CDC2 and CDCA8 promoters (Benhamed et al., 2012). 492 493 Silencing these E2F target genes is required for senescence initiation.

Long non-coding RNAs (lncRNAs) (> 200 nt) can bind RNA, DNA or proteins to regulate 494 495 senescence. For example, ANRIL, a 30-40kb antisense transcript encoded by theCDKN2A locus, binds CBX7 to repress INK4b/ARF/INK4a expression (Kim et al., 2017). Likewise, the 496 lncRNA PANDA recruits PcG complexes, suppressing senescence-promoting genes (Kim et al., 497 498 2017), whereas silencing of GUARDIN, a p53-responsive lncRNA, causes senescence or apoptosis (Hu et al., 2018). By contrast, following OIS induced by RAF, the lncRNA VAD 499 preserves senescence by decreasing repressive H2A.Z deposition at INK promoters (Kim et al., 500 501 2017). Also, lncRNA UCA1 disrupts association of the RNA binding protein hnRNP A1 with p16^{INK4A}, but not p14^{ARF}, transcripts (Kim et al., 2017). In addition, non-coding RNA profiling,
with a focus on miRNAs, provides a senescence signature (Suh, 2018). Intriguingly, the miRNA
content of small extracellular vesicles released by senescent cells varies, evolving over time
(Terlecki-Zaniewicz et al., 2018).

506

• Immune-regulation and anti-apoptotic proteins

The search for senescent protein markers started in OIS. In addition to identifying known 507 cell cycle regulators, these studies identified DCR2 as a common marker of senescence (Collado 508 et al., 2005), later shown to characterize other types of senescence. DCR2 is a decoy death 509 receptor that protects senescent cells from immunity-mediated apoptosis, thus blocking immune 510 surveillance of senescent cells (Sagiv et al., 2013). Similarly, the natural killer (NK) cell 511 activating receptor (NKG2D) ligands MICA and ULBP2 increase upon replicative, OIS and 512 513 DNA damage-induced senescence (Krizhanovsky et al., 2008b; Sagiv et al., 2016). Cell surface markers are of special interest because they should allow quantification, isolation and single cell 514 515 transcriptional analysis of senescent cells extracted from tissues. However, DCR2 and NKG2D ligands are not conserved among species, making mouse/human comparisons not possible. 516 517 Recently, two additional upregulated cell surface markers, Notch1 in OIS and DPP4 in 518 replicative and OIS, were identified (Hoare et al., 2016). Both proteins have roles in regulating 519 the SASP. Furthermore, an oxidized form of membrane-bound vimentin was identified as a 520 senescence marker, which could be used to target these cells by the adaptive immune system 521 (Frescas et al., 2017). Finally, senescent cells are resistant to apoptosis, which can be mediated 522 by increased expression of anti-apoptotic BCL-2 family members (Yosef et al., 2016).

523

524 **4.** *In vivo* models to study cellular senescence

525

Several transgenic mice were developed to estimate $p16^{lnk4a}$ expression in vivo or ex vivo 526 527 using luciferase or fluorescent protein reporters. Measuring luciferase activity longitudinally revealed an increase in $p16^{INK4A}$ expression as mice age, as well as an age-dependent increase in 528 inter-animal variability, whereas isolation of fluorescent p16+ cells allowed phenotyping (Liu et 529 al., 2019; Ohtani et al., 2010). This approach allows the endogenous $p16^{INK4A}$ promoter to drive 530 signals, but causes p16 hemizygosity. Another mouse (p16-3MR) used a luciferase (rLUC), 531 monomeric Red Fluorescent Protein (mRFP) and Herpes simplex Virus-Thymidine Kinase 532 (HSV-TK) fusion protein driven by the $p16^{INK4A}$ promoter present on a bacterial artificial 533 chromosome, integrated into the mouse genome (Demaria et al., 2014). This approach allows 534 535 detection and killing of senescent cells, and does not perturb the endogenous CDKN2A locus. Finally, INK-ATTAC mice express a FKBP-Caspase 8 fusion-protein and eGFP reporter to kill 536 and detect p16⁺ cells, driven from a 1.6 kB fragment of the $p16^{INK4A}$ promoter (Baker et al., 537 538 2011; Folgueras et al., 2018). Despite differences between these mice, they have been valuable in showing that senescent cells contribute to a wide range of age-related pathologies (Calcinotto 539 et al., 2019). Mice expressing luciferase and eGFP from $p21^{WAF1/Cip1}$ promoter are also available 540 541 (Ohtani et al., 2007).

542

• Murine models of accelerated senescence and aging

Several progeric mouse models have been developed to mimic human progeric syndromes, including DNA repair and genome integrity deficiencies (Folgueras et al., 2018). Progeroid mice with accelerated senescence and shortened lifespans are also useful for assessing the role of cellular senescence in aging and testing senotherapeutics. For example, the demonstration that ablation of $p16^{INK4A}$ expressing cells slowed age-related declines in progeroid

BubR1^{H/H} mice provided the first evidence that senescent cells are causal for certain aging 548 phenotypes (Baker et al., 2011; Folgueras et al., 2018). BUBR1 is important for the mitotic 549 spindle assembly checkpoint (Guo et al., 2012). BubR1^{H/H} mice, which express 10% of the 550 normal level of BUBR1, have increased aneuploidy, several progeroid features and increased 551 expression of senescence markers in several organs (Folgueras AR et al., 2018). Selective 552 removal of p16^{INK4A+} cells from BubR1^{H/H-}INK-ATTAC mice delays kyphosis, cataracts and 553 muscle atrophy, but not cardiac arrhythmias and arterial wall stiffening, nor does it extend 554 lifespan (Baker et al., 2011; Folgueras et al., 2018). 555

Similarly, $Ercc1^{-/\Delta}$ progeroid mice, harboring a DNA repair defect, prematurely develop 556 multiple morbidities associated with age, driven in part by accelerated accumulation of senescent 557 cells in numerous tissues (Folgueras AR et al., 2018). Ercc1^{-/ Δ} mice (Folgueras AR et al., 2018) 558 559 express 5% of the normal level of the endonuclease ERCC1-XPF, important for nucleotide excision, interstrand crosslink and double-strand break repair. These mice develop numerous 560 age-related histopathologic lesions in virtually every tissue (Folgueras AR et al., 2018), and 561 562 accumulate oxidative DNA damage faster than wild-type mice (Wang et al., 2012). Treatment of $Ercc1^{-/\Delta}$ mice with senolytic drugs reduces senescence markers and extends health span 563 (Fuhrmann-Stroissnigg et al., 2017; Yousefzadeh et al., 2018; Zhu et al., 2015). Cross-breeding 564 of these models with the $p16^{INK4A}$ reporter transgenes permits monitoring senescent cell burden 565 longitudinally in live animals (Robinson et al., 2018; Yousefzadeh et al., 2018). 566

567 Hutchinson-Gilford Progeria Syndrome (HGPS) is a segmental or tissue-specific 568 progeria, caused by mutations that compromise lamin A processing (Cau et al., 2014). Mice 569 with altered or deleted LMNA develop HGPS-like phenotypes. They also accumulate senescent 570 cells, as determined by SA-β-gal staining and mRNA levels of senescence markers, in skeletal muscle and heart, consistent with sites of age-related pathology and disease (Folgueras AR et al.,
2018). Similarly, in a mouse model of HGPS that recapitulates the pathogenic LMN splicing
mutation, *Lmna*^{G609G/G609G} mice, senescence in the liver and kidney was observed (Osorio et al.,
2011). However, senescent cells have not yet been shown to be causative for HGPS pathology.

A mouse model of trichothiodystrophy (TTD) (Andressoo et al., 2006), caused by a specific mutation in the *Xpd* gene, also indicated a role for senescent cells in premature aging. Here the role of senescence in driving aging in the *Xpd*^{TTD/TTD} was clearly documented by the fact that treatment with a D-retro inverso (DRI)-isoform peptide of FOXO4 able to disrupt FOXO4 interaction with p53. Treatment with the FOXO4-DRI peptide reduced lethargy in *Xpd*^{TTD/TTD} mice and improved fur density, running wheel activity, and physical responses to stimuli (Baar et al., 2017).

Loss of Cu/Zn-superoxide dismutase (*Sod1*) in mice accelerates aging (Zhang et al., 2017). *Sod1*^{-/-} mice show increased oxidative DNA damage, senescence ($p16^{INK4A}$, $p21^{WAF1/Cip1}$), SASP factors (*Il1β*, *Il6*), SA-βgal⁺ cells and age-associated pathology in kidneys (Zhang et al., 2017). To date, senescence has not been demonstrated to drive pathology in *Sod1*^{-/-} mice.

Deletion of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. These mice have been shown to experience chronic, progressive low-grade inflammation which contributes to a wide spectrum of ageing phenotypes and early mortality (however, in contrast to some of the widely used progeria mouse models these mice have a maximum lifespan of approximately 20 months). Furthermore, these mice show increased incidence of senescent cells in multiple tissues (Jurk et al., 2014).

592 Finally, the selective inbreeding of AKR/J mice resulted in numerous senescence-accelerated 593 mouse (SAMP) strains including SAMP1-3 and SAMP6-11 (Takeda et al., 1997). Although these mice have increased senescence and thus can be used for testing senotherapeutics, it remains unclear which mutant genes drive senescence in these strains.

- 596
- 597

5. Identification of cellular senescence *in vivo*

598

• A simplified algorithm for detecting senescent cells in situ

In vivo, senescent cells reside in complex tissues. Their impact on tissue function can be local or global due to the SASP (Xu et al., 2018). To understand how senescence affects tissue function, tissue remodeling and aging, we need tools to identify senescent cells in tissues.

Single cell analyses can be performed on most tissues. Common techniques include immunostaining, in-situ hybridization and multicolour (imaging) flow cytometry. Even higher numbers of markers can be assessed by mass cytometry (Cytometry by Time-Of-Flight, CYTOF) (Abdelaal et al., 2019). Although promising, limitations include loss of information about spatial associations and variable efficiency of isolation of different cell types, including senescent vs non-senescent cells. Therefore, microscopic imaging remains a preferred method for *in situ* senescence detection.

As mentioned, there is currently no single marker with absolute specificity for senescent cells. Marker specificity varies, depending on cell type, tissue, organismal developmental stage, species and other factors. However, some markers have more global/universal value/validity while others are related to specific senescence types. Therefore, we advise a multi-marker approach, encompassing/combining broader and more specific markers for more robust detection of senescent cells *in situ* (**Figure 3**).

• Challenges to detect senescent cells in humans

616 The role of senescence in human disease is clear from cellular studies, while *in vivo* evidence is only now catching up (Childs et al., 2015; He and Sharpless, 2017; Munoz-Espin and 617 Serrano, 2014). OIS, initially described in culture, was the first type of senescence validated in 618 619 humans (Serrano et al., 1997). OIS or senescence induced by loss of a tumor suppressor was verified in vivo in human preneoplastic lesions (Collado et al., 2005; Gorgoulis and Halazonetis, 620 2010; Kuilman and Peeper, 2009) and primary or treated neoplasias (Haugstetter et al., 2010). 621 Later reports on the diverse activities of the senescence secretome (see "Secretion") led to the 622 recognition of its pro-tumorigenic properties, establishing what is now accepted as the dual role 623 624 of senescence in carcinogenesis (Lee and Schmitt, 2019). Evidence linking senescence to other common age-associated human diseases has recently emerged. These diseases include 625 neurodegenerative disorders, glaucoma, cataract, atherosclerosis/cardiovascular disease, 626 diabetes, osteoarthritis, pulmonary, and renal and liver fibrosis (Childs et al., 2015; He and 627 Sharpless, 2017; Munoz-Espin and Serrano, 2014) (Suppl Table 2). 628

In most studies, senescence is assessed in *ex vivo* cultures or fresh samples by SA- β -gal 629 630 staining or indirect markers in formalin-fixed tissues (Haugstetter et al., 2010; He and Sharpless, 2017; Kuilman and Peeper, 2009; Munoz-Espin and Serrano, 2014; Serrano et al., 1997). Since 631 632 SA- β -gal is not suitable for fixed tissues, analyzing senescence in human samples is challenging. The recently developed assay and reagent Sudan Black-B (SBB) interacts with lipofuscin, 633 another hallmark of senescent cells (Georgakopoulou et al., 2013). Lipofuscin is preserved in 634 635 fixed material (Georgakopoulou et al., 2013) and resilient, as it was isolated from a 210,000 year old human fossil (Harvati et al., 2019; Myrianthopoulos et al., 2019). The test reagent is 636 amenable to immunohistochemistry (Evangelou et al., 2017), and identified senescent Hodgkin 637 638 and Reed-Sternberg (HRS) cells in Hodgkin lymphomas (cHL), where they predicted poor

prognosis (Myrianthopoulos et al., 2019). These cells are giant in size, with a large occasionally multilobular nucleus - indication of an abortive cell cycle -, increased secretory activities, embedded within an inflammatory milieu, a histological pattern strongly reflecting features of the senescence phenotype (Kuppers et al., 2012) (**Figure 2**). Another method for identifying and quantifying senescent cells *in vivo* is SA-β-gal staining combined with ImageStream X analysis (Biran et al., 2017).

Despite promising results that each marker provides, no marker is completely senescence-specific (Sharpless and Sherr, 2015) (Sharpless and Sherr, 2015). We recommend combining cytoplasmic (e.g., SA-β-gal, lipofuscin), nuclear (e.g., $p16^{INK4A}$, $p21^{WAF1/Cip1}$, Ki67) and context/cell type-specific markers (Childs et al., 2015) (**Figure 3**).

649

650 **6.** Conclusions, open questions and perspectives

From the first description of cellular senescence by Hayflick and colleagues almost 60 years ago, significant progress has been made in understanding the characteristics and functions of senescent cells. A limitation, particularly for studying biospecimens, remains the absence of specific markers. To overcome this obstacle, we propose a multi-marker approach (**Figure 3**). This strategy could also be used to evaluate the efficacy of senolysis, an emerging therapeutic approach recently entered clinical trials for treatment of various age-related pathologies (Myrianthopoulos et al., 2019).

658 Conceptually, senescence can be considered a non-linear, multivariable [F(x,y)=z]659 function where the dependent variable (outcome) z depends on the independent variables x 660 (stimulus) and y (environment). The non-linear processing is dictated by dynamic genetic and 661 epigenetic processes that can lead to reprogramming cycles until a steady-state is achieved. At 662 first glance, the outcomes appear to be cell cycle withdrawal and secretion of bioactive molecules. However, recent evidence suggest that the cell cycle arrest is not always a necessary 663 outcome, as post-mitotic cells, already unable to proliferate, can assume senescence-like 664 features, and under certain conditions senescent cells can re-enter the cell cycle. The SASP 665 appears a common senescence-associated feature, but it is highly heterogeneous. Thus, to 666 understand the pleiotropic phenotypes of senescent cells, a shift from traditional reductionism to 667 more systematic, multi-parametric approaches is needed. The development of sophisticated high 668 throughput methods and machine learning tools that can handle multi-omics data will help 669 achieve this goal (Vougas et al., 2019). Although "old and new" have pros and cons, we can 670 combine the best to achieve a "de profundis" analysis of senescent phenotypes. This approach 671 will likely unveil more specific senescence-associated signatures to address important 672 unanswered questions: What causes and regulates the SASP? How do genetic and epigenetic 673 determinants interact with triggering stimuli and cellular microenvironments? Which genomic 674 repair systems act in different senescence scenarios? What causes cells to evade the growth 675 arrest, and what phenotypes do 'escaped' senescent cells acquire? Answers to these and other 676 questions will help develop specific panels of markers for each senescence subtype (step 3 in the 677 678 workflow) and guide the evolving field of senotherapy (van Deursen, 2019), achieving the best outcome within the spirit of precision medicine. 679

680

681

682 CONFLICT OF INTEREST

683 The authors declare conflicts of interest related to this work.

684

686 ACKNOWLEDGMENTS

We would like to thank Nikolaos Kastrinakis, Panagiotis VS Vasileiou, Gkikas Magiorkinis,
Eleni Fitsiou and Michela Borghesan for their valuable support to this work. We apologize in
advance that for reason of space we have omitted the citations of relevant papers and reviews.

690

691

692 **FIGURE LEGENDS**

Figure 1. Cell cycle withdrawal in senescent, quiescent and terminally differentiated cells. 693 Depicted are differences in cell cycle arrest reversibility, activated signals (see text), secretory 694 functions and macromolecular damage that allow discrimination between these cellular states. 695 696 Macromolecular damage is a common feature of senescence. Secretion is another common feature of senescence and is context-dependent on differentiation state. Cell cycle arrest is 697 generally considered irreversible during senescence and terminal differentiation, although cell 698 699 cycle re-entry can occur under certain conditions. Green color: active/present, red color: inactive/absent. 700

Figure 2. The hallmarks of the senescence phenotype. Senescent cells exhibit four interdependent (shown by the dashed thin outer cycle and bidirectional arrows) hallmarks: 1) cell cycle withdrawal, 2) macromolecular damage, 3) Secretory Phenotype (SASP) and 4) deregulated metabolism, as depicted in the outer circle (see text). The inner cycle includes distinct morphological and functional features that reflect the proposed hallmarks. Several of these traits are strongly evident in the malignant entity, the classical Hodgkin Lymphoma (see section 5). Multilobular nuclei commonly present in (senescent) HRS cells, as a result of S/M phase dissociation, are linked to cell cycle withdrawal (p21^{WAF1/Cip1} immunopositivity-left image) while the inflammatory milieu is associated with SASP. Lipofouscin accumulation assessed with GL13 staining (brown cytoplasmic staining-right image) reflects macromolecular damage leading to increased granularity (left centered image). Altered/increased gene expression (right centered image) that is also accompanied by increased transcriptional "noise" also confers to macromolecular damage (Schmoller and Skotheim, 2015; Ogrodnik et al., 2019).

Figure 3. A multi-marker, three-step workflow for detecting senescent cells. The first step of the proposed workflow includes assessing senescence-associated beta-galactosidasde (SA- β gal) activity and/or lipofuscin accumulation (SBB or GL13 staining). Secondly, co-staining with other markers frequently observed in (p16^{INK4A}, p21^{WAF1/Cip1}) or absent from (proliferation markers, Lamin B1) senescent cells. In the third step, identification of factors anticipated to be altered in specific senescence contexts should be identified. This multi-marker workflow can lead to the recognition of senescent cells with the highest accuracy.

722 **REFERENCES**

- Abdelaal, T., Hollt, T., van Unen, V., Lelieveldt, B.P.F., Koning, F., Reinders, M.J.T., and
- Mahfouz, A. (2019). CyTOFmerge: Integrating mass cytometry data across multiple panels.Bioinformatics.
- Acosta, J.C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J.P., Athineos, D.,
- 727 Kang, T.W., Lasitschka, F., Andrulis, M., et al. (2013). A complex secretory program
- orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15, 978-990.
- Ademowo, O.S., Dias, H.K.I., Burton, D.G.A., and Griffiths, H.R. (2017). Lipid (per) oxidation
- in mitochondria: an emerging target in the ageing process? Biogerontology *18*, 859-879.
- Andressoo, J.O., Mitchell, J.R., de Wit, J., Hoogstraten, D., Volker, M., Toussaint, W.,
- 732 Speksnijder, E., Beems, R.B., van Steeg, H., Jans, J., et al. (2006). An Xpd mouse model for the
- combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition
- and segmental progeria. Cancer Cell *10*, 121-132.
- Baar, M.P., Brandt, R.M.C., Putavet, D.A., Klein, J.D.D., Derks, K.W.J., Bourgeois, B.R.M.,
- 736 Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D.A., et al. (2017). Targeted Apoptosis of
- 737 Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell
- 738 *169*, 132-147 e116.
- 739 Baker, D.J., Wijshake, T., Tchkonia, T., LeBrasseur, N.K., Childs, B.G., van de Sluis, B.,
- Kirkland, J.L., and van Deursen, J.M. (2011). Clearance of p16Ink4a-positive senescent cells
 delays ageing-associated disorders. Nature 479, 232-236.
- delays ageing-associated disorders. Nature *479*, 232-236.
 Beausejour, C.M., Krtolica, A., Galimi, F., Narita, M., Lowe, S.W., Yaswen, P., and Campisi, J.
- 742 Beausejour, C.M., Kitolica, A., Gallill, F., Narita, M., Lowe, S. W., Faswell, P., and Campisi, J.
- (2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo j 22,
 4212-4222.
- Benhamed, M., Herbig, U., Ye, T., Dejean, A., and Bischof, O. (2012). Senescence is an
- endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. NatCell Biol *14*, 266-275.
- 748 Bhaumik, D., Scott, G.K., Schokrpur, S., Patil, C.K., Orjalo, A.V., Rodier, F., Lithgow, G.J., and
- 749 Campisi, J. (2009). MicroRNAs miR-146a/b negatively modulate the senescence-associated
- inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 1, 402-411.
- Biran, A., Perelmutter, M., Gal, H., Burton, D.G., Ovadya, Y., Vadai, E., Geiger, T., and
- Krizhanovsky, V. (2015). Senescent cells communicate via intercellular protein transfer. GenesDev 29, 791-802.
- Biran, A., Zada, L., Abou Karam, P., Vadai, E., Roitman, L., Ovadya, Y., Porat, Z., and
- Krizhanovsky, V. (2017). Quantitative identification of senescent cells in aging and disease.Aging Cell *16*, 661-671.
- Birch, J., and Passos, J.F. (2017). Targeting the SASP to combat ageing: Mitochondria as
- possible intracellular allies? BioEssays *39*.
- Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay,
- J.W., Lichtsteiner, S., and Wright, W.E. (1998). Extension of life-span by introduction oftelomerase into normal human cells. Science 279, 349-352.
- 762 Borgdorff, V., Lleonart, M.E., Bishop, C.L., Fessart, D., Bergin, A.H., Overhoff, M.G., and
- 763 Beach, D.H. (2010). Multiple microRNAs rescue from Ras-induced senescence by inhibiting
- 764 p21(Waf1/Cip1). Oncogene 29, 2262-2271.
- Boumendil, C., Hari, P., Olsen, K.C.F., Acosta, J.C., and Bickmore, W.A. (2019). Nuclear pore
- density controls heterochromatin reorganization during senescence. Genes Dev 33, 144-149.

- 767 Burns, D.M., D'Ambrogio, A., Nottrott, S., and Richter, J.D. (2011). CPEB and two poly(A)
- polymerases control miR-122 stability and p53 mRNA translation. Nature 473, 105-108.
- 769 Calcinotto, A., Kohli, J., Zagato, E., Pellegrini, L., Demaria, M., and Alimonti, A. (2019).
- 770 Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 99, 1047-1078.
- 771 Casella, G., Munk, R., Kim, K.M., Piao, Y., De, S., Abdelmohsen, K., and Gorospe, M. (2019).
- Transcriptome signature of cellular senescence. Nucleic Acids Res 47, 7294-7305.
- Chan, A.S.L., and Narita, M. (2019). Short-term gain, long-term pain: the senescence life cycle
- and cancer. Genes Dev *33*, 127-143.
- 775 Chandra, T., Ewels, P.A., Schoenfelder, S., Furlan-Magaril, M., Wingett, S.W., Kirschner, K.,
- Thuret, J.Y., Andrews, S., Fraser, P., and Reik, W. (2015). Global reorganization of the nuclear
 landscape in senescent cells. Cell Rep *10*, 471-483.
- Cheng, L.Q., Zhang, Z.Q., Chen, H.Z., and Liu, D.P. (2017). Epigenetic regulation in cell
 senescence. J Mol Med (Berl) *95*, 1257-1268.
- 780 Childs, B.G., Durik, M., Baker, D.J., and van Deursen, J.M. (2015). Cellular senescence in aging
- and age-related disease: from mechanisms to therapy. Nat Med 21, 1424-1435.
- 782 Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A.J., Barradas, M., Benguria, A.,
- 783 Zaballos, A., Flores, J.M., Barbacid, M., *et al.* (2005). Tumour biology: senescence in
- premalignant tumours. Nature *436*, 642.
- Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated
 secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol *5*, 99-118.
- 787 Correia-Melo, C., Marques, F.D.M., Anderson, R., Hewitt, G., Hewitt, R., Cole, J., Carroll,
- 788 B.M., Miwa, S., Birch, J., Merz, A., *et al.* (2016). Mitochondria are required for pro-ageing
- features of the senescent phenotype. The EMBO journal *35*, 724-742.
- 790 Correia- Melo, C., Marques, F.D.M., Anderson, R., Hewitt, G., Hewitt, R., Cole, J., Carroll,
- B.M., Miwa, S., Birch, J., Merz, A., *et al.* (2016). Mitochondria are required for pro- ageing
 features of the senescent phenotype. The EMBO Journal *35*, 724.
- 793 Criscione, S.W., Teo, Y.V., and Neretti, N. (2016). The Chromatin Landscape of Cellular
- Senescence. Trends Genet 32, 751-761.
- 795 Cruickshanks, H.A., McBryan, T., Nelson, D.M., Vanderkraats, N.D., Shah, P.P., van Tuyn, J.,
- Singh Rai, T., Brock, C., Donahue, G., Dunican, D.S., *et al.* (2013). Senescent cells harbour
 features of the cancer epigenome. Nat Cell Biol *15*, 1495-1506.
- d'Adda di Fagagna, F. (2008). Living on a break: cellular senescence as a DNA-damage
- response. Nat Rev Cancer 8, 512-522.
- BOD Davalos, A.R., Kawahara, M., Malhotra, G.K., Schaum, N., Huang, J., Ved, U., Beausejour,
- 801 C.M., Coppe, J.P., Rodier, F., and Campisi, J. (2013). p53-dependent release of Alarmin
- HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201, 613-629.
- BO3 De Cecco, M., Criscione, S.W., Peckham, E.J., Hillenmeyer, S., Hamm, E.A., Manivannan, J.,
- Peterson, A.L., Kreiling, J.A., Neretti, N., and Sedivy, J.M. (2013). Genomes of replicatively
- senescent cells undergo global epigenetic changes leading to gene silencing and activation of
 transposable elements. Aging Cell *12*, 247-256.
- B07 De Cecco, M., Ito, T., Petrashen, A.P., Elias, A.E., Skvir, N.J., Criscione, S.W., Caligiana, A.,
- Brocculi, G., Adney, E.M., Boeke, J.D., *et al.* (2019). L1 drives IFN in senescent cells and
- promotes age-associated inflammation. Nature 566, 73-78.
- de Lange, T. (2018). Shelterin-Mediated Telomere Protection. Annu Rev Genet 52, 223-247.

- Demaria, M., Ohtani, N., Youssef, S.A., Rodier, F., Toussaint, W., Mitchell, J.R., Laberge, R.M.,
- Vijg, J., Van Steeg, H., Dolle, M.E., *et al.* (2014). An essential role for senescent cells in optimal
- 813 wound healing through secretion of PDGF-AA. Dev Cell *31*, 722-733.
- 814 Deschenes-Simard, X., Gaumont-Leclerc, M.F., Bourdeau, V., Lessard, F., Moiseeva, O., Forest,
- 815 V., Igelmann, S., Mallette, F.A., Saba-El-Leil, M.K., Meloche, S., et al. (2013). Tumor
- suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation.
- 817 Genes Dev 27, 900-915.
- Di Micco, R., Sulli, G., Dobreva, M., Liontos, M., Botrugno, O.A., Gargiulo, G., dal Zuffo, R.,
- 819 Matti, V., d'Ario, G., Montani, E., et al. (2011). Interplay between oncogene-induced DNA
- damage response and heterochromatin in senescence and cancer. Nat Cell Biol 13, 292-302.
- Di Mitri, D., Toso, A., Chen, J.J., Sarti, M., Pinton, S., Jost, T.R., D'Antuono, R., Montani, E.,
- Garcia-Escudero, R., Guccini, I., *et al.* (2014). Tumour-infiltrating Gr-1+ myeloid cells
 antagonize senescence in cancer. Nature *515*, 134-137.
- Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens,
- M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells
- 826 in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367.
- Dou, Z., Xu, C., Donahue, G., Shimi, T., Pan, J.A., Zhu, J., Ivanov, A., Capell, B.C., Drake,
- A.M., Shah, P.P., *et al.* (2015). Autophagy mediates degradation of nuclear lamina. Nature 527, 105-109.
- 830 Eggert, T., Wolter, K., Ji, J., Ma, C., Yevsa, T., Klotz, S., Medina-Echeverz, J., Longerich, T.,
- 831 Forgues, M., Reisinger, F., et al. (2016). Distinct Functions of Senescence-Associated Immune
- Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell 30, 533-547.
- 833 Eisner, V., Picard, M., and Hajnoczky, G. (2018). Mitochondrial dynamics in adaptive and
- maladaptive cellular stress responses. Nat Cell Biol 20, 755-765.
- 835 Evangelou, K., Lougiakis, N., Rizou, S.V., Kotsinas, A., Kletsas, D., Munoz-Espin, D.,
- 836 Kastrinakis, N.G., Pouli, N., Marakos, P., Townsend, P., et al. (2017). Robust, universal
- biomarker assay to detect senescent cells in biological specimens. Aging Cell 16, 192-197.
- 838 Folgueras, A.R., Freitas-Rodriguez, S., Velasco, G., and Lopez-Otin, C. (2018). Mouse Models
- to Disentangle the Hallmarks of Human Aging. Circ Res 123, 905-924.
- 840 Franceschi, C., and Campisi, J. (2014). Chronic inflammation (inflammaging) and its potential
- contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69 Suppl 1, S4-9.
- 842 Frescas, D., Roux, C.M., Aygun-Sunar, S., Gleiberman, A.S., Krasnov, P., Kurnasov, O.V.,
- 843 Strom, E., Virtuoso, L.P., Wrobel, M., Osterman, A.L., et al. (2017). Senescent cells expose and
- secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive
- antibody. Proc Natl Acad Sci U S A *114*, E1668-E1677.
- Freund, A., Laberge, R.M., Demaria, M., and Campisi, J. (2012). Lamin B1 loss is a senescenceassociated biomarker. Mol Biol Cell 23, 2066-2075.
- Freund, A., Patil, C.K., and Campisi, J. (2011). p38MAPK is a novel DNA damage response-
- independent regulator of the senescence-associated secretory phenotype. EMBO J *30*, 1536-1548.
- Fuhrmann-Stroissnigg, H., Ling, Y.Y., Zhao, J., McGowan, S.J., Zhu, Y., Brooks, R.W., Grassi,
- D., Gregg, S.Q., Stripay, J.L., Dorronsoro, A., et al. (2017). Identification of HSP90 inhibitors as
- a novel class of senolytics. Nat Commun 8, 422.
- Funayama, R., Saito, M., Tanobe, H., and Ishikawa, F. (2006). Loss of linker histone H1 in
- cellular senescence. J Cell Biol 175, 869-880.

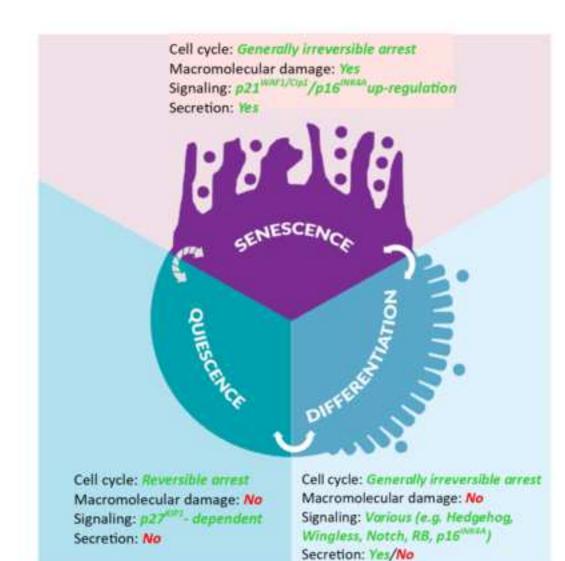
- Galanos, P., Vougas, K., Walter, D., Polyzos, A., Maya-Mendoza, A., Haagensen, E.J., Kokkalis,
- A., Roumelioti, F.M., Gagos, S., Tzetis, M., et al. (2016). Chronic p53-independent p21
- expression causes genomic instability by deregulating replication licensing. Nat Cell Biol *18*,
 777-789.
- 860 Georgakopoulou, E.A., Tsimaratou, K., Evangelou, K., Fernandez Marcos, P.J., Zoumpourlis,
- V., Trougakos, I.P., Kletsas, D., Bartek, J., Serrano, M., and Gorgoulis, V.G. (2013). Specific
- 862 lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A
- method applicable in cryo-preserved and archival tissues. Aging 5, 37-50.
- 864 Gorgoulis, V.G., and Halazonetis, T.D. (2010). Oncogene-induced senescence: the bright and
- dark side of the response. Curr Opin Cell Biol 22, 816-827.
- Gorgoulis, V.G., Pefani, D.E., Pateras, I.S., and Trougakos, I.P. (2018). Integrating the DNA
- damage and protein stress responses during cancer development and treatment. J Pathol 246, 1240.
- Halazonetis, T.D., Gorgoulis, V.G., and Bartek, J. (2008). An oncogene-induced DNA damage model for cancer development. Science 310, 1352, 1355
- 870 model for cancer development. Science *319*, 1352-1355.
- 871 Harvati, K., Roding, C., Bosman, A.M., Karakostis, F.A., Grun, R., Stringer, C., Karkanas, P.,
- Thompson, N.C., Koutoulidis, V., Moulopoulos, L.A., *et al.* (2019). Apidima Cave fossils
- provide earliest evidence of Homo sapiens in Eurasia. Nature *571*, 500-504.
- Haugstetter, A.M., Loddenkemper, C., Lenze, D., Grone, J., Standfuss, C., Petersen, I., Dorken,
- B., and Schmitt, C.A. (2010). Cellular senescence predicts treatment outcome in metastasised
- colorectal cancer. Br J Cancer *103*, 505-509.
- Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp
 Cell Res 25, 585-621.
- He, S., and Sharpless, N.E. (2017). Senescence in Health and Disease. Cell *169*, 1000-1011.
- Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death Differ *17*, 193199.
- Hernandez-Segura, A., de Jong, T.V., Melov, S., Guryev, V., Campisi, J., and Demaria, M.
- (2017). Unmasking Transcriptional Heterogeneity in Senescent Cells. Current biology : CB 27,
 2652-2660.e2654.
- Hernandez-Segura, A., Nehme, J., and Demaria, M. (2018). Hallmarks of Cellular Senescence.
 Trends Cell Biol.
- Hoare, M., Ito, Y., Kang, T.W., Weekes, M.P., Matheson, N.J., Patten, D.A., Shetty, S., Parry,
- A.J., Menon, S., Salama, R., *et al.* (2016). NOTCH1 mediates a switch between two distinct
- secretomes during senescence. Nat Cell Biol *18*, 979-992.
- Hohn, A., Weber, D., Jung, T., Ott, C., Hugo, M., Kochlik, B., Kehm, R., Konig, J., Grune, T.,
- and Castro, J.P. (2017). Happily (n)ever after: Aging in the context of oxidative stress,
- proteostasis loss and cellular senescence. Redox Biol 11, 482-501.
- Hu, W., Chan, C.S., Wu, R., Zhang, C., Sun, Y., Song, J.S., Tang, L.H., Levine, A.J., and Feng,
- Z. (2010). Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell *38*,
 689-699.
- 896 Hu, W.L., Jin, L., Xu, A., Wang, Y.F., Thorne, R.F., Zhang, X.D., and Wu, M. (2018).
- 607 GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat
- 898 Cell Biol 20, 492-502.
- 899 Ito, Y., Hoare, M., and Narita, M. (2017). Spatial and Temporal Control of Senescence. Trends
- 900 Cell Biol 27, 820-832.

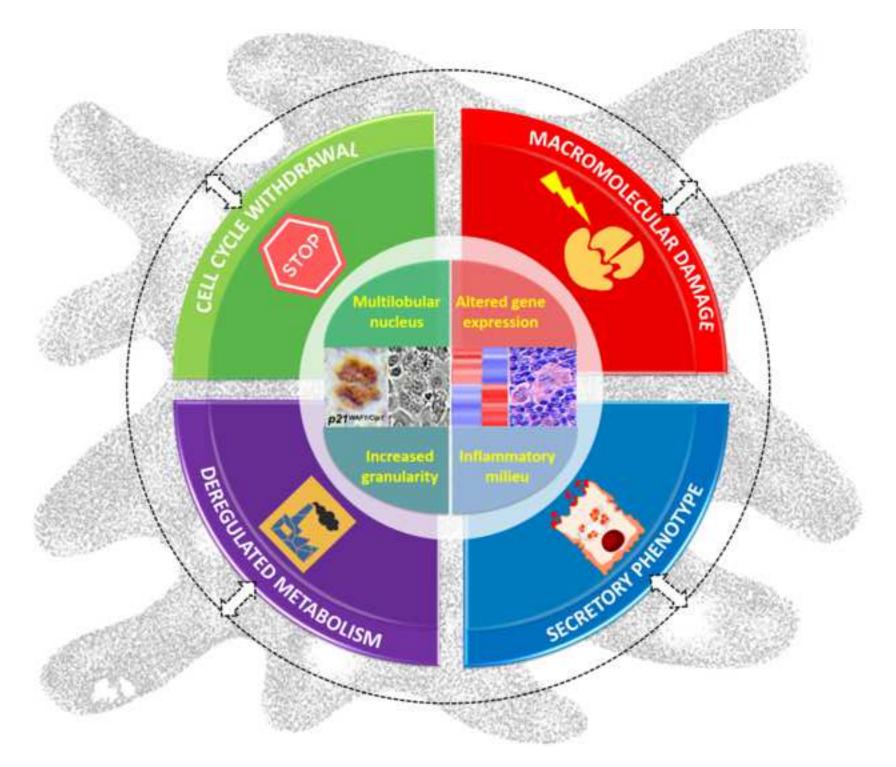
- 901 Ivanov, A., Pawlikowski, J., Manoharan, I., van Tuyn, J., Nelson, D.M., Rai, T.S., Shah, P.P.,
- Hewitt, G., Korolchuk, V.I., Passos, J.F., *et al.* (2013). Lysosome-mediated processing of
 chromatin in senescence. J Cell Biol 202, 129-143.
- James, E.L., Michalek, R.D., Pitiyage, G.N., de Castro, A.M., Vignola, K.S., Jones, J., Mohney,
- 905 R.P., Karoly, E.D., Prime, S.S., and Parkinson, E.K. (2015). Senescent Human Fibroblasts Show
- 906 Increased Glycolysis and Redox Homeostasis with Extracellular Metabolomes That Overlap with
- Those of Irreparable DNA Damage, Aging, and Disease. Journal of Proteome Research *14*, 1854, 1871
- 908 1854-1871.
- Jiang, P., Du, W., Mancuso, A., Wellen, K.E., and Yang, X. (2013). Reciprocal regulation of p53
- and malic enzymes modulates metabolism and senescence. Nature *493*, 689-693.
- 911 Jurk, D., Wang, C., Miwa, S., Maddick, M., Korolchuk, V., Tsolou, A., Gonos, E.S.,
- 912 Thrasivoulou, C., Jill Saffrey, M., Cameron, K., *et al.* (2012). Postmitotic neurons develop a
- p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell *11*,996-1004.
- Jurk, D., Wilson, C., Passos, J.F., Oakley, F., Correia-Melo, C., Greaves, L., Saretzki, G., Fox,
- 916 C., Lawless, C., Anderson, R., *et al.* (2014). Chronic inflammation induces telomere dysfunction 917 and accelerates ageing in mice. Nat Commun 2, 4172.
- 918 Kang, C., Xu, Q., Martin, T.D., Li, M.Z., Demaria, M., Aron, L., Lu, T., Yankner, B.A.,
- 919 Campisi, J., and Elledge, S.J. (2015). The DNA damage response induces inflammation and
- senescence by inhibiting autophagy of GATA4. Science *349*, aaa5612.
- 921 Kaplon, J., Zheng, L., Meissl, K., Chaneton, B., Selivanov, V.A., Mackay, G., van der Burg,
- 922 S.H., Verdegaal, E.M.E., Cascante, M., Shlomi, T., et al. (2013). A key role for mitochondrial
- gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109-112.
- 924 Karisch, R., Fernandez, M., Taylor, P., Virtanen, C., St-Germain, J.R., Jin, L.L., Harris, I.S.,
- Mori, J., Mak, T.W., Senis, Y.A., *et al.* (2011). Global proteomic assessment of the classical protein-tyrosine phosphatome and "Redoxome". Cell *146*, 826-840.
- 927 Kaushik, S., and Cuervo, A.M. (2015). Proteostasis and aging. Nat Med 21, 1406-1415.
- 928 Kennedy, A.L., McBryan, T., Enders, G.H., Johnson, F.B., Zhang, R., and Adams, P.D. (2010).
- Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form
- robust Senescence Associated Heterochromatin Foci. Cell Div 5, 16.
- 931 Kim, K.M., Noh, J.H., Bodogai, M., Martindale, J.L., Yang, X., Indig, F.E., Basu, S.K.,
- Ohnuma, K., Morimoto, C., Johnson, P.F., et al. (2017). Identification of senescent cell surface
- targetable protein DPP4. Genes Dev 31, 1529-1534.
- 934 Korolchuk, V.I., Miwa, S., Carroll, B., and von Zglinicki, T. (2017). Mitochondria in Cell
- 935 Senescence: Is Mitophagy the Weakest Link? EBioMedicine 21, 7-13.
- 936 Krizhanovsky, V., Xue, W., Zender, L., Yon, M., Hernando, E., and Lowe, S.W. (2008a).
- 1937 Implications of cellular senescence in tissue damage response, tumor suppression, and stem cell
- biology. Cold Spring Harb Symp Quant Biol 73, 513-522.
- 939 Krizhanovsky, V., Yon, M., Dickins, R.A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender,
- L., and Lowe, S.W. (2008b). Senescence of activated stellate cells limits liver fibrosis. Cell *134*, 657-667.
- 942 Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of senescence.
- 943 Genes Dev 24, 2463-2479.
- 944 Kuilman, T., and Peeper, D.S. (2009). Senescence-messaging secretome: SMS-ing cellular
- 945 stress. Nat Rev Cancer 9, 81-94.

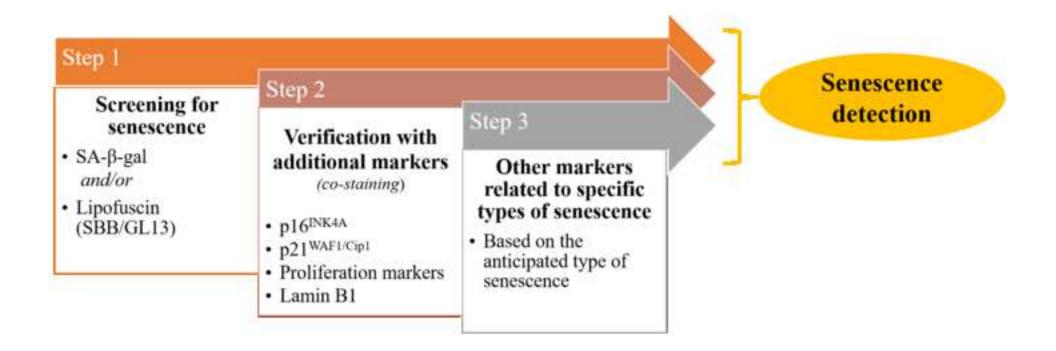
- 946 Kuppers, R., Engert, A., and Hansmann, M.L. (2012). Hodgkin lymphoma. J Clin Invest 122,
- 947 3439-3447.
- Lal, A., Kim, H.H., Abdelmohsen, K., Kuwano, Y., Pullmann, R., Jr., Srikantan, S.,
- Subrahmanyam, R., Martindale, J.L., Yang, X., Ahmed, F., *et al.* (2008). p16(INK4a) translation
 suppressed by miR-24. PLoS One *3*, e1864.
- Lee, S., and Schmitt, C.A. (2019). The dynamic nature of senescence in cancer. Nat Cell Biol *21*, 94-101.
- 953 Lessard, F., Igelmann, S., Trahan, C., Huot, G., Saint-Germain, E., Mignacca, L., Del Toro, N.,
- Lopes-Paciencia, S., Le Calve, B., Montero, M., et al. (2018). Senescence-associated ribosome
- biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat Cell Biol 20, 789-799.
- Li, T., and Chen, Z.J. (2018). The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med *215*, 1287-1299.
- Liu, J.Y., Souroullas, G.P., Diekman, B.O., Krishnamurthy, J., Hall, B.M., Sorrentino, J.A.,
- 960 Parker, J.S., Sessions, G.A., Gudkov, A.V., and Sharpless, N.E. (2019). Cells exhibiting strong
- p16 (INK4a) promoter activation in vivo display features of senescence. Proc Natl Acad Sci U SA.
- 963 Llanos, S., Megias, D., Blanco-Aparicio, C., Hernandez-Encinas, E., Rovira, M., Pietrocola, F.,
- and Serrano, M. (2019). Lysosomal trapping of palbociclib and its functional implications.
- 965 Oncogene.
- 966 Maeda, M., Scaglia, N., and Igal, R.A. (2009). Regulation of fatty acid synthesis and $\Delta 9$ -
- 967 desaturation in senescence of human fibroblasts. Life Sciences 84, 119-124.
- McHugh, D., and Gil, J. (2018). Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol *217*, 65-77.
- 970 Milanovic, M., Fan, D.N.Y., Belenki, D., Dabritz, J.H.M., Zhao, Z., Yu, Y., Dorr, J.R.,
- 971 Dimitrova, L., Lenze, D., Monteiro Barbosa, I.A., et al. (2018). Senescence-associated
- 972 reprogramming promotes cancer stemness. Nature *553*, 96-100.
- 973 Miwa, S., Jow, H., Baty, K., Johnson, A., Czapiewski, R., Saretzki, G., Treumann, A., and von
- 274 Zglinicki, T. (2014). Low abundance of the matrix arm of complex I in mitochondria predicts
- longevity in mice. Nat Commun 5, 3837.
- 976 Moiseeva, O., Bourdeau, V., Roux, A., Deschenes-Simard, X., and Ferbeyre, G. (2009).
- Mitochondrial Dysfunction Contributes to Oncogene-Induced Senescence. Mol Cell Biol 29,
 4495-4507.
- 979 Mosteiro, L., Pantoja, C., Alcazar, N., Marion, R.M., Chondronasiou, D., Rovira, M., Fernandez-
- 980 Marcos, P.J., Munoz-Martin, M., Blanco-Aparicio, C., Pastor, J., et al. (2016). Tissue damage
- and senescence provide critical signals for cellular reprogramming in vivo. Science 354.
- 982 Munoz-Espin, D., Canamero, M., Maraver, A., Gomez-Lopez, G., Contreras, J., Murillo-Cuesta,
- 983 S., Rodriguez-Baeza, A., Varela-Nieto, I., Ruberte, J., Collado, M., et al. (2013). Programmed
- cell senescence during mammalian embryonic development. Cell 155, 1104-1118.
- 985 Munoz-Espin, D., and Serrano, M. (2014). Cellular senescence: from physiology to pathology.
- 986 Nat Rev Mol Cell Biol 15, 482-496.
- 987 Myrianthopoulos, V., Evangelou, K., Vasileiou, P.V.S., Cooks, T., Vassilakopoulos, T.P.,
- Pangalis, G.A., Kouloukoussa, M., Kittas, C., Georgakilas, A.G., and Gorgoulis, V.G. (2019).
- 989 Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther *193*, 31-49.

- 990 Niwa-Kawakita, M., Ferhi, O., Soilihi, H., Le Bras, M., Lallemand-Breitenbach, V., and de The,
- H. (2017). PML is a ROS sensor activating p53 upon oxidative stress. J Exp Med 214, 31973206.
- Nystrom, T. (2005). Role of oxidative carbonylation in protein quality control and senescence.
 EMBO J 24, 1311-1317.
- 995 O'Sullivan, R.J., Kubicek, S., Schreiber, S.L., and Karlseder, J. (2010). Reduced histone
- biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct MolBiol *17*, 1218-1225.
- 998 Ogrodnik, M., Miwa, S., Tchkonia, T., Tiniakos, D., Wilson, C.L., Lahat, A., Day, C.P., Burt,
- A., Palmer, A., Anstee, Q.M., *et al.* (2017). Cellular senescence drives age-dependent hepatic
- 1000 steatosis. Nature Communications 8, 15691.
- 1001 Ogrodnik, M., Salmonowicz, H., and Gladyshev, V.N. (2019a). Integrating cellular senescence
- with the concept of damage accumulation in aging: Relevance for clearance of senescent cells.Aging Cell *18*, e12841.
- 1004 Ogrodnik, M., Zhu, Y., Langhi, L.G.P., Tchkonia, T., Krüger, P., Fielder, E., Victorelli, S.,
- Ruswhandi, R.A., Giorgadze, N., Pirtskhalava, T., *et al.* (2019b). Obesity-Induced Cellular
 Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metabolism.
- 1007 Ohtani, N., Imamura, Y., Yamakoshi, K., Hirota, F., Nakayama, R., Kubo, Y., Ishimaru, N.,
- 1008 Takahashi, A., Hirao, A., Shimizu, T., *et al.* (2007). Visualizing the dynamics of
- p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression in living animals. Proc Natl Acad
 Sci U S A *104*, 15034-15039.
- 1011 Ohtani, N., Yamakoshi, K., Takahashi, A., and Hara, E. (2010). Real-time in vivo imaging of
- p16gene expression: a new approach to study senescence stress signaling in living animals. CellDiv 5, 1.
- 1014 Osorio, F.G., Navarro, C.L., Cadinanos, J., Lopez-Mejia, I.C., Quiros, P.M., Bartoli, C., Rivera,
- 1015 J., Tazi, J., Guzman, G., Varela, I., *et al.* (2011). Splicing-directed therapy in a new mouse model 1016 of human accelerated aging. Sci Transl Med *3*, 106ra107.
- 1017 Overhoff, M.G., Garbe, J.C., Koh, J., Stampfer, M.R., Beach, D.H., and Bishop, C.L. (2014).
- 1018 Cellular senescence mediated by p16INK4A-coupled miRNA pathways. Nucleic Acids Res 42,
- 1019 1606-1618.
- 1020 Panda, A.C., Abdelmohsen, K., and Gorospe, M. (2017). SASP regulation by noncoding RNA.
- 1021 Mech Ageing Dev *168*, 37-43.
- 1022 Park, J.T., Lee, Y.S., Cho, K.A., and Park, S.C. (2018). Adjustment of the lysosomal-
- 1023 mitochondrial axis for control of cellular senescence. Ageing Res Rev 47, 176-182.
- 1024 Park, Y.-Y., Lee, S., Karbowski, M., Neutzner, A., Youle, R.J., and Cho, H. (2010). Loss of
- 1025 MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-
- related protein 1 and mitofusin 1. Journal of Cell Science 123, 619-626.
- 1027 Passos, J.F., Nelson, G., Wang, C., Richter, T., Simillion, C., Proctor, C.J., Miwa, S., Olijslagers,
- 1028 S., Hallinan, J., Wipat, A., *et al.* (2010). Feedback between p21 and reactive oxygen production
- 1029 is necessary for cell senescence. Mol Syst Biol 6, 347.
- 1030 Passos, J.F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., Wappler, I., Birkett, M.,
- 1031 Harold, G., Schaeuble, K., et al. (2007). Mitochondrial Dysfunction Accounts for the Stochastic
- 1032 Heterogeneity In Telomere-Dependent Senescence. PLoS Biology 5, e110.
- 1033 Patel, P.L., Suram, A., Mirani, N., Bischof, O., and Herbig, U. (2016). Derepression of hTERT
- 1034 gene expression promotes escape from oncogene-induced cellular senescence. Proc Natl Acad
- 1035 Sci U S A *113*, E5024-5033.

- 1036 Philipot, D., Guerit, D., Platano, D., Chuchana, P., Olivotto, E., Espinoza, F., Dorandeu, A., Pers,
- 1037 Y.M., Piette, J., Borzi, R.M., et al. (2014). p16INK4a and its regulator miR-24 link senescence
- and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. ArthritisRes Ther *16*, R58.
- 1040 Quijano, C., Cao, L., Fergusson, M.M., Romero, H., Liu, J., Gutkind, S., Rovira, I.I., Mohney,
- 1041 R.P., Karoly, E.D., and Finkel, T. (2012). Oncogene-induced senescence results in marked
- 1042 metabolic and bioenergetic alterations. Cell Cycle *11*, 1383-1392.
- 1043 Rai, T.S., Cole, J.J., Nelson, D.M., Dikovskaya, D., Faller, W.J., Vizioli, M.G., Hewitt, R.N.,
- 1044 Anannya, O., McBryan, T., Manoharan, I., et al. (2014). HIRA orchestrates a dynamic chromatin
- 1045 landscape in senescence and is required for suppression of neoplasia. Genes Dev 28, 2712-2725.
- 1046 Robbins, E., Levine, E.M., and Eagle, H. (1970). Morphologic changes accompanying
- senescence of cultured human diploid cells. J Exp Med 131, 1211-1222.
- 1048 Robinson, A.R., Yousefzadeh, M.J., Rozgaja, T.A., Wang, J., Li, X., Tilstra, J.S., Feldman, C.H.,
- 1049 Gregg, S.Q., Johnson, C.H., Skoda, E.M., et al. (2018). Spontaneous DNA damage to the nuclear
- 1050 genome promotes senescence, redox imbalance and aging. Redox Biol 17, 259-273.
- 1051 Rodier, F., and Campisi, J. (2011). Four faces of cellular senescence. J Cell Biol 192, 547-556.
- 1052 Rodier, F., Munoz, D.P., Teachenor, R., Chu, V., Le, O., Bhaumik, D., Coppe, J.P., Campeau,
- 1053 E., Beausejour, C.M., Kim, S.H., *et al.* (2011). DNA-SCARS: distinct nuclear structures that
- sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J CellSci *124*, 68-81.
- Sagiv, A., Biran, A., Yon, M., Simon, J., Lowe, S.W., and Krizhanovsky, V. (2013). Granule
 exocytosis mediates immune surveillance of senescent cells. Oncogene *32*, 1971-1977.
- 1058 Sagiv, A., Burton, D.G., Moshayev, Z., Vadai, E., Wensveen, F., Ben-Dor, S., Golani, O., Polic,
- 1059 B., and Krizhanovsky, V. (2016). NKG2D ligands mediate immunosurveillance of senescent
- 1060 cells. Aging (Albany NY) 8, 328-344.
- Salama, R., Sadaie, M., Hoare, M., and Narita, M. (2014). Cellular senescence and its effector
 programs. Genes Dev 28, 99-114.
- 1063 Saleh, T., Tyutyunyk-Massey, L., and Gewirtz, D.A. (2019). Tumor Cell Escape from Therapy-
- 1064 Induced Senescence as a Model of Disease Recurrence after Dormancy. Cancer Res 79, 1044-1065 1046.
- 1066 Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras
- provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593-602.
- 1069 Settembre, C., and Ballabio, A. (2014). Lysosomal adaptation: how the lysosome responds to 1070 external cues. Cold Spring Harb Perspect Biol *6*.
- 1071 Shah, P.P., Donahue, G., Otte, G.L., Capell, B.C., Nelson, D.M., Cao, K., Aggarwala, V.,
- 1072 Cruickshanks, H.A., Rai, T.S., McBryan, T., et al. (2013). Lamin B1 depletion in senescent cells
- triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27,
- 1074 1787-1799.
- 1075 Sharpless, N.E., and Sherr, C.J. (2015). Forging a signature of in vivo senescence. Nat Rev
- 1076 Cancer 15, 397-408.
- Shay, J.W., and Wright, W.E. (2019). Telomeres and telomerase: three decades of progress. Nat
 Rev Genet 20, 299-309.
- 1079 Shimi, T., Butin-Israeli, V., Adam, S.A., Hamanaka, R.B., Goldman, A.E., Lucas, C.A.,
- 1080 Shumaker, D.K., Kosak, S.T., Chandel, N.S., and Goldman, R.D. (2011). The role of nuclear
- 1081 lamin B1 in cell proliferation and senescence. Genes Dev 25, 2579-2593.


- Srivastava, S. (2017). The Mitochondrial Basis of Aging and Age-Related Disorders. Genes(Basel) 8.
- 1084 Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M.C., Di Giacomo, V., Yosef, R.,
- 1085 Pilpel, N., Krizhanovsky, V., Sharpe, J., *et al.* (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell *155*, 1119-1130.
- 1087 Swanson, E.C., Manning, B., Zhang, H., and Lawrence, J.B. (2013). Higher-order unfolding of
- satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol 203, 929942.
- 1090 Takahashi, A., Ohtani, N., Yamakoshi, K., Iida, S., Tahara, H., Nakayama, K., Nakayama, K.I.,
- Ide, T., Saya, H., and Hara, E. (2006). Mitogenic signalling and the p16INK4a-Rb pathway
 cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8, 1291-1297.
- 1093 Takasugi, M., Okada, R., Takahashi, A., Virya Chen, D., Watanabe, S., and Hara, E. (2017).
- 1094 Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation
- 1095 through EphA2. Nat Commun 8, 15729.
- 1096 Takeda, T., Hosokawa, M., and Higuchi, K. (1997). Senescence-accelerated mouse (SAM): a
- 1097 novel murine model of senescence. Exp Gerontol 32, 105-109.
- 1098 Terlecki-Zaniewicz, L., Lammermann, I., Latreille, J., Bobbili, M.R., Pils, V., Schosserer, M.,
- 1099 Weinmullner, R., Dellago, H., Skalicky, S., Pum, D., et al. (2018). Small extracellular vesicles


and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory


- 1101 phenotype. Aging (Albany NY) 10, 1103-1132.
- van Deursen, J.M. (2019). Senolytic therapies for healthy longevity. Science *364*, 636-637.
- 1103 Vernier, M., Bourdeau, V., Gaumont-Leclerc, M.F., Moiseeva, O., Begin, V., Saad, F., Mes-
- 1104 Masson, A.M., and Ferbeyre, G. (2011). Regulation of E2Fs and senescence by PML nuclear 1105 hodias. Gapas Day 25, 41, 50
- 1105 bodies. Genes Dev 25, 41-50.
- 1106 Vougas, K., Sakellaropoulos, T., Kotsinas, A., Foukas, G.P., Ntargaras, A., Koinis, F., Polyzos,
- 1107 A., Myrianthopoulos, V., Zhou, H., Narang, S., et al. (2019). Machine learning and data mining
- frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol Ther, 107395.
- 1110 Wang, J., Clauson, C.L., Robbins, P.D., Niedernhofer, L.J., and Wang, Y. (2012). The oxidative
- 1111 DNA lesions 8,5'-cyclopurines accumulate with aging in a tissue-specific manner. Aging Cell *11*, 1112 714-716.
- 1113 Wiley, C.D., Flynn, J.M., Morrissey, C., Lebofsky, R., Shuga, J., Dong, X., Unger, M.A., Vijg,
- 1114 J., Melov, S., and Campisi, J. (2017a). Analysis of individual cells identifies cell-to-cell
- 1115 variability following induction of cellular senescence. Aging Cell.
- 1116 Wiley, C.D., Flynn, J.M., Morrissey, C., Lebofsky, R., Shuga, J., Dong, X., Unger, M.A., Vijg,
- 1117 J., Melov, S., and Campisi, J. (2017b). Analysis of individual cells identifies cell-to-cell
- 1118 variability following induction of cellular senescence. Aging Cell 16, 1043-1050.
- 1119 Wiley, C.D., Velarde, M.C., Lecot, P., Liu, S., Sarnoski, E.A., Freund, A., Shirakawa, K., Lim,
- 1120 H.W., Davis, S.S., Ramanathan, A., *et al.* (2016). Mitochondrial Dysfunction Induces
- 1121 Senescence with a Distinct Secretory Phenotype. Cell Metab *23*, 303-314.
- 1122 Xiao, J., Lin, H., Luo, X., Luo, X., and Wang, Z. (2011). miR-605 joins p53 network to form a
- 1123 p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J *30*, 524-532.
- 1124 Xie, W., Kagiampakis, I., Pan, L., Zhang, Y.W., Murphy, L., Tao, Y., Kong, X., Kang, B., Xia,
- L., Carvalho, F.L.F., *et al.* (2018). DNA Methylation Patterns Separate Senescence from
- 1126 Transformation Potential and Indicate Cancer Risk. Cancer Cell 33, 309-321 e305.

- 1127 Xu, M., Pirtskhalava, T., Farr, J.N., Weigand, B.M., Palmer, A.K., Weivoda, M.M., Inman, C.L.,
- 1128 Ogrodnik, M.B., Hachfeld, C.M., Fraser, D.G., *et al.* (2018). Senolytics improve physical 1129 function and increase lifespan in old age. Nat Med *24*, 1246-1256.
- 1130 Xu, S., Wu, W., Huang, H., Huang, R., Xie, L., Su, A., Liu, S., Zheng, R., Yuan, Y., Zheng,
- 1131 H.L., et al. (2019). The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular
- senescence: Complement of the canonical p53/p21 pathway. Aging Cell 18, e12918.
- 1133 Yosef, R., Pilpel, N., Tokarsky-Amiel, R., Biran, A., Ovadya, Y., Cohen, S., Vadai, E., Dassa,
- 1134 L., Shahar, E., Condiotti, R., et al. (2016). Directed elimination of senescent cells by inhibition
- 1135 of BCL-W and BCL-XL. Nature communications 7, 11190.
- 1136 Yousefzadeh, M.J., Zhu, Y., McGowan, S.J., Angelini, L., Fuhrmann-Stroissnigg, H., Xu, M.,
- Ling, Y.Y., Melos, K.I., Pirtskhalava, T., Inman, C.L., *et al.* (2018). Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine *36*, 18-28.
- 1139 Zhang, Y., Unnikrishnan, A., Deepa, S.S., Liu, Y., Li, Y., Ikeno, Y., Sosnowska, D., Van
- 1140 Remmen, H., and Richardson, A. (2017). A new role for oxidative stress in aging: The
- 1141 accelerated aging phenotype in Sod1(-/)(-) mice is correlated to increased cellular senescence.
- 1142 Redox Biol 11, 30-37.
- 1143 Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A.C., Ding, H., Giorgadze, N., Palmer, A.K.,
- 1144 Ikeno, Y., Hubbard, G.B., Lenburg, M., *et al.* (2015). The Achilles' heel of senescent cells: from 1145 transcriptome to senolytic drugs. Aging Cell *14*, 644-658.
- 1146 Zirkel, A., Nikolic, M., Sofiadis, K., Mallm, J.P., Brackley, C.A., Gothe, H., Drechsel, O.,
- 1147 Becker, C., Altmuller, J., Josipovic, N., et al. (2018). HMGB2 Loss upon Senescence Entry
- 1148 Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types. Mol Cell 70,
- 1149 730-744 e736.

1150

SUPPLEMENTAL INFORMATION FOR

Gaining insights into cellular senescence – the tools it takes

A consensus reference from the International Cell Senescence Association (ICSA)

Author list: Vassilis Gorgoulis*, Peter D. Adams, Andrea Alimonti, Dorothy C. Bennett, Oliver Bischof, Cleo Bishop, Judith Campisi, Manuel Collado, Konstantinos Evangelou, Gerardo Ferbeyre, Jesús Gil, Eiji Hara, Valery Krizhanovsky, Diana Jurk, Andrea B. Maier, Masashi Narita, Laura Niedernhofer, Joao F. Passos, Paul D. Robbins, Clemens A. Schmitt, John Sedivy, Konstantinos Vougas, Thomas von Zglinicki, Daohong Zhou, Manuel Serrano*, Marco Demaria*

*corresponding authors

SUPPLEMENTAL VIDEO LEGENDS

Suppl. Video 1: Non-induced (OFF) HBEC-CDC6 Tet-ON cells, present features of normal epithelial cells. (HBEC: Human Bronchial Epithelial Cells)

Suppl. Video 2: Induction of CDC6 expression (ON) in the HBEC CDC6 Tet-ON system, results in a progressive decrease of proliferation and acquisition of an -oncogene induced-senescence phenotype (reaching its pick at day 6 post-induction and remaining active up to day 26). During this period, senescent cells exhibit cellular enlargement, irregular shaping, elongated projections and increased granularity, compared to the non-induced (video 1) counterparts. Blue circles and frame depict representative senescent cells with elongated cytoplasmic projections while red circles correspond to cells with S/M phase dissociation, presenting also large size and irregular shape.

SUPPLEMENTAL TEXT

SeneQuest Site Construction

The entrez gene database was downloaded locally according to the instructions in http://barc.wi.mit.edu/entrez_gene/. All other scripting has been performed with the R-Language [R Core Team (2018). R: A language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria. URL https://www.R-project.org/]. The following entrez gene tables where utilised in the SeneQuest database which was setup on a MySQL Server:

-gene2go

-gene_info

-generifs_basic

-interactions

-tax 2 name

The following tables where created:

-gene2senescence from Supplementary Table 1.

-go_name and go_tree from the R script 'make_go_tables.R' which utilises the R-Language package "ontologyIndex" [Greene D, Richardson S, Turro E. ontologyX: a suite of R packages for working with ontological data. Bioinformatics. 2017 Apr 1;33(7):1104-1106. doi: 10.1093/bioinformatics/btw763]. go_name connects GO-codes with GO-terms. go_tree describes the whole GO genealogical tree. This table is utilised in searching for genes related to senescence that have a specific GO-code. The search returns not only senescence related genes with that specific GO-code but also with the descendants of the GO-code.

-senegenes2entrezgenes from the R-script 'Pop_senegenes2entrezgenes.R'. This table links the genes present in gene2senescence with the gene present in gene_info.

The SeneQuest database is available through http://www.senequest.net

SeneQuest Site Description

Short Description: *SeneQuest* is a literature-based evidence database of genes related to senescence. Each gene in the database is connected with multiple literature evidence, which is displayed in the form of PubMed IDs, showing the status of the gene in senescence (upregulated, downregulated or both). Traditional senescence markers such as SA-b-gal, p21WAF1/Cip1 and p16Ink4a applied solely in a study for senescence identification were not

included as an entry. Interactions of genes are also stored in the database and the user can search for interactants of a specific gene that are also connected with senescence. Finally Gene Ontology (GO) codes are associated with each gene. SeneQuest provides the ability for the user to search for senescence-associated genes that are linked to a specific GO-term or any of its decendants. All evidence is linked to one or multiple PubMed IDs that the user can immediately view by selecting the corresponding links.

1. SeneQuest based web-application can be accessed through: https://senequest.net

Home	About SeneQuest
Sene Quest /CSA International Cell Senescence Association Discover Genes Related to Senescence	
Gene Symbol Submit Browse genes	
SeneQuest 2019 Copyright All Rights Reserved	

2. On the left hand side, centrally positioned, the user can select from a drop-down menu one of following terms: i) *Gene Symbol*, ii) *GO Term*, iii) *Cell-line*, iv) *Tissue* (see red dashed line in figure).

Home		About SeneQuest
	Sene Quest ICSA BETA International Cell Senescence Association Discover Genes Related to Senescence	
	Gene Symbol V Submit Browse genes	
	SeneQuest 2019 Copyright All Rights Reserved	

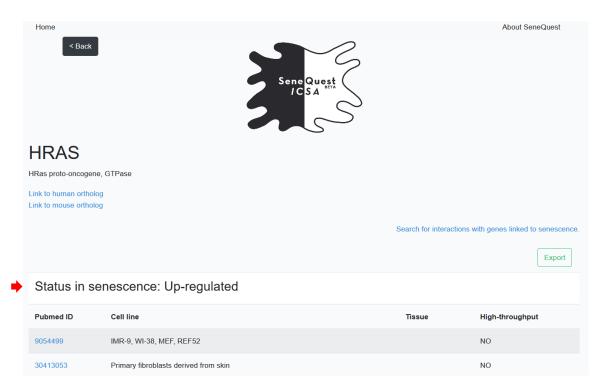
3. In the adjacent line on the right, the user must enter the official name or an alias name of a gene and press Submit. If you are interested in genes which are related to cellular senescence in a cell line you should insert the official name of the cell line according to the ATCC culture collection (https://www.atcc.org/).

Home		About SeneQuest
	Sene Quest /CSA International Cell Senescence Association Discover Genes Related to Senescence	
	Gene Symbol V RAS	
	SeneQuest 2019 Copyright All Rights Reserved	

4. For each gene the output displays either a list of homologous genes, from which the user can further define the desired gene for interrogation, or the status of the selected gene in senescence.

Home			About SeneQuest
< Back	Sene Ques ICSA		
Results for que	ery: RAS		
Gene Symbol	Gene Name	Links to Senescence	
HRAS	Harvey rat sarcoma virus oncogene	U: 26	
KRAS	Kirsten rat sarcoma viral oncogene homolog	U; 8	D: 5
RAS	resistance to audiogenic seizures	U: 5	
	SeneQuest 2019 Copyright All R	ights Reserved	

4. Any of the listed gene names under the "gene symbol" can be further selected and leads to a single specific gene entry page. This page contains the following items:

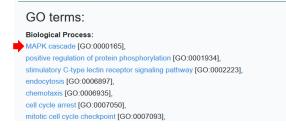

- 4a. In this page the selected gene symbol and gene name are displayed.

	Home				About SeneQuest
	< Back		Sene Quest ICSA		
•	HRAS				
۲	HRas proto-oncogene,	GTPase			
	Link to human ortholog Link to mouse ortholog				
				Search for interaction	ons with genes linked to senescence.
					Export
	Status in se	nescence: Up-regulate	d		
	Pubmed ID	Cell line		Tissue	High-throughput
	9054499	IMR-9, WI-38, MEF, REF52			NO
	30413053	Primary fibroblasts derived from skin			NO

- 4b. Below this information two links are disclosed leading to the human and mouse ortholog entries (if available) in the Entrez gene database.

Home < Back		Sene Quest ICSA		About SeneQuest
HRAS				
HRas proto-oncogene,	GTPase			
\$ Link to human ortholog Link to mouse ortholog			Search for interaction	s with genes linked to senescence.
			Search for interaction	is with genes linked to senescence.
				Export
Status in se	nescence: Up-regulated	d		
Pubmed ID	Cell line		Tissue	High-throughput
9054499	IMR-9, WI-38, MEF, REF52			NO
30413053	Primary fibroblasts derived from skin			NO

- 4c. Subsequently, there are entries for up-regulation or down-regulation in a specific senescence context for the specific gene that are shown along with the PubMed ID link leading to the actual PubMed entry from which was retrieved the original source information. Cell lines, tissues and/or high-throughput data examined in the selected publication ID are also provided along with the disease type that they represent.


- 4d. Following on the same page, GO terms and codes linking the specific gene with the three

main ontologies namely, "biological process", "molecular function" and "cellular component"

are presented.

GO terms: Biological Process: MAPK cascade [GO:0000165], positive regulation of protein phosphorylation [GO:0001934], stimulatory C-type lectin receptor signaling pathway [GO:0002223], endocytosis [GO:0006897], chemotaxis [GO:0006935], cell cycle arrest [GO:0007050], mitotic cell cycle checkpoint [GO:0007093],

5. Each GO term, available in step (4d), can be further "selected",

and upon "activation" a search is conducted retrieving senescence related genes linked to the

specific GO term or to one of its descendants as defined in the GO tree.

Home				About SeneQuest	
< Back Sene Quest ICSA BETA					
Search ty	/pe: go_term				
-					
Results for qu	uery: MAPK cascade				
Gene Symbol	Gene Name		Links to Senescence		
ADRA2A	adrenergic receptor, alpha 2a			U: 1	
ADRA2C	adrenergic receptor, alpha 2c			U: 1	

6. Below the links leading to the human and mouse ortholog entries, available in step (**4b**) and located on the right side of the screen, there is a link termed "Search for interactions with genes linked to senescence". Pressing this selection will retrieve genes from the "database senescence-related genes" that interact with the specific gene specified in **step 3**. It must be noted that gene-to-GO and gene-to-gene relationships are retrieved from the Entrez gene database.

Home				About SeneQuest
< Back		Sene Quest ICSA		
HRAS				
HRas proto-oncogene	GTPase			
Link to human ortholog Link to mouse ortholog				
			Search for interaction	s with genes linked to senescence.
				Export
Status in se	nescence: Up-regulated			
Pubmed ID	Cell line		Tissue	High-throughput
9054499	IMR-9, WI-38, MEF, REF52			NO
30413053	Primary fibroblasts derived from skin			NO

The outpout from the "Search for interactions with genes linked to senescence" option, as shown below, also provides "Interaction Evidence" in the form of PubMed IDs.

Home < Back	1	Sene Qu ICSA	lest SETA	About SeneQuest
Results gei Gene Symbol	ne: HRAS Gene Name	Links to Senescence	Interaction Evidence	Export
ABCE1	ATP binding cassette subfamily E member 1	D: 1	30442766	
AFDN	afadin, adherens junction formation factor	D: 1	10334923,10922060	
ATG3	autophagy related 3	D: 1	28514442	
BAIAP2	BAI1 associated protein 2	U:1	30442766	

Moreover, selecting the "Export" option allows download (as a csv file) of the retrieved gene list.

In all pages the SeneQuest logo leads to home page, while selection of the "< Back" option returns to the previous page.

Supplemental Table 1

Click here to access/download Supplemental Videos and Spreadsheets Supplementary Table 1.xlsb Supplemental Table 2

Click here to access/download Supplemental Videos and Spreadsheets Supplementary Table 2.pdf Supplemental Video 1

Click here to access/download Supplemental Videos and Spreadsheets Supplemental Video 1.mp4 Supplemental Video 2

Click here to access/download Supplemental Videos and Spreadsheets Supplemental Video 2.avi