	1	A Patient with Pontocerebellar Hypoplasia Type 6: Novel RARS2 Mutations, Comparison to
	2	Previously Published Patients and Clinical Distinction from PEHO Syndrome
	3	
)	4	Viivi Nevanlinna ^{a,b} , Svetlana Konovalova ^c , Berten Ceulemans ^d , Mikko Muona ^{a,1} , Anni Laari ^{a,c} , Taru
2	5	Hilander ^c , Katarin Gorski ^{a,c} , Leena Valanne ^e , Anna-Kaisa Anttonen ^{a,f,g} , Henna Tyynismaa ^{c, f, h} ,
5	6	Carolina Courage ^{a,c} , Anna-Elina Lehesjoki ^{a,c,f,*}
) 7	7	
))	8	^a Folkhälsan Research Center, Helsinki, Finland
2	9	^b Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
3 1	0	^c Research Programs Unit, Molecular Neurology, University of Helsinki, Finland
) 5 1	1	^d Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Belgium
³ 1	2	^e Department of Radiology, Hospital District of Helsinki and Uusimaa Medical Imaging Center,
) 1	3	University of Helsinki and Helsinki University Hospital, Helsinki, Finland
2 3 1	4	^f Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Finland
+ 5 1 3	5	^g Laboratory of Genetics, Helsinki University Hospital, Helsinki, Finland
1	6	^h Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
) 1	7	¹ Present address: Blueprint Genetics, Helsinki, Finland
2 1	8	*Corresponding author. Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8,
) 1 	9	00290, Helsinki, Finland; tel: +358 2941 25072; email: anna-elina.lehesjoki@helsinki.fi
) 7		
3		
)		
- } !-		
ò		
3		

Abstract

Pontocerebellar hypoplasia type 6 (PCH6) is a rare infantile-onset progressive encephalopathy caused by biallelic mutations in RARS2 that encodes the mitochondrial arginine-tRNA synthetase enzyme (mtArgRS). The clinical presentation overlaps that of PEHO syndrome (Progressive Encephalopathy with oedema, Hypsarrhythmia and Optic atrophy). The proband presented with severe intellectual disability, epilepsy with varying seizure types, optic atrophy, axial hypotonia, acquired microcephaly, dysmorphic features and progressive cerebral and cerebellar atrophy and delayed myelination on MRI. The presentation had resemblance to PEHO syndrome but sequencing of ZNHIT3 did not identify pathogenic variants. Subsequent whole genome sequencing revealed novel compound heterozygous variants in RARS2, a missense variant affecting a highly conserved amino acid and a frameshift variant with consequent degradation of the transcript resulting in decreased mtArgRS protein level confirming the diagnosis of PCH6. Features distinguishing the proband's phenotype from PEHO syndrome were later appearance of hypotonia and elevated lactate levels in blood and cerebrospinal fluid. On MRI the proband presented with more severe supratentorial atrophy and lesser degree of abnormal myelination than PEHO syndrome patients. The study highlights the challenges in clinical diagnosis of patients with neonatal and early infantile encephalopathies with overlapping clinical features and brain MRI findings. **Keywords** Pontocerebellar hypoplasia type 6, RARS2, PEHO syndrome, progressive cerebellar and cerebral atrophy

Introduction

Pontocerebellar hypoplasia (PCH) is a group of neurodegenerative disorders with autosomal recessive inheritance. Up to date 11 different subtypes have been described, with 17 causative genes identified (van Dijk et al., 2018). Most of the subtypes are characterized by prenatal or neonatal onset, global developmental delay and intellectual disability, microcephaly, hypoplasia and variable atrophy of cerebellar cortex and/or brainstem. The specific neurological symptoms and the severity of symptoms and brain loss vary between the subtypes (van Dijk et al., 2018). Pontocerebellar hypoplasia type 6 (PCH6; MIM 611523) is a rare form of PCH first described in 2007 in three patients of a consanguineous Sephardic Jewish family (Edvardson et al., 2007). Since then, altogether 32 patients in 18 families have been reported in the literature (for a detailed summary of the patients and phenotypes, see Supplementary Table; Edvardson et al., 2007; Rankin et al., 2010; Namavar et al., 2011; Glamuzina et al., 2012; Cassandrini et al., 2013; Kastrissianakis et al., 2013; Joseph et al., 2014; Li et al., 2015; Lax et al., 2015; Nishri et al., 2016; Alkhateeb et al., 2016; Ngoh et al., 2016; van Dijk et al., 2017; Luhl et al., 2016; Zhang et al., 2018). Most PCH6 patients present with neonatal onset, hypotonia, microcephaly, seizures, severe intellectual disability with lack of developmental milestones and progressive atrophy of cerebral cortex, cerebellum and pons. The majority show a respiratory chain enzyme deficiency and elevated lactate levels in blood or cerebrospinal fluid (CSF). Indeed, PCH6 may be distinguished from the other PCH subtypes, which are highly variable clinically and neuroradiologically, by the presence of elevated lactate concentration (van Dijk et al., 2018). PCH6 is caused by biallelic mutations in RARS2, a nuclear gene that encodes the mitochondrial arginine-tRNA synthetase enzyme (mtArgRS) (Edvardson et al., 2007). Aminoacyl-tRNA synthetases

play a crucial role in protein translation as they catalyze the specific attachment of an amino acid

(aminoacylation) to its cognate tRNA. MtArgRS participates in the synthesis of all 13 mitochondrial-encoded proteins by charging of mitochondrial tRNA-Arg, thus being an integral part of mitochondrial protein translation machinery, participating in generation of complexes of oxidative phosphorylation system, except complex II, which has a fully nuclear origin (Ibba and Soll, 2000).

PCH6 shows clinically some resemblance to PEHO syndrome (Progressive Encephalopathy with
oedema, Hypsarrhythmia and Optic atrophy; MIM 260565), characterized by neonatal hypotonia,
profound psychomotor retardation, infantile spasms with hypsarrhythmia and atrophy of optic
disks (Salonen et al., 1991). Patients present with typical dysmorphic features, such as narrow
forehead, epicanthic folds, short nose and open mouth, and edema of the face and limbs (Somer,
1993). Neuroimaging findings include demyelination and progressive atrophy of the cerebellar
cortex, brainstem and optic nerves. In the cerebellum, the inner granular layer is nearly totally
absent and Purkinje cells are deformed and disaligned (Haltia and Somer, 1993).

PEHO syndrome is inherited autosomal recessively and was recently shown to be caused in Finnish patients by a homozygous missense mutation c.92C>T; p.Leu31Ser in *ZNHIT3*, a gene encoding zinc finger HIT domain-containing protein 3 (Anttonen et al., 2017). PEHO syndrome is enriched in the Finnish population with an estimated incidence of 1:74 000 (Somer, 1993) and approximately 40 diagnosed patients. In other populations it is very rare, with less than 25 reported patients (Field et al., 2003; Caraballo et al., 2011; Alfadhel et al., 2011) and only one patient with compound heterozygous mutations in *ZNHIT3* reported so far (Öunap et al., 2019). In the literature, patients with symptoms closely resembling PEHO syndrome are more commonly reported. The clinical presentation of patients with PEHO-like features, like those with PCH, is similar to that of PEHO syndrome, but optic atrophy and typical neuroradiologic findings are usually absent or there is no

237		5
238 239 240	88	progression (Field et al., 2003; Longman et al., 2003; Chitty et al., 1996). Several genes underlying
241 242	89	phenotypes resembling PEHO have been described (Rankin et al., 2010; Anttonen et al., 2015;
243 244	90	Gawlinski et al., 2016; Langlois et al., 2016; Nahorski et al., 2016; Flex et al., 2016; Miyake et al.,
245 246 247	91	2016; Zollo et al., 2017; Chitre et al., 2018).
248 249	92	We report a patient with the initial presenting features suggestive of PEHO syndrome with typical
250 251 252	93	dysmorphic features, epileptic spasms, optic atrophy and severe hypotonia, but in whom whole
253 254	94	genome sequencing revealed novel compound heterozygous mutations in RARS2.
255 256		
257 258 259		
260 261		
262 263 264		
265 266		
267 268		
209 270 271		
272 273		
274 275 276		
277 278		
279 280		
281 282 283		
284 285		
286 287 288		
289 290		
291 292		
293 294 295		

296	6
297	
290 299 300	Materials and methods
301 302 96	Patient and samples
303 304 97	The proband was clinically examined by B.C. in Antwerp and was referred to molecular genetic
305 306 98 307	analyses in Helsinki. DNA extracted from peripheral blood was obtained from the proband and
308 99 309	both parents. Primary fibroblast cultures from the proband were available for analyses of the gene
³¹⁰ 100 311	product.
312 313 101	An institutional review board at the Helsinki University Central Hospital approved the study. A
315102 316	written informed consent was obtained from the parents.
317103 318 319	
319104 320 321	Sequencing of ZNHIT3
322 ¹⁰⁵ 323	The five coding exons of ZNHIT3 (NM_004773.3) were Sanger sequenced from genomic DNA of
3241 06 325	the proband (primer sequences available upon request). Exon 1 covering the c.8C>T, p.Ser3Leu
326107 327	variant was also sequenced in the parents.
³²⁸ 108 329 330	
331109 332	Whole genome sequencing
334110 335	Library preparation for the genomic DNA sample was performed using KAPA Library Preparation
³³⁶ 111 ₃₃₇	Kit. The sample was sequenced in three lanes of an Illumina HiSeq2500 instrument with one lane
³³⁸ 339112	having paired-end 250-bp reads and two lanes paired-end 10-bp reads. Sequence read alignment
341113 342	to human reference genome (GRCh37) and variant calling (Li et al., 2009) was done as described
343114 344	earlier with minor modifications (Sulonen et al., 2011). Called variants were annotated using
³⁴⁵ 115	ANNOVAR (Wang et al., 2010) and filtered using in-house scripts. DELLY (Rausch et al. 2012), which
³⁴⁷ 348116 349	assesses split-read alignments and paired-end read information to detect structural variants was
350117 351 352 353 354	used to identify any copy number changes overlapping with the ZNHIT3 locus. Sanger sequencing

355	7
357 358 358	was performed from genomic DNA of the patient and the parents to validate the variants
359 360119	identified by whole genome sequencing and to test segregation of the variants in the family.
362120 363 364121 365 366	Primer sequences are available upon request.
367122 368 369	Sequencing of patient cDNA
370123 371	Patient fibroblasts were harvested, total RNA extracted (RNeasy plus mini kit, QIAGEN) and
372124 373	complementary DNA (cDNA) prepared (iScript cDNA synthesis kit, BioRad). Polymerase chain
³⁷⁴ ₃₇₅ 125	reaction was performed using primers (sequences available upon request) binding to exons 8 and
376 377126	14 of RARS2 and the resulting 600-bp product covering the positions of the mutations in exons 10
379127 380	and 11 was sequenced using standard protocols.
³⁸¹ 128 382 383	
384129 385	Western blot analysis
386 387130 388	Protein extracts for the detection of mtArgRS, COXII or GAPDH were prepared by lysing fibroblasts
389131 390	in RIPA buffer (Cell Signaling Technology) containing protease inhibitors (Halt, Thermo Fisher
³⁹¹ 392132	Scientific). After 10 min incubation on ice the samples were centrifuged at 14 000 g for 10 min (+4
³⁹³ ₃₉₄ 133	$^{\circ}$ C). Proteins were separated by SDS-PAGE and transferred onto membranes. After blocking with
395 3961 34 397	5% milk in 0.1% TBS-Tween 20, the membranes were incubated with the corresponding primary
³⁹⁸ 135 399	antibodies: rabbit anti-human mtArgRS (1:1000, Biorbyt, orb374171), rabbit anti-human COXII
400 401 136	(1:500, GeneTex, GTX62145) or rabbit anti-human GAPDH (Cell Signaling Technology, 14C10).
402 403 137	Reactive bands were detected using horseradish peroxidase-conjugated secondary antibodies
404 405138 406	(goat anti-rabbit or goat anti-mouse, 1:10 000, Life Technologies). Blots were imaged using the ECL
407 ₁ 39 408	western blotting substrate (Thermo Fisher Scientific) and Chemidoc XRS+ Molecular Imager (Bio-
409 410 ¹⁴⁰	Rad). Quantification of the band intensities was performed with the Image Lab Software (Bio-Rad).
411 412	
413	

414	8
415	
⁴¹⁶ ₄₁₇ 141	
417	
⁴¹⁹ 142	Northern blot and aminoacylation assay
420	
421	Tetal DNA was sytuated from sultured fibrablasts using Trizel respont (Therma Fisher esigntific)
423	Total RNA was extracted from cultured libroblasts using frizor reagent (mermo Fisher scientific)
424 425	according to the manufacturer's instructions. To preserve the aminoacylation state the final RNA
426 427 145	pellet was re-suspended in 10mM NaOAc at pH 5.0. To investigate the aminoacylation status of
429 429 430	mt-tRNAs, $4\mu g$ of RNA was separated on long (16cm length) 6.5% polyacrylamide gel (19:1
⁴³¹ 147 432	acrylamide:bis-acrylamide) containing 8M urea in 0.1 NaOAc, pH 5.0. The fully deacylated tRNA
⁴³³ ₄₃₄ 148	(dAc) was obtained by incubation of the control RNA at 75°C (pH 9.0) for 15 min. To determine mt-
435 436 149	tRNA ^{Arg} steady-state levels the samples were run on 10cm gel. Northern hybridization was
4381 50 439	performed with Y-32P labeled oligonucleotide probes: 5'-GAGTCGAAATCATTCGTTTTG-3' for the
440151 441	mt-tRNA ^{Arg} and 5'- GTGGCTGATTTGCGTTCAGT-3' for the mt-tRNA ^{Ala} . Radioactive signal was
⁴⁴² ₄₄₃ 152	detected by PhosphorImager plate using Typhoon scanner and quantified with the ImageQuant
445 ⁴⁴⁵ 153	v5.0 software (GE Healthcare).
446	
447	
448	
449 450	
451	
452	
453	
454	
455	
456	
458	
459	
460	
461	
462	
463	
404 465	
466	
467	
468	
469	
470	
472	

4 Results

Clinical description

479 The essential clinical features in our patient are summarized in Supplementary Table. The patient 480156 481 482157 was the first child of non-consanguineous Belgian parents. Family history was unremarkable. He 483 ⁴⁸⁴_158 was born at term after an uneventful pregnancy. Birth weight was 3.150 kg (-1 SD), length 50 cm (-485 486 ₄₈₇159 1 SD) and head circumference 35 cm (-0.5 SD). After birth slight hypothermia occurred, leading to 488 489160 one day neonatal care, but otherwise physical examination was normal. Very early psychomotor 490 ⁴⁹¹161 milestones were reported normal, but at the age of 2 to 3 months lack of social interaction, late 492 493 visual contact and mild hypotonia were noted. No further developmental milestones were 494 495 ₄₉₆163 reached, he had no speech and showed no real social contact. The patient had no dysmorphic 497 498164 signs at birth, but later presented with bitemporal narrowing, high palate, open mouth, full 499 ⁵⁰⁰165 cheeks, a tented upper lip (Fig. 1A) as well as mild edema of hands (Fig. 1B) and feet. Eye 501 502 166 examination showed no visual contact and a pale papilla on both eyes later progressing to optic 503 504 ₅₀₅167 atrophy. Due to feeding difficulties the child was tube fed. An acquired microcephaly was noted 506 with occipitofrontal circumference (OFC) of 43 cm (-3.3 SD) at the age of 1 year and 46 cm (-3.7 507168 508 ⁵⁰⁹169 SD) at the age of 3 years. At the last clinical follow-up with 9 years of age, he presented as a 510 ⁵¹¹ 512</sub>170 bedridden child with profound intellectual disability, axial hypotonia, spastic quadriplegia and 513 ₅₁₄171 significant seizure burden.

516172 First convulsions were witnessed at the age of 6 weeks with lateralized clonic movements of the 517 ⁵¹⁸173 face, followed by diminished consciousness and eye deviation to one side as well as bilateral clonic 519 520 174 movements of the body. It is unclear from the history whether these seizures were already 521 522 present from birth. Convulsions evolved into therapy-resistant epilepsy with varying seizure types: 523175 524 525176 complex focal seizures (with and without diminished consciousness) with myoclonic jerks and 526 ⁵²⁷177 laughing, rhythmic clonic movements of one or both limbs and long-lasting eye deviations with 528

529 530

515

542

551

556

558

- nystagmus. The patient suffered from daily seizures several times a day with isolated myoclonic spams and clusters in between. EEG studies at the age of one to 3 months showed normal background activity without any epileptic activity. Multifocal epileptic activity was seen from the age of 4 months and high voltage
- 543 slow background activity from the age of 5 months. The EEG did show some signs of 544
- 545 ₅₄₆183 hypsarrhythmia and could, because lack of total desynchronization, be described as a modified
- 547 hypsarrhythmia. The last EEG recording, taken one day before the patient died, demonstrated a 548184 549 ⁵⁵⁰185 picture of status epilepticus with continuous multifocal epileptic activity.
- ⁵⁵²₅₅₃186 Magnetic resonance imaging (MRI) was performed at the ages of 4.5 months and 7 years. At 4.5
- 554 ₅₅₅187 months (Fig. 1C,D), it showed severe cerebral atrophy, destruction of the thalami, and delayed
- 557188 myelination, whereas the cerebellum appeared normal in size. At 7 years (Fig. 1E-G), the
- 559189 cerebellar atrophy was prominent, and microcephaly masked some of the cerebral atrophy. The 560
- 561 190 pons was normal, and the myelination had reached almost a normal appearance. 562
- 563 ₅₆₄191 Thorough metabolic investigations were unremarkable, with the exception of an intermittently
- 565 raised serum lactate up to 5.3 mmol/l (0.5-2 mmol/l) and an elevated lactate level in the CSF, up to 566192 567
- 568193 2.8 mmol/l (<2.5 mmol/l). No abnormalities were seen in the muscle biopsy. 569
- ⁵⁷⁰ 571</sub>194 Prior genetic investigations including karyotype and microarray came out normal and
- 572 ₅₇₃195 mitochondrial DNA mutations were excluded. 574
- 575196 The patient died at the age of nearly 12 years due to a respiratory infection.
- 576 ⁵⁷⁷197
- 578 579

580198 Molecular findings: RARS2 mutations and their consequence 581

- 582 583199 Given that the patient presented with symptoms overlapping with those reported in PEHO 584
- ⁵⁸⁵200 syndrome, his DNA was first Sanger sequenced to identify variants in the coding regions and splice 586
- 587
- 588 589
- 590

592 ⁵⁹³₅₉₄201 sites of ZNHIT3. A rare heterozygous c.8C>T, p.Ser3Leu (NM_004773.3) missense variant was 595 ₅₉₆202 identified, but the patient did not have other ZNHIT3 coding sequence variants. To identify any 597 non-coding variants in ZNHIT3 locus, the patient was whole genome sequenced. Analysis for rare 598203 599 600204 sequence variants in intronic or UTR regions of ZNHIT3, or up- or downstream to ZNHIT3 did not 601 ⁶⁰²205 identify a second variant. No copy number changes overlapping with the ZNHIT3 locus was 603 604 ₆₀₅206 identified. 606 607207 Analysis of the whole genome data was then expanded to all protein coding regions of the 608 ⁶⁰⁹208 genome and splice sites. Whole genome sequence data was produced with mean sequencing 610 ${}^{611}_{612}209$ coverage of 24.48x, and 98.2%, 95.7% and 74.2% of the genome was covered at least 5x, 10x and 613 ₆₁₄210 20x, respectively. Analysis of the coding regions from the genome sequence data focused on rare 615 616211 heterozygous and potentially biallelic variants in established disease genes. Analysis of rare 617 ⁶¹⁸212 heterozygous variants did not yield any likely candidates explaining the patient's disease. Analysis 619 620, 213 of rare biallelic variants revealed two heterozygous variants in RARS2 (NM_020320.3; Fig. 2A and 621 622 ₆₂₃214 B; https://databases.lovd.nl/shared/individuals/00234052), a one-bp deletion in exon 10 causing a 624 frameshift and premature termination of translation 16 codons downstream (c.795delA, 625215 626 627216 p.Glu265Aspfs*16) and a missense variant, c.961C>T, p.Leu321Phe, in exon 11. There is one 628 ⁶²⁹ 630²¹⁷ heterozygous carrier for the c.961C>T, p.Leu321Phe variant in the gnomAD (Lek et al., 2016) 631 ₆₃₂218 database (v. 2.0; allele frequency 0.000004), whereas the frameshift variant is absent from the 633 database. The leucine at position 321, located in the catalytic domain of RARS2, is highly 634219 635 636220 conserved (Fig. 2B). In silico tools SIFT, PolyPhen-2 and MutationTaster predict the c.961C>T, 637 ⁶³⁸ 639</sub>221 p.Leu321Phe substitution as deleterious. Sanger sequencing confirmed compound heterozygosity 640 641222 of the two mutations in the patient: the c.795delA frameshift mutation was inherited from the 642 643223 mother and the c.961C>T missense mutation from the father (Fig. 2A). 644 ⁶⁴⁵224 The consequence of the RARS2 variants was studied on mRNA level in skin fibroblasts of the 646 647 648

591

649

653 225 patient. The frameshift variant in exon 10 resulting in a premature termination codon is predicted ₆₅₅226 to be subjected to nonsense-mediated mRNA decay (NMD) and degradation of the transcript derived from the maternal allele. Indeed, sequencing of RARS2 cDNA revealed that at position c.961 only the paternal C>T variant was present (Fig. 2C). Western blot analysis of patient ⁶⁶¹229 fibroblasts revealed that the mtArgRS protein level was reduced to about 50 % of control level ₆₆₄230 (Fig. 3A). Northern blot analysis of total RNA from fibroblasts suggested that the steady-state level of mitochondrial tRNA^{Arg} when compared to mitochondrial tRNA^{Ala} may be decreased in patient fibroblasts (Fig. 3B). In patient and control fibroblasts, aminoacylation analysis showed the ⁶⁷⁰233 presence of only aminoacylated mt-tRNA^{Arg}, whereas deacylated mt-tRNA^{Arg} was not detected (Fig. ₆₇₃234 3C). This finding is in agreement with the previous observation (Edvardson et al., 2007), suggesting that in cultured human fibroblasts uncharged mt-tRNA^{Arg} is not stable.

721 722

724

765 766 767

Discussion

We describe a patient compound heterozygous for two novel pathogenic variants in RARS2, the gene associated with PCH6. The high conservation of the affected Leu321, the predicted deleteriousness of the Leu321Phe substitution combined with degradation of the transcript 720240 derived from the allele with the frameshift variant strongly suggest that these variants are the ₇₂₃241 underlying cause for PCH6 in the patient.

The role of RARS2 in pontocerebellar hypoplasia is not fully understood with no clear genotype-725242 726 727243 phenotype correlations. It is though likely that the severity of the disease is dependent of the 728 ⁷²⁹ 730</sub>244 amount of remaining aminoacylation activity (Konovalova and Tyynismaa, 2013). mtArgRS has a 731 ₇₃₂245 fundamental function in mitochondrial protein synthesis, so total loss-of-function mutations are 733 734246 likely to be lethal. Compatible with this notion, mice homozygous for a knock-out allele of Rars2 735 736247 are embryonic lethal (International Mouse Phenotyping Consortium; 737

⁷³⁸248 http://www.mousephenotype.org/data/genes/MGI:1923596#section-associations). Considering 739 740 741249 the markedly reduced expression from the frameshift allele, the missense mutant allele is likely to 742 retain some mtArgRS activity in our patient. It has been suggested that due to the leaky nature of 743250 744 745251 the mutations, small amounts of protein synthesis is possible in most tissues, but in high energy 746 747 748 252 demanding cells, such as neurons, the reduced aminoacylation is not sufficient thus causing the 749 750²⁵³ symptoms of the disease (Edvardson et al., 2007). Low enzyme activity affects the development of 751 752254 the central nervous system already in utero as demonstrated by abnormal brain MRI findings in 753 754255 the neonatal period (e.g. Edvardson et al., 2007; Joseph et al., 2014; Lax et al., 2015). It is also 755 ⁷⁵⁶₇₅₇256 possible that the reduced aminoacylation of tRNA-Arg has bigger effect on specific neuronal types 758 759257 that causes the alterations in brain typical for PCH6. There is also evidence of particular uncharged 760 761258 tRNAs and amino acids working as potential signaling molecules (Dong et al., 2000; Wolfson et al., 762 ⁷⁶³259 2016). Mitochondrial tRNA synthetases may also have non-canonical functions, similarly to their 764

769 $\frac{770}{771}$ 260 cytosolic counterparts, in addition to their housekeeping function in protein synthesis, and these 772 ₇₇₃261 may contribute to the pathomechanisms. For example, mtArgRS was recently found to have a 774 775262 specific sub-mitochondrial localization in the membrane, which suggests that it also could have 776 777263 alternative functions (Gonzáles-Serrano et al., 2018). Regardless of the reason, this high tissue 778 ⁷⁷⁹₇₈₀264 specificity makes functional studies of the disease mechanism challenging. 781 ₇₈₂265 Including the present patient, 33 patients with PCH6 in 19 families have been described 783 784266 (Supplementary Table). An overview of the key clinical features in the patients is presented in 785 786267 Table 1. Most patients were normal at birth but presented with variable symptoms at early age 787 ⁷⁸⁸/₇₈₉268 (hours to 9 months). First presenting features included hypotonia in 15/33 patients and seizures in 790 ₇₉₁269 16/33 patients. Other early symptoms were poor feeding, lethargy and apneic episodes. All 792 793270 patients were reported to have global developmental delay and the majority presented seizures, 794 795271 the onset varying from 9 hours to several months. Most seizures were intractable myoclonic or 796 ⁷⁹⁷272 tonic-clonic seizures, either focal, or multifocal or generalized. Other common features in the 798 799 ₈₀₀273 patients include progressive microcephaly, atrophy of cerebellum and cerebrum, as well as 801 elevated lactate levels in blood or CSF. Notably, atrophy of pons was reported to be present in 802274 803 804275 only 12 out of the 25 patients with reported MRI findings, indicating that pons can be normal in 805 ⁸⁰⁶ 807</sub>276 PCH6 (Nishri et al., 2016). The phenotype in our patient is similar to that of previously published 808 ₈₀₉277 patients, and presents with all features listed in Table 1, except atrophy of the pons. Of note, as in 810 811278 at least three published patients (Ngoh et al., 2016; Zhang et al., 2018; Luhl et al., 2016), the 812 813279 serum lactate levels in our patient were intermittently raised. 814 ⁸¹⁵280 Compatible with a previous report (Rankin et al., 2010), the initial clinical features in our patient 817 818281 including severe intellectual disability, epilepsy, optic atrophy, hypotonia, acquired microcephaly, 819 820282 mild edema of hands and feet, and dysmorphic features pointed to PEHO syndrome. Although the 821 ⁸²²283 dysmorphic features raised the suspicion of the PEHO syndrome, they may, however, be non-823 824 825

768

826

827	15
⁸²⁹ 830 ²⁸⁴	specific, as many of the dysmorphic facial features are associated with developing microcephaly,
831 832285	extreme floppiness, and edema (Somer, 1993). Contrary to findings in our patient, patients with
834286 835	PEHO syndrome do not show elevated lactate levels in blood or CSF and usually present with
836 <u>2</u> 87 837	neonatal hypotonia (Anttonen et al., 2017). Importantly, the MRI findings in our patient (Fig. 1C-G)
⁸³⁸ 839288	were not typical for PEHO syndrome. The supratentorial atrophy was more severe than in a typical
840 841 289	PEHO patient. Moreover, the myelination was not delayed to the degree seen in PEHO patients.
842 843 290 844	Characteristic MRI findings including progressive cerebellar atrophy and dysmyelination are
⁸⁴⁵ 291 846	essential diagnostic criteria for PEHO syndrome (Anttonen et al., 2017). These typical findings are
⁸⁴⁷ 848292	often disregarded when suggesting a clinical PEHO diagnosis.
849 850293	
851 852 294 853	
854295 855	Acknowledgements
⁸⁵⁶ 857296	We thank the family for their contribution to this study. We thank the Genome Aggregation
858 859297	Database (gnomAD) and the groups that provided exome and genome variant data to this
860 861 298 862	resource. A full list of contributing groups can be found
863 ₂ 99 864	at http://gnomad.broadinstitute.org/about. This study was funded by the Folkhälsan Research
⁸⁶⁵ 866300	Foundation.
867 868 3 01	
869 870302 871	
⁸⁷² 303	Accession numbers
⁸⁷⁴ 875304	https://databases.lovd.nl/shared/individuals/00234052
876 877	
878 879	
880	
882	
883 884	
885	

886	16
⁸⁸⁸ ₈₈₉ 305	Figure Titles and Legends
890 891 306	Figure 1. Phenotypic features in the patient.
893 3 07 894	A) Facial features of the patient at 7 years of age. Note the open mouth, full cheeks, a tented
895 <u>308</u> 896	upper lip and bitemporal narrowing. B) The hand shows edema. C) In a sagittal T1-weighted cranial
⁸⁹⁷ 309	magnetic resonance image at the age of 4.5 months cerebellum (arrowhead) and pons (arrow)
900 ³¹⁰	appear normal in size. D) T2-weighted axial image at 4.5 months shows cerebral atrophy.
902 3 11 903	E & F) T2-weighted images of the patient at 7 years of age show microcephaly and widespread
904312 905	cerebral atrophy as well as severe cerebellar atrophy (arrowhead in ${f E}$) with widened cerebellar
906 907 313	sulci (F). The pons (arrow in E) as well as the myelination appear normal. G) T2-axial slices at 7
908 909 ³ 14 910 911315 912	years also show atrophy and signal increase of the thalami (open arrowheads).
913 316 914	Figure 2. Two novel PCH6-associated mutations in the RARS2 gene.
915 916 917	A) Sanger sequencing chromatograms of the proband's (P) and the parents' genomic DNA showing
918 918 919	the c.795delA variant inherited from the mother (M) and the c.961C>T variant inherited from the
920 319 921	father (F). Positions of variants are indicated with arrowheads. B) A schematic picture of the exon-
922 320 923	intron structure of RARS2 and the domain structure of the encoded protein (modified from
⁹²⁴ 925 ³²¹	Gonzáles-Serrano et al., 2018) showing the locations of the identified mutations and high
926 927322 928	conservation of the leucine at position 321 affected by the missense substitution. C) Sanger
929323 930	sequencing chromatograms of the proband's cDNA showing only the paternal c.961C>T variant
⁹³¹ 324 ₉₃₂	(arrowhead) in exon 11 suggesting that the transcript derived from the maternal allele is
933 934 325 935 936 326 937	degraded. 11F denotes forward orientation sequence and 11R reverse orientation
938 327 939 940 941 942 943 944	Figure 3. Western blot, northern blot and aminoacylation analysis of the patient fibroblasts.

945	17
946 947 948 328	A) Steady-state level of mtArgRS protein in patient (P) and control fibroblasts (C1, C2) detected by
949 950 ³²⁹	Western blot. Quantification of the Western blot analysis is shown in the right panel. GAPDH was
952 330 953	detected as protein loading control. Data are presented as mean ± SD. B) Northern blot analysis of
954 33 1 955	mt-tRNA ^{Arg} levels in patient (P) and control (C1, C2) fibroblasts. Quantification of the northern blot
956 957 332	analysis is shown in the lower panel. Mitochondrial tRNA ^{Ala} was detected as a loading control.
958 959 ³³³	C) Aminoacylation assay of mt-tRNA ^{Arg} in control (C1, C2) and patient (P) fibroblasts. Mitochondrial
961334 962	tRNA ^{Ala} was detected as a loading control. dAC denotes the fully deacylated control tRNA.
963335 964	Experiments in B and C were carried out only once.
965 966	
967 968	
969	
970 971	
972	
973	
974	
975	
977	
978	
979	
980	
901 982	
983	
984	
985	
900 987	
988	
989	
990	
991 992	
993	
994	
995	
996 997	
998	
999	
1000	
1001	
1003	

1006
336Table 1. Overview of clinical features in published PCH6 patients

Feature		n/nª
Global deve	opmental delay	33/33
Epileptic sei	zures	24/24
Microcepha	ly .	20/27
MRI findings	;	
Atrophy	of cerebellum	22/25
Atrophy	of pons	12/25
Atrophy	of cerebrum	18/25
Elevated lac	tate level in blood or CSF	19/23
Reduced res	piratory chain enzyme activity	10/19
Feeding diffi	culties	17/18
Dysmorphic	features	6/8
, , ,		·

CSF – cerebrospinal fluid

^a The features are variably reported in the patients.

1063	19
1064 1065 1066	References
1067 1068 43	Alfadhel, M., Yong, S.L., Lillquist, Y., Langlois, S., 2011. Precocious puberty in two girls with PEHO syndrome:
1069 107844 1071 107245	A clinical feature not previously described. J Child Neurol. 26(7):851-857. doi: 10.1177/0883073810396582.
1073 107 2 46	Alkhateeb, A.M., Aburahma, S.K., Habbab, W., Thompson, I.R., 2016. Novel mutations in WWOX, RARS2,
107 6 47 1077	and C10orf2 genes in consanguineous arab families with intellectual disability. Metab Brain Dis. 31(4):901-
107 84 8 1079 108 949 1081	907. doi: 10.1007/s11011-016-9827-9.
108 350 1083	Anttonen, AK., Hilander, T., Linnankivi, T., Isohanni, P., French, R.L., Liu, Y., Simonović, M., Söll, D., Somer,
108 3 51 1085	M., Muth-Pawlak, D., Corthals, G.L., Laari, A., Ylikallio, E., Lähde, M., Valanne, L., Lönnqvist, T., Pihko, H.,
108 <u>9</u> 52 1087	Paetau, A., Lehesjoki, AE., Suomalainen, A., Tyynismaa, H., 2015. Selenoprotein biosynthesis defect causes
¹⁰⁸ 853 1089	progressive encephalopathy with elevated lactate. <i>Neurology</i> . 85(4):306-315. doi:
¹⁰⁹ 954 1091 ¹⁰⁹² 355 1093	10.1212/WNL.00000000001787.
1094 1095 1095	Anttonen, AK., Laari, A., Kousi, M., Yang, Y.J., Jääskeläinen, T., Somer, M., Siintola, E., Jakkula, E., Muona,
1096 357 1097	M., Tegelberg, S., Lönnqvist, T., Pihko, H., Valanne, L., Paetau, A., Lun, M.P., Hästbacka, J., Kopra, O.,
1099 1099 1099 58	Joensuu, T., Katsanis, N., Lehtinen, M.K., Palvimo, J.J., Lehesjoki, AE., 2017. ZNHIT3 is defective in PEHO
1103 1103 1102	syndrome, a severe encephalopathy with cerebellar granule neuron loss. Brain. 140(5):1267-1279. doi:
110360 1104 110361 1106	10.1093/brain/awx040.
110 362 1108	Caraballo, R.H., Pozo, A.N., Gomez, M., Semprino, M., 2011. PEHO syndrome: A study of five argentinian
110 963 1110 111 364 1112	patients. Pediatr Neurol. 44(4):259-264. doi: 10.1016/j.pediatrneurol.2010.11.007.
111 365 1114	Cassandrini, D., Cilio, M.R., Bianchi, M., Doimo, M., Balestri, M., Tessa, A., Rizza, T., Sartori, G., Meschini,
111 966 1116	M.C., Nesti, C., Tozzi, G., Petruzzella, V., Piemonte, F., Bisceglia, L., Bruno, C., Dionisi-Vici, C., D'Amico, A.,
111 367 1118 1119 1120 1121	Fattori, F., Carrozzo, R., Salviati, L., Santorelli, F.M., Bertini, E., 2013. Pontocerebellar hypoplasia type 6

1122	
1123 1124 co	
1125	caused by mutations in RARS2: Definition of the clinical spectrum and molecular findings in five patients. J
$\frac{1126}{369}$	Inherit Metab Dis. 36(1):43-53. doi: 10.1007/s10545-012-9487-9.
¹¹²⁸ 1129 70	
¹¹³⁰ 1131 1131	Chitre, M., Nahorski, M.S., Stouffer, K., Dunning-Davies, B., Houston, H., Wakeling, E.L., Brady, A.F., Zuberi,
1132 113372	S.M., Suri, M., Parker, A.P.J., Woods, C.G., 2018. PEHO syndrome: The endpoint of different genetic
1134 113573 1136 113774 1138	epilepsies. J Med Genet. 55(12):803. doi: 10.1136/jmedgenet-2018-105288.
113 3 75 1140	Chitty, L.S., Robb, S., Berry, C., Silver, D., Baraitser, M., 1996. PEHO or PEHO-like syndrome? Clin
114 376 1142 114 377 1144	Dysmorphol. 5(2):143-152.
114 3 78 1146	Dong, J., Qiu, H., Garcia-Barrio, M., Anderson, J., Hinnebusch, A.G., 2000. Uncharged tRNA Activates GCN2
114 379 1148	by Displacing the Protein Kinase Moiety from a Bipartite tRNA-Binding Domain. Molecular Cell. 6(2):269-
114 980 1150 115 381 1152	279. doi: 10.1016/S1097-2765(00)00028-9.
115 <u>382</u> 1154	Edvardson, S., Shaag, A., Kolesnikova, O., Gomori, J.M., Tarassov, I., Einbinder, T., Saada, A., Elpeleg, O.,
¹¹⁵ 383 1156	2007. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with
¹¹⁵³ 84 1158 ¹¹⁵⁹ 85 1160	pontocerebellar hypoplasia. Am J Hum Genet. 81(4):857-862. doi: 10.1086/521227.
1161 386	Field, M.J., Grattan-Smith, P., Piper, S.M., Thompson, E.M., Haan, E.A., Edwards, M., James, S., Wilkinson, I.,
1163 1164 3 87	Ades, L.C., 2003. PEHO and PEHO-like syndromes: Report of five australian cases. Am J Med Genet A.
1165 1166888 1167 116889	122A(1):6-12. doi: 10.1002/ajmg.a.20216.
117 890	Flex, E., Niceta, M., Cecchetti, S., Thiffault, I., Au, M.G., Capuano, A., Piermarini, E., Ivanova, A.A., Francis,
117 2 91	J.W., Chillemi, G., Chandramouli, B., Carpentieri, G., Haaxma, C.A., Ciolfi, A., Pizzi, S., Douglas, G.V., Levine,
117 392 1175	K., Sferra, A., Dentici, M.L., Pfundt, R.R., Le Pichon, JB., Farrow, E., Baas, F., Piemonte, F., Dallapiccola, B.,
117 893 1177 1178 1179 1180	Jr., G., John M., Saunders, C.J., Bertini, E., Kahn, R.A., Koolen, D.A., Tartaglia, M., 2016. Biallelic mutations in

1181	21
1182	
1184	TBCD, encoding the tubulin folding cofactor D, perturb microtubule dynamics and cause early-onset
¹¹⁸⁵ 395 1186	encephalopathy. Am J Hum Genet. 99(4):962-973. doi: 10.1016/j.ajhg.2016.08.003.
¹¹⁸⁷ 110396	
1188	
119097	Gawlinski, P., Posmyk, R., Gambin, T., Sielicka, D., Chorazy, M., Nowakowska, B., Jhangiani, S.N., Muzny,
1191 1192 98	D.M., Bekiesinska-Figatowska, M., Bal, J., Boerwinkle, E., Gibbs, R.A., Lupski, J.R., Wiszniewski, W., 2016.
1193 119 399	PEHO syndrome may represent phenotypic expansion at the severe end of the early-onset
1195 119 400	encephalopathies. Pediatr Neurol. 60:83-87.
1197	
119 8 01 1199	
120002	Glamuzina, E., Brown, R., Hogarth, K., Saunders, D., Russell-Eggitt, I., Pitt, M., de Sousa, C., Rahman, S.,
120403	Brown, G., Grunewald, S., 2012. Further delineation of pontocerebellar hypoplasia type 6 due to mutations
1203 120 404	in the gene encoding mitochondrial arginyl-tRNA synthetase. RARS2. J Inherit Metab Dis. 35(3):459-467.
1205	
120 405 1207	
120 <u>8</u> 06 1209	González-Serrano, L.E., Karim, L., Pierre, F., Schwenzer, H., Rötig, A., Munnich, A., Sissler, M., 2018. Three
121 <u>4</u> 07 1211	human aminoacyl-tRNA synthetases have distinct sub-mitochondrial localizations that are unaffected by
121 <mark>4</mark> 08 1213	disease-associated mutations. J Biol Chem. 293(35):13604-13615. doi: 10.1074/jbc.RA118.003400.
¹²¹⁴ 409 1215	
$^{1216}_{1217}10$	Haltia M, Somer M. 1993. Infantile cerebello-optic atrophy. Neuropathology of the progressive
1218 1219 1219	encephalopathy syndrome with edema, hypsarrhythmia and optic atrophy (the PEHO syndrome). Acta
$^{1220}_{1221}_{1221}$	Neuropathol. 85(3):241-247.
1222 122 4 13	
1224	Ibba M. Soll D., 2000, Aminoacyl-tRNA synthesis, Annu Rev Biochem, 69:617-650, doi:
1225	10.444/ (annumer biach and (0.4./47
122 7 13 1228	10.1146/annurev.blochem.09.1.017.
122916	
1230 123 417	Joseph, J.T., Innes, A.M., Smith, A.C., Vanstone, M.R., Schwartzentruber, J.A., Bulman, D.F., Maiewski, J.
1232	
123418	Daza, R.A., Hevner, R.F., Michaud, J., Boycott, K.M., Consortium, F.C., 2014. Neuropathologic features of
1234 1235	
1236	
1237	
1238	
1200	

1240	22
1241	
1243	pontocerebellar hypoplasia type 6. J Neuropathol Exp Neurol. 73(11):1009-1025. doi:
$^{1244}_{1245}$	10.1097/NEN.00000000000123.
$^{1246}_{421}$	
1247	
1249 1249 1250	Kastrissianakis, K., Anand, G., Quaghebeur, G., Price, S., Prabhakar, P., Marinova, J., Brown, G., McShane, T.,
1250 125 4 23	2013. Subdural effusions and lack of early pontocerebellar hypoplasia in siblings with RARS2 mutations.
1252 1253 1253	Arch Dis Child. 98(12):1004-1007. doi: 10.1136/archdischild-2013-304308.
1254 125 3 25	Konovalova S, Tyynismaa H., 2013. Mitochondrial aminoacyl-tRNA synthetases in human disease. Mol
125426	Genet Metab. 108(4):206-211. doi: 10.1016/j.ymgme.2013.01.010.
1258 125 9 27 1260	
126 4 28 1262	Langlois, S., Tarailo-Graovac, M., Sayson, B., Drogemoller, B., Swenerton, A., Ross, C.J., Wasserman, W.W.,
126 429 1264	van Karnebeek, C.D., 2016. De novo dominant variants affecting the motor domain of KIF1A are a cause of
126 430 1266 126 43 1	PEHO syndrome. Eur J Hum Genet. 24(6):949-953. doi: 10.1038/ejhg.2015.217.
1268 126 937	Lay N.7 Alston C.L. Schon K. Park S.M. Krishnakumar D. He. L. Falkous G. Ogilyw-Stuart A. Lees C.
1270	
127 4 33 1272	King, R.H., Hargreaves, I.P., Brown, G.K., McFarland, R., Dean, A.F., Taylor, R.W., 2015. Neuropathologic
1273 434 1274	characterization of pontocerebellar hypoplasia type 6 associated with cardiomyopathy and hydrops fetalis
1275 1276 1276	and severe multisystem respiratory chain deficiency due to novel RARS2 mutations. J Neuropathol Exp
1277 436 1278	Neurol. 74(7):688-703. doi: 10.1097/NEN.00000000000000000000000000000000000
1279 1280 1280	
1281 1282 1282	Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria, A.H., Ware,
1283 128 4 39	J.S., Hill, A.J., Cummings, B.B., Tukiainen, T., Birnbaum, D.P., Kosmicki, J.A., Duncan, L.E., Estrada, K., Zhao,
1285 128 8 40	F., Zou, J., Pierce-Hoffman, E., Berghout, J., Cooper, D.N., Deflaux, N., DePristo, M., Do, R., Flannick, J.,
1287 128 8 41	Fromer, M., Gauthier, L., Goldstein, J., Gupta, N., Howrigan, D., Kiezun, A., Kurki, M.I., Moonshine, A.L.,
1209 129 0 42 1291	Natarajan, P., Orozco, L., Peloso, G.M., Poplin, R., Rivas, M.A., Ruano-Rubio, V., Rose, S.A., Ruderfer, D.M.,
129 4 43	Shakir, K., Stenson, P.D., Stevens, C., Thomas, B.P., Tiao, G., Tusie-Luna, M.T., Weisburd, B., Won, H.H., Yu,
129 4 44 1295	D., Altshuler, D.M., Ardissino, D., Boehnke, M., Danesh, J., Donnelly, S., Elosua, R., Florez, J.C., Gabriel, S.B.,
1296 1297	

		23
	Getz, G., Glatt, S.J., Hultman, C.M., Kathiresan, S., Laakso, M., McCarroll, S., McCarthy, M.I., McGovern, I	D.,
	McPherson, R., Neale, B.M., Palotie, A., Purcell, S.M., Saleheen, D., Scharf, J.M., Sklar, P., Sullivan, P.F.,	
	Tuomilehto, J., Tsuang, M.T., Watkins, H.C., Wilson, J.G., Daly, M.J., MacArthur, D.G., Consortium, E.A.,	
	2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 536(7616):285-291. doi:	
	10.1097/NEN.00000000000000000000000000000000000	
	Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,	
	Subgroup, 1000 Genome Project Data Processing, 2009. The sequence alignment/map format and	
	SAMtools. Bioinformatics. 25(16):2078-2079. doi: 10.1093/bioinformatics/btp352.	
	Li, Z., Schonberg, R., Guidugli, L., Johnson, A.K., Arnovitz, S., Yang, S., Scafidi, J., Summar, M.L., Vezina, G.	•,
	Das, S., Chapman, K., del Gaudio, D., 2015. A novel mutation in the promoter of RARS2 causes	
	pontocerebellar hypoplasia in two siblings. <i>J Hum Genet</i> . 60(7):363-369. doi: 10.1038/jhg.2015.31.	
	Longman, C., Tolmie, J., McWilliam, R., MacLennan, A., 2003. Cranial magnetic resonance imaging	
I	mistakenly suggests prenatal ischaemia in PEHO-like syndrome. Clin Dysmorphol. 12(2):133-136. doi:	
	10.1097/01.mcd.0000059769.40218.d2.	
	Luhl, S., Bode, H., Schlotzer, W., Bartsakoulia, M., Horvath, R., Abicht, A., Stenzel, M., Kirschner, J., Grune	ert,
	S.C., 2016. Novel homozygous RARS2 mutation in two siblings without pontocerebellar hypoplasia - furth	her
	expansion of the phenotypic spectrum. Orphanet J Rare Dis. 11(1):9. doi: 10.1186/s13023-016-0525-9.	
	Miyake, N., Fukai, R., Ohba, C., Chihara, T., Miura, M., Shimizu, H., Kakita, A., Imagawa, E., Shiina, M., Og	ata,
	K., Okuno-Yuguchi, J., Fueki, N., Ogiso, Y., Suzumura, H., Watabe, Y., Imataka, G., Leong, H.Y., Fattal-	
	Valevski, A., Kramer, U., Miyatake, S., Kato, M., Okamoto, N., Sato, Y., Mitsuhashi, S., Nishino, I., Kaneko,	, N.,
	Nishiyama, A., Tamura, T., Mizuguchi, T., Nakashima, M., Tanaka, F., Saitsu, H., Matsumoto, N., 2016.	

Biallelic TBCD mutations cause early-onset neurodegenerative encephalopathy. Am J Hum Genet. 99(4):950-961. doi: 10.1016/j.ajhg.2016.08.005. Nahorski, M.S., Asai, M., Wakeling, E., Parker, A., Asai, N., Canham, N., Holder, S.E., Chen, Y.C., Dyer, J., Brady, A.F., Takahashi, M., Woods, C.G., 2016. CCDC88A mutations cause PEHO-like syndrome in humans and mouse. Brain. 139(4):1036-1044. doi: 10.1093/brain/aww014. Namavar, Y., Barth, P.G., Kasher, P.R., van Ruissen, F., Brockmann, K., Bernert, G., Writzl, K., Ventura, K., Cheng, E.Y., Ferriero, D.M., Basel-Vanagaite, L., Eggens, V.R., Krageloh-Mann, I., De Meirleir, L., King, M., Graham, J.M., Jr, von Moers, A., Knoers, N., Sztriha, L., Korinthenberg, R., Consortium, P., Dobyns, W.B., Baas, F., Poll-The, B.T., 2011. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain. 134(1):143-156. doi: 10.1093/brain/awq287. Ngoh, A., Bras, J., Guerreiro, R., Meyer, E., McTague, A., Dawson, E., Mankad, K., Gunny, R., Clayton, P., Mills, P.B., Thornton, R., Lai, M., Forsyth, R., Kurian, M.A., 2016. RARS2 mutations in a sibship with infantile spasms. Epilepsia. 57(5):e97-102. doi: 10.1111/epi.13358. Nishri, D., Goldberg-Stern, H., Noyman, I., Blumkin, L., Kivity, S., Saitsu, H., Nakashima, M., Matsumoto, N., Leshinsky-Silver, E., Lerman-Sagie, T., Lev, D., 2016. RARS2 mutations cause early onset epileptic encephalopathy without ponto-cerebellar hypoplasia. Eur J Paediatr Neurol. 20(3):412-417. doi: 10.1016/j.ejpn.2016.02.012. Õunap, K., Muru, K., Õiglane-Shlik, E., Ilves, P., Pajusalu, S., Kuus, I., Wojcik, M.H., Reimand, T., 2019. PEHO syndrome caused by compound heterozygote variants in ZNHIT3 gene. European Journal of Medical Genetics. . doi: 10.1016/j.ejmg.2019.04.017. 1414 1415 1416

1417		25
1419 1420	Rankin, J., Brown, R., Dobyns, W.B., Harington, J., Patel, J., Quinn, M., Brown, G., 2010. Pontocerebellar	
1421 498 1422	hypoplasia type 6: A british case with PEHO-like features. Am J Med Genet A. 152A(8):2079-2084. doi:	
1423 1424 1424	10.1002/ajmg.a.33531.	
1425 1426 1426		
1427 142 5 01	Rausch, T., Zichner, T., Schlattl, A., Stütz, A.M., Benes, V., Korbel, J.O., 2012. DELLY: Structural variant	
1429 143 6 02	discovery by integrated paired-end and split-read analysis. <i>Bioinformatics</i> . 28(18):i339. doi:	
1431 143 <u>5</u> 03 1433	10.1093/bioinformatics/bts378.	
143 5 04		
143 6 05 1437	Salonen, R., Somer, M., Haltia, M., Lorentz, M., Norio, R., 1991. Progressive encephalopathy with edema,	
143 806 1439	hypsarrhythmia, and optic atrophy (PEHO syndrome). Clin Genet. 39(4):287-293.	
144 907 1441 144 3 08	Somer M., 1993. Diagnostic criteria and genetics of the PEHO syndrome. <i>J Med Genet</i> . 30(11):932-936.	
144 <u></u> 909 1445	Sulonen, A.M., Ellonen, P., Almusa, H., Lepisto, M., Eldfors, S., Hannula, S., Miettinen, T., Tyynismaa, H.,	
¹⁴⁴ §10 1447	Salo, P., Heckman, C., Joensuu, H., Raivio, T., Suomalainen, A., Saarela, J., 2011. Comparison of solution-	
¹⁴⁴ 811 1449	based exome capture methods for next generation sequencing. Genome Biol. 12(9):r94. Doi: 10.1186/gb-	-
$^{1450}_{1451}$ $^{1452}_{1452}$ $^{1452}_{1452}$ $^{13}_{1452}$	2011-12-9-r94.	
1453 1454 1455	van Dijk, T., van Ruissen, F., Jaeger, B., Rodenburg, R.J., Tamminga, S., van Maarle, M., Baas, F., Wolf, N.I.	,
¹⁴⁵⁶ 145715	Poll-The, B.T., 2017. RARS2 mutations: Is pontocerebellar hypoplasia type 6 a mitochondrial	
1458 145916	encephalopathy? JIMD Rep. 33:87-92. doi: 10.1007/8904_2016_584.	
1460 146 \$ 17		
1462 146 5 18	van Dijk, T., Baas, F., Barth, P.G., Poll-The, B.T., 2018. What's new in pontocerebellar hypoplasia? an upda	ate
1464 146 5 19	on genes and subtypes. Orphanet journal of rare diseases. 13(1). doi: 10.1186/s13023-018-0826-2.	
1465 1465 1468		
146 921 1470	Wang K, Li M, Hakonarson H., 2010. ANNOVAR: Functional annotation of genetic variants from high-	
147 522 1472 1473 1474 1475	throughput sequencing data. <i>Nucleic Acids Res</i> . 38(16):e164. doi: 10.1186/s13023-018-0826-2	

1476	26
1477	
¹⁴⁷⁸ 523 1479	
¹⁴⁸⁰ 1481	Wolfson, R.L., Chantranupong, L., Saxton, R.A., Shen, K., Scaria, S.M., Cantor, J.R., Sabatini, D.M., 2016.
$^{1482}_{1483}25$	Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 351(6268):43-48. doi:
$^{1484}_{1485}26$	10.1126/science.aab2674.
1486 148 5 27	
1488 1489 1400	Zhang, J., Zhang, Z., Zhang, Y., Wu, Y., 2018. Distinct magnetic resonance imaging features in a patient with
1490 149 \$ 29	novel RARS2 mutations: A case report and review of the literature. Exp Ther Med. 15(1):1099-1104. doi:
1492 149 5 30	10.3892/etm.2017.5491.
149 5 31 1496	
149 5 32 1498	Zollo, M., Ahmed, M., Ferrucci, V., Salpietro, V., Asadzadeh, F., Carotenuto, M., Maroofian, R., Al-Amri, A.,
149 933 1500	Singh, R., Scognamiglio, I., Mojarrad, M., Musella, L., Duilio, A., Di Somma, A., Karaca, E., Rajab, A., Al-
150 \$34 1502	Khayat, A., Mohan Mohapatra, T., Eslahi, A., Ashrafzadeh, F., Rawlins, L.E., Prasad, R., Gupta, R., Kumari, P.,
150 § 35 1504	Srivastava, M., Cozzolino, F., Kumar Rai, S., Monti, M., Harlalka, G.V., Simpson, M.A., Rich, P., Al-Salmi, F.,
150 § 36 1506	Patton, M.A., Chioza, B.A., Efthymiou, S., Granata, F., Di Rosa, G., Wiethoff, S., Borgione, E., Scuderi, C.,
150 <u>5</u> 37 1508	Mankad, K., Hanna, M.G., Pucci, P., Houlden, H., Lupski, J.R., Crosby, A.H., Baple, E.L., 2017. PRUNE is crucial
150 <u>5</u> 38 1510	for normal brain development and mutated in microcephaly with neurodevelopmental impairment. <i>Brain</i> .
1512 1513	140(4):940-952. doi: 10.1093/brain/awx014.
1514	
1515	
1516 1517	
1518	
1519	
1520	
1521	
1522	
1524	
1525	
1526	
1527	
1529	
1530	
1531	
1532 1533	
1534	

1535	
1536	
$^{1537}_{1538}40$	Supplemental Data
1539	
154041	Supplementary Table: Phenotypic features in published PCH6 patients
1541	
1542	
1543	
1544	
1545	
1546	
1547	
1548	
1549	
1550	
1551	
1552	
1553	
1554	
1555	
1556	
1557	
1558	
1559	
1560	
1561	
1562	
1503	
1565	
1566	
1567	
1568	
1569	
1570	
1571	
1572	
1573	
1574	
1575	
1576	
1577	
1578	
1579	
1580	
1581	
1582	
1583	
1584	
1585	
1500	
1588	
1589	
1590	
1591	
1592	
1593	

Table 1. Overview of clinical features in PCH6 patients

Feature	n/nª
Global developmental delay	33/33
Epileptic seizures	24/24
Microcephaly	20/27
MRI findings	
Atrophy of cerebellum	22/25
Atrophy of pons	12/25
Atrophy of cerebrum	18/25
Elevated lactate level in blood or CSF	19/23
Reduced respiratory chain enzyme activity	10/19
Feeding difficulties	17/18
Dysmorphic features	6/8

CSF – cerebrospinal fluid

^aThe features are variably reported in the patients.

The first author of the manuscript and the corresponding author (if different) certify on honor, on behalf of all co-authors, that they have been granted a permission to publish signed by the patient himself (or by his legal representatives) for each patient whose facial features are identifiable in the photographs illustrating this article. The authors maintain in their files a copy of this consent, which will be forwarded to Elsevier in case of complaints or legal proceedings.

Figures for which a signed consent has been obtained:

Figure number	Figure number	Figure number	Figure number
FIGURE 1			

	Name	Forename
[Signature of corresponding author redacted]	LEHESJOKI	ANNA-ELINA