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20 Abstract

21 Pontocerebellar hypoplasia type 6 (PCH6) is a rare infantile-onset progressive encephalopathy 

22 caused by biallelic mutations in RARS2 that encodes the mitochondrial arginine-tRNA synthetase 

23 enzyme (mtArgRS). The clinical presentation overlaps that of PEHO syndrome (Progressive 

24 Encephalopathy with oedema, Hypsarrhythmia and Optic atrophy). The proband presented with 

25 severe intellectual disability, epilepsy with varying seizure types, optic atrophy, axial hypotonia, 

26 acquired microcephaly, dysmorphic features and progressive cerebral and cerebellar atrophy and 

27 delayed myelination on MRI. The presentation had resemblance to PEHO syndrome but 

28 sequencing of ZNHIT3 did not identify pathogenic variants. Subsequent whole genome sequencing 

29 revealed novel compound heterozygous variants in RARS2, a missense variant affecting a highly 

30 conserved amino acid and a frameshift variant with consequent degradation of the transcript 

31 resulting in decreased mtArgRS protein level confirming the diagnosis of PCH6. Features 

32 distinguishing the proband’s phenotype from PEHO syndrome were later appearance of hypotonia 

33 and elevated lactate levels in blood and cerebrospinal fluid. On MRI the proband presented with 

34 more severe supratentorial atrophy and lesser degree of abnormal myelination than PEHO 

35 syndrome patients. The study highlights the challenges in clinical diagnosis of patients with 

36 neonatal and early infantile encephalopathies with overlapping clinical features and brain MRI 

37 findings.
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42 Introduction

43 Pontocerebellar hypoplasia (PCH) is a group of neurodegenerative disorders with autosomal 

44 recessive inheritance. Up to date 11 different subtypes have been described, with 17 causative 

45 genes identified (van Dijk et al., 2018). Most of the subtypes are characterized by prenatal or 

46 neonatal onset, global developmental delay and intellectual disability, microcephaly, hypoplasia 

47 and variable atrophy of cerebellar cortex and/or brainstem. The specific neurological symptoms 

48 and the severity of symptoms and brain loss vary between the subtypes (van Dijk et al., 2018).

49 Pontocerebellar hypoplasia type 6 (PCH6; MIM 611523) is a rare form of PCH first described in 

50 2007 in three patients of a consanguineous Sephardic Jewish family (Edvardson et al., 2007). Since 

51 then, altogether 32 patients in 18 families have been reported in the literature (for a detailed 

52 summary of the patients and phenotypes, see Supplementary Table; Edvardson et al., 2007; 

53 Rankin et al., 2010; Namavar et al., 2011; Glamuzina et al., 2012; Cassandrini et al., 2013; 

54 Kastrissianakis et al., 2013; Joseph et al., 2014; Li et al., 2015; Lax et al., 2015; Nishri et al., 2016; 

55 Alkhateeb et al., 2016; Ngoh et al., 2016; van Dijk et al., 2017; Luhl et al., 2016; Zhang et al., 2018). 

56 Most PCH6 patients present with neonatal onset, hypotonia, microcephaly, seizures, severe 

57 intellectual disability with lack of developmental milestones and progressive atrophy of cerebral 

58 cortex, cerebellum and pons. The majority show a respiratory chain enzyme deficiency and 

59 elevated lactate levels in blood or cerebrospinal fluid (CSF). Indeed, PCH6 may be distinguished 

60 from the other PCH subtypes, which are highly variable clinically and neuroradiologically, by the 

61 presence of elevated lactate concentration (van Dijk et al., 2018).

62 PCH6 is caused by biallelic mutations in RARS2, a nuclear gene that encodes the mitochondrial 

63 arginine-tRNA synthetase enzyme (mtArgRS) (Edvardson et al., 2007). Aminoacyl-tRNA synthetases 

64 play a crucial role in protein translation as they catalyze the specific attachment of an amino acid 
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65 (aminoacylation) to its cognate tRNA. MtArgRS participates in the synthesis of all 13 

66 mitochondrial-encoded proteins by charging of mitochondrial tRNA-Arg, thus being an integral 

67 part of mitochondrial protein translation machinery, participating in generation of complexes of 

68 oxidative phosphorylation system, except complex II, which has a fully nuclear origin (Ibba and 

69 Soll, 2000).

70 PCH6 shows clinically some resemblance to PEHO syndrome (Progressive Encephalopathy with 

71 oedema, Hypsarrhythmia and Optic atrophy; MIM 260565), characterized by neonatal hypotonia, 

72 profound psychomotor retardation, infantile spasms with hypsarrhythmia and atrophy of optic 

73 disks (Salonen et al., 1991). Patients present with typical dysmorphic features, such as narrow 

74 forehead, epicanthic folds, short nose and open mouth, and edema of the face and limbs (Somer, 

75 1993). Neuroimaging findings include demyelination and progressive atrophy of the cerebellar 

76 cortex, brainstem and optic nerves. In the cerebellum, the inner granular layer is nearly totally 

77 absent and Purkinje cells are deformed and disaligned (Haltia and Somer, 1993).

78 PEHO syndrome is inherited autosomal recessively and was recently shown to be caused in Finnish 

79 patients by a homozygous missense mutation c.92C>T; p.Leu31Ser in ZNHIT3, a gene encoding zinc 

80 finger HIT domain-containing protein 3 (Anttonen et al., 2017). PEHO syndrome is enriched in the 

81 Finnish population with an estimated incidence of 1:74 000 (Somer, 1993) and approximately 40 

82 diagnosed patients. In other populations it is very rare, with less than 25 reported patients (Field 

83 et al., 2003; Caraballo et al., 2011; Alfadhel et al., 2011) and only one patient with compound 

84 heterozygous mutations in ZNHIT3 reported so far (Öunap et al., 2019). In the literature, patients 

85 with symptoms closely resembling PEHO syndrome are more commonly reported. The clinical 

86 presentation of patients with PEHO-like features, like those with PCH, is similar to that of PEHO 

87 syndrome, but optic atrophy and typical neuroradiologic findings are usually absent or there is no 
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88 progression (Field et al., 2003; Longman et al., 2003; Chitty et al., 1996). Several genes underlying 

89 phenotypes resembling PEHO have been described (Rankin et al., 2010; Anttonen et al., 2015; 

90 Gawlinski et al., 2016; Langlois et al., 2016; Nahorski et al., 2016; Flex et al., 2016; Miyake et al., 

91 2016; Zollo et al., 2017; Chitre et al., 2018). 

92 We report a patient with the initial presenting features suggestive of PEHO syndrome with typical 

93 dysmorphic features, epileptic spasms, optic atrophy and severe hypotonia, but in whom whole 

94 genome sequencing revealed novel compound heterozygous mutations in RARS2. 
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95 Materials and methods

96 Patient and samples

97 The proband was clinically examined by B.C. in Antwerp and was referred to molecular genetic 

98 analyses in Helsinki. DNA extracted from peripheral blood was obtained from the proband and 

99 both parents. Primary fibroblast cultures from the proband were available for analyses of the gene 

100 product. 

101 An institutional review board at the Helsinki University Central Hospital approved the study. A 

102 written informed consent was obtained from the parents.

103

104 Sequencing of ZNHIT3

105 The five coding exons of ZNHIT3 (NM_004773.3) were Sanger sequenced from genomic DNA of 

106 the proband (primer sequences available upon request). Exon 1 covering the c.8C>T, p.Ser3Leu 

107 variant was also sequenced in the parents.

108

109 Whole genome sequencing

110 Library preparation for the genomic DNA sample was performed using KAPA Library Preparation 

111 Kit. The sample was sequenced in three lanes of an Illumina HiSeq2500 instrument with one lane 

112 having paired-end 250-bp reads and two lanes paired-end 10-bp reads. Sequence read alignment 

113 to human reference genome (GRCh37) and variant calling (Li et al., 2009) was done as described 

114 earlier with minor modifications (Sulonen et al., 2011). Called variants were annotated using 

115 ANNOVAR (Wang et al., 2010) and filtered using in-house scripts. DELLY (Rausch et al. 2012), which 

116 assesses split-read alignments and paired-end read information to detect structural variants was 

117 used to identify any copy number changes overlapping with the ZNHIT3 locus. Sanger sequencing 
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118 was performed from genomic DNA of the patient and the parents to validate the variants 

119 identified by whole genome sequencing and to test segregation of the variants in the family. 

120 Primer sequences are available upon request. 

121

122 Sequencing of patient cDNA

123 Patient fibroblasts were harvested, total RNA extracted (RNeasy plus mini kit, QIAGEN) and 

124 complementary DNA (cDNA) prepared (iScript cDNA synthesis kit, BioRad). Polymerase chain 

125 reaction was performed using primers (sequences available upon request) binding to exons 8 and 

126 14 of RARS2 and the resulting 600-bp product covering the positions of the mutations in exons 10 

127 and 11 was sequenced using standard protocols. 

128

129 Western blot analysis

130 Protein extracts for the detection of mtArgRS, COXII or GAPDH were prepared by lysing fibroblasts 

131 in RIPA buffer (Cell Signaling Technology) containing protease inhibitors (Halt, Thermo Fisher 

132 Scientific). After 10 min incubation on ice the samples were centrifuged at 14 000 g for 10 min (+4 

133 ⁰C). Proteins were separated by SDS-PAGE and transferred onto membranes. After blocking with 

134 5% milk in 0.1% TBS–Tween 20, the membranes were incubated with the corresponding primary 

135 antibodies: rabbit anti-human mtArgRS (1:1000, Biorbyt, orb374171), rabbit anti-human COXII 

136 (1:500, GeneTex, GTX62145) or rabbit anti-human GAPDH (Cell Signaling Technology, 14C10). 

137 Reactive bands were detected using horseradish peroxidase-conjugated secondary antibodies 

138 (goat anti-rabbit or goat anti-mouse, 1:10 000, Life Technologies). Blots were imaged using the ECL 

139 western blotting substrate (Thermo Fisher Scientific) and Chemidoc XRS+ Molecular Imager (Bio-

140 Rad). Quantification of the band intensities was performed with the Image Lab Software (Bio-Rad).
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141

142 Northern blot and aminoacylation assay

143 Total RNA was extracted from cultured fibroblasts using Trizol reagent (Thermo Fisher scientific) 

144 according to the manufacturer’s instructions. To preserve the aminoacylation state the final RNA 

145 pellet was re-suspended in 10mM NaOAc at pH 5.0. To investigate the aminoacylation status of 

146 mt-tRNAs, 4μg of RNA was separated on long (16cm length) 6.5% polyacrylamide gel (19:1 

147 acrylamide:bis-acrylamide) containing 8M urea in 0.1 NaOAc, pH 5.0. The fully deacylated tRNA 

148 (dAc) was obtained by incubation of the control RNA at 75°C (pH 9.0) for 15 min. To determine mt-

149 tRNAArg steady-state levels the samples were run on 10cm gel. Northern hybridization was 

150 performed with ϒ-32P labeled oligonucleotide probes: 5’-GAGTCGAAATCATTCGTTTTG-3’ for the 

151 mt-tRNAArg and 5’- GTGGCTGATTTGCGTTCAGT-3’ for the mt-tRNAAla. Radioactive signal was 

152 detected by PhosphorImager plate using Typhoon scanner and quantified with the ImageQuant 

153 v5.0 software (GE Healthcare).

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



9

154 Results

155 Clinical description

156 The essential clinical features in our patient are summarized in Supplementary Table. The patient 

157 was the first child of non-consanguineous Belgian parents. Family history was unremarkable. He 

158 was born at term after an uneventful pregnancy. Birth weight was 3.150 kg (-1 SD), length 50 cm (-

159 1 SD) and head circumference 35 cm (-0.5 SD). After birth slight hypothermia occurred, leading to 

160 one day neonatal care, but otherwise physical examination was normal. Very early psychomotor 

161 milestones were reported normal, but at the age of 2 to 3 months lack of social interaction, late 

162 visual contact and mild hypotonia were noted. No further developmental milestones were 

163 reached, he had no speech and showed no real social contact. The patient had no dysmorphic 

164 signs at birth, but later presented with bitemporal narrowing, high palate, open mouth, full 

165 cheeks, a tented upper lip (Fig. 1A) as well as mild edema of hands (Fig. 1B) and feet. Eye 

166 examination showed no visual contact and a pale papilla on both eyes later progressing to optic 

167 atrophy. Due to feeding difficulties the child was tube fed. An acquired microcephaly was noted 

168 with occipitofrontal circumference (OFC) of 43 cm (-3.3 SD) at the age of 1 year and 46 cm (-3.7 

169 SD) at the age of 3 years. At the last clinical follow-up with 9 years of age, he presented as a 

170 bedridden child with profound intellectual disability, axial hypotonia, spastic quadriplegia and 

171 significant seizure burden. 

172 First convulsions were witnessed at the age of 6 weeks with lateralized clonic movements of the 

173 face, followed by diminished consciousness and eye deviation to one side as well as bilateral clonic 

174 movements of the body. It is unclear from the history whether these seizures were already 

175 present from birth. Convulsions evolved into therapy-resistant epilepsy with varying seizure types: 

176 complex focal seizures (with and without diminished consciousness) with myoclonic jerks and 

177 laughing, rhythmic clonic movements of one or both limbs and long-lasting eye deviations with 
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178 nystagmus. The patient suffered from daily seizures several times a day with isolated myoclonic 

179 spams and clusters in between. 

180 EEG studies at the age of one to 3 months showed normal background activity without any 

181 epileptic activity. Multifocal epileptic activity was seen from the age of 4 months and high voltage 

182 slow background activity from the age of 5 months. The EEG did show some signs of 

183 hypsarrhythmia and could, because lack of total desynchronization, be described as a modified 

184 hypsarrhythmia.  The last EEG recording, taken one day before the patient died, demonstrated a 

185 picture of status epilepticus with continuous multifocal epileptic activity.

186 Magnetic resonance imaging (MRI) was performed at the ages of 4.5 months and 7 years. At 4.5 

187 months (Fig. 1C,D), it showed severe cerebral atrophy, destruction of the thalami, and delayed 

188 myelination, whereas the cerebellum appeared normal in size. At 7 years (Fig. 1E-G), the 

189 cerebellar atrophy was prominent, and microcephaly masked some of the cerebral atrophy. The 

190 pons was normal, and the myelination had reached almost a normal appearance.

191 Thorough metabolic investigations were unremarkable, with the exception of an intermittently 

192 raised serum lactate up to 5.3 mmol/l (0.5-2 mmol/l) and an elevated lactate level in the CSF, up to 

193 2.8 mmol/l (<2.5 mmol/l). No abnormalities were seen in the muscle biopsy. 

194 Prior genetic investigations including karyotype and microarray came out normal and 

195 mitochondrial DNA mutations were excluded.

196 The patient died at the age of nearly 12 years due to a respiratory infection.

197

198 Molecular findings: RARS2 mutations and their consequence

199 Given that the patient presented with symptoms overlapping with those reported in PEHO 

200 syndrome, his DNA was first Sanger sequenced to identify variants in the coding regions and splice 
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201 sites of ZNHIT3. A rare heterozygous c.8C>T, p.Ser3Leu (NM_004773.3) missense variant was 

202 identified, but the patient did not have other ZNHIT3 coding sequence variants. To identify any 

203 non-coding variants in ZNHIT3 locus, the patient was whole genome sequenced. Analysis for rare 

204 sequence variants in intronic or UTR regions of ZNHIT3, or up- or downstream to ZNHIT3 did not 

205 identify a second variant. No copy number changes overlapping with the ZNHIT3 locus was 

206 identified.

207 Analysis of the whole genome data was then expanded to all protein coding regions of the 

208 genome and splice sites. Whole genome sequence data was produced with mean sequencing 

209 coverage of 24.48x, and 98.2%, 95.7% and 74.2% of the genome was covered at least 5x, 10x and 

210 20x, respectively. Analysis of the coding regions from the genome sequence data focused on rare 

211 heterozygous and potentially biallelic variants in established disease genes. Analysis of rare 

212 heterozygous variants did not yield any likely candidates explaining the patient’s disease. Analysis 

213 of rare biallelic variants revealed two heterozygous variants in RARS2 (NM_020320.3; Fig. 2A and 

214 B; https://databases.lovd.nl/shared/individuals/00234052), a one-bp deletion in exon 10 causing a 

215 frameshift and premature termination of translation 16 codons downstream (c.795delA, 

216 p.Glu265Aspfs*16) and a missense variant, c.961C>T, p.Leu321Phe, in exon 11. There is one 

217 heterozygous carrier for the c.961C>T, p.Leu321Phe variant in the gnomAD (Lek et al., 2016) 

218 database (v. 2.0; allele frequency 0.000004), whereas the frameshift variant is absent from the 

219 database. The leucine at position 321, located in the catalytic domain of RARS2, is highly 

220 conserved (Fig. 2B). In silico tools SIFT, PolyPhen-2 and MutationTaster predict the c.961C>T, 

221 p.Leu321Phe substitution as deleterious. Sanger sequencing confirmed compound heterozygosity 

222 of the two mutations in the patient: the c.795delA frameshift mutation was inherited from the 

223 mother and the c.961C>T missense mutation from the father (Fig. 2A). 

224 The consequence of the RARS2 variants was studied on mRNA level in skin fibroblasts of the 
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225 patient. The frameshift variant in exon 10 resulting in a premature termination codon is predicted 

226 to be subjected to nonsense-mediated mRNA decay (NMD) and degradation of the transcript 

227 derived from the maternal allele. Indeed, sequencing of RARS2 cDNA revealed that at position 

228 c.961 only the paternal C>T variant was present (Fig. 2C). Western blot analysis of patient 

229 fibroblasts revealed that the mtArgRS protein level was reduced to about 50 % of control level 

230 (Fig. 3A). Northern blot analysis of total RNA from fibroblasts suggested that the steady-state level 

231 of mitochondrial tRNAArg when compared to mitochondrial tRNAAla may be decreased in patient 

232 fibroblasts (Fig. 3B). In patient and control fibroblasts, aminoacylation analysis showed the 

233 presence of only aminoacylated mt-tRNAArg, whereas deacylated mt-tRNAArg was not detected (Fig. 

234 3C). This finding is in agreement with the previous observation (Edvardson et al., 2007), suggesting 

235 that in cultured human fibroblasts uncharged mt-tRNAArg is not stable. 
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236 Discussion

237 We describe a patient compound heterozygous for two novel pathogenic variants in RARS2, the 

238 gene associated with PCH6. The high conservation of the affected Leu321, the predicted 

239 deleteriousness of the Leu321Phe substitution combined with degradation of the transcript 

240 derived from the allele with the frameshift variant strongly suggest that these variants are the 

241 underlying cause for PCH6 in the patient. 

242 The role of RARS2 in pontocerebellar hypoplasia is not fully understood with no clear genotype-

243 phenotype correlations. It is though likely that the severity of the disease is dependent of the 

244 amount of remaining aminoacylation activity (Konovalova and Tyynismaa, 2013). mtArgRS has a 

245 fundamental function in mitochondrial protein synthesis, so total loss-of-function mutations are 

246 likely to be lethal. Compatible with this notion, mice homozygous for a knock-out allele of Rars2 

247 are embryonic lethal (International Mouse Phenotyping Consortium; 

248 http://www.mousephenotype.org/data/genes/MGI:1923596#section-associations). Considering 

249 the markedly reduced expression from the frameshift allele, the missense mutant allele is likely to 

250 retain some mtArgRS activity in our patient. It has been suggested that due to the leaky nature of 

251 the mutations, small amounts of protein synthesis is possible in most tissues, but in high energy 

252 demanding cells, such as neurons, the reduced aminoacylation is not sufficient thus causing the 

253 symptoms of the disease (Edvardson et al., 2007). Low enzyme activity affects the development of 

254 the central nervous system already in utero as demonstrated by abnormal brain MRI findings in 

255 the neonatal period (e.g. Edvardson et al., 2007; Joseph et al., 2014; Lax et al., 2015). It is also 

256 possible that the reduced aminoacylation of tRNA-Arg has bigger effect on specific neuronal types 

257 that causes the alterations in brain typical for PCH6. There is also evidence of particular uncharged 

258 tRNAs and amino acids working as potential signaling molecules (Dong et al., 2000; Wolfson et al., 

259 2016). Mitochondrial tRNA synthetases may also have non-canonical functions, similarly to their 
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260 cytosolic counterparts, in addition to their housekeeping function in protein synthesis, and these 

261 may contribute to the pathomechanisms. For example, mtArgRS was recently found to have a 

262 specific sub-mitochondrial localization in the membrane, which suggests that it also could have 

263 alternative functions (Gonzáles-Serrano et al., 2018). Regardless of the reason, this high tissue 

264 specificity makes functional studies of the disease mechanism challenging.

265 Including the present patient, 33 patients with PCH6 in 19 families have been described 

266 (Supplementary Table). An overview of the key clinical features in the patients is presented in 

267 Table 1. Most patients were normal at birth but presented with variable symptoms at early age 

268 (hours to 9 months). First presenting features included hypotonia in 15/33 patients and seizures in 

269 16/33 patients. Other early symptoms were poor feeding, lethargy and apneic episodes. All 

270 patients were reported to have global developmental delay and the majority presented seizures, 

271 the onset varying from 9 hours to several months. Most seizures were intractable myoclonic or 

272 tonic-clonic seizures, either focal, or multifocal or generalized. Other common features in the 

273 patients include progressive microcephaly, atrophy of cerebellum and cerebrum, as well as 

274 elevated lactate levels in blood or CSF. Notably, atrophy of pons was reported to be present in 

275 only 12 out of the 25 patients with reported MRI findings, indicating that pons can be normal in 

276 PCH6 (Nishri et al., 2016). The phenotype in our patient is similar to that of previously published 

277 patients, and presents with all features listed in Table 1, except atrophy of the pons. Of note, as in 

278 at least three published patients (Ngoh et al., 2016; Zhang et al., 2018; Luhl et al., 2016), the 

279 serum lactate levels in our patient were intermittently raised. 

280 Compatible with a previous report (Rankin et al., 2010), the initial clinical features in our patient 

281 including severe intellectual disability, epilepsy, optic atrophy, hypotonia, acquired microcephaly, 

282 mild edema of hands and feet, and dysmorphic features pointed to PEHO syndrome. Although the 

283 dysmorphic features raised the suspicion of the PEHO syndrome, they may, however, be non-
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284 specific, as many of the dysmorphic facial features are associated with developing microcephaly, 

285 extreme floppiness, and edema (Somer, 1993). Contrary to findings in our patient, patients with 

286 PEHO syndrome do not show elevated lactate levels in blood or CSF and usually present with 

287 neonatal hypotonia (Anttonen et al., 2017). Importantly, the MRI findings in our patient (Fig. 1C-G) 

288 were not typical for PEHO syndrome. The supratentorial atrophy was more severe than in a typical 

289 PEHO patient. Moreover, the myelination was not delayed to the degree seen in PEHO patients. 

290 Characteristic MRI findings including progressive cerebellar atrophy and dysmyelination are 

291 essential diagnostic criteria for PEHO syndrome (Anttonen et al., 2017).  These typical findings are 

292 often disregarded when suggesting a clinical PEHO diagnosis.

293
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305 Figure Titles and Legends

306 Figure 1. Phenotypic features in the patient.

307 A) Facial features of the patient at 7 years of age. Note the open mouth, full cheeks, a tented 

308 upper lip and bitemporal narrowing. B) The hand shows edema. C) In a sagittal T1-weighted cranial 

309 magnetic resonance image at the age of 4.5 months cerebellum (arrowhead) and pons (arrow) 

310 appear normal in size. D) T2-weighted axial image at 4.5 months shows cerebral atrophy.

311 E & F) T2-weighted images of the patient at 7 years of age show microcephaly and widespread 

312 cerebral atrophy as well as severe cerebellar atrophy (arrowhead in E) with widened cerebellar 

313 sulci (F). The pons (arrow in E) as well as the myelination appear normal. G) T2-axial slices at 7 

314 years also show atrophy and signal increase of the thalami (open arrowheads).

315

316 Figure 2. Two novel PCH6-associated mutations in the RARS2 gene.

317 A) Sanger sequencing chromatograms of the proband’s (P) and the parents’ genomic DNA showing 

318 the c.795delA variant inherited from the mother (M) and the c.961C>T variant inherited from the 

319 father (F). Positions of variants are indicated with arrowheads. B) A schematic picture of the exon-

320 intron structure of RARS2 and the domain structure of the encoded protein (modified from 

321 Gonzáles-Serrano et al., 2018) showing the locations of the identified mutations and high 

322 conservation of the leucine at position 321 affected by the missense substitution. C) Sanger 

323 sequencing chromatograms of the proband’s cDNA showing only the paternal c.961C>T variant 

324 (arrowhead) in exon 11 suggesting that the transcript derived from the maternal allele is 

325 degraded.   11F denotes forward orientation sequence and 11R reverse orientation

326

327 Figure 3. Western blot, northern blot and aminoacylation analysis of the patient fibroblasts.
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328 A) Steady-state level of mtArgRS protein in patient (P) and control fibroblasts (C1, C2) detected by 

329 Western blot. Quantification of the Western blot analysis is shown in the right panel. GAPDH was 

330 detected as protein loading control. Data are presented as mean ± SD. B) Northern blot analysis of 

331 mt-tRNAArg levels in patient (P) and control (C1, C2) fibroblasts. Quantification of the northern blot 

332 analysis is shown in the lower panel. Mitochondrial tRNAAla was detected as a loading control. 

333 C) Aminoacylation assay of mt-tRNAArg in control (C1, C2) and patient (P) fibroblasts. Mitochondrial 

334 tRNAAla was detected as a loading control. dAC denotes the fully deacylated control tRNA. 

335 Experiments in B and C were carried out only once.
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336 Table 1. Overview of clinical features in published PCH6 patients

337

Feature n/na

Global developmental delay 33/33

Epileptic seizures 24/24

Microcephaly 20/27

MRI findings

      Atrophy of cerebellum 22/25

      Atrophy of pons 12/25

      Atrophy of cerebrum 18/25

Elevated lactate level in blood or CSF 19/23

Reduced respiratory chain enzyme activity 10/19

Feeding difficulties 17/18

Dysmorphic features 6/8

338
339 CSF – cerebrospinal fluid
340
341 a The features are variably reported in the patients.
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Table 1. Overview of clinical features in PCH6 patients

Feature n/na

Global developmental delay 33/33

Epileptic seizures 24/24

Microcephaly 20/27

MRI findings

      Atrophy of cerebellum 22/25

      Atrophy of pons 12/25

      Atrophy of cerebrum 18/25

Elevated lactate level in blood or CSF 19/23

Reduced respiratory chain enzyme activity 10/19

Feeding difficulties 17/18

Dysmorphic features 6/8

CSF – cerebrospinal fluid

aThe features are variably reported in the patients.
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