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Abstract 20 

This study aimed to suggest an initial paediatric vancomycin dose regimen through population pharmacokinetic-21 

pharmacodynamic modelling. A population pharmacokinetic approach was used to analyse vancomycin 22 

concentration-time data from a large paediatric cohort. Pharmacokinetic target attainment for patients with blood 23 

stream isolates was compared with clinical outcome using logistic regression and classification and regression trees. 24 

Change in serum creatinine during treatment was used as an indicator of acute nephrotoxicity. Probability of acute 25 

kidney injury (50% increase from baseline) or kidney failure (75% increase from baseline) was evaluated using logistic 26 

regression. An initial dosing regimen was derived, personalised by age, weight and serum creatinine using stochastic 27 

simulations. Data from 785 hospitalised paediatric patients (1 day to 21 years) with suspected Gram-positive 28 

infections were collected. Estimated (RSE) typical CL, V1, Q and V2 were (standardised to 70 kg) 4.84 (2.38) L/h, 39.9 29 

(8.15) L, 3.85 (17.3) L/h, and 37.8 (10.2) L, respectively. Whilst cumulative vancomycin exposure correlated positively 30 

with the development of nephrotoxicity (713 patients) no clear relationship between vancomycin AUC and efficacy 31 

was found (102 patients). Predicted probability of acute kidney injury and kidney failure with the optimised dosing 32 

regimen at day 5 was 10-15% and 5-10 %, increasing by approximately 50% on day 7 and roughly 100% on day 10 33 

across all age groups. This study presents the first data driven paediatric dose selection to-date accounting for 34 

nephrotoxicity and indicated that cumulative vancomycin exposure best described risk of acute kidney injury and 35 

acute kidney failure. 36 

 37 

Key words: vancomycin; paediatrics; dose optimisation; pharmacokinetics; pharmacodynamics   38 
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Introduction 39 

Vancomycin is a glycopeptide antibiotic effective against Gram-positive bacteria and plays a crucial role in the 40 

treatment of serious and resistant infections, in both adults and children (1). Previous studies have reported 41 

vancomycin pharmacokinetics (PK) in children, and proposed model based dose optimisations (2-11). Dose selection 42 

in these studies adopted a 24 hour steady state Area Under the plasma concentration-time Curve (AUC) (12) over 43 

MIC ratio greater than 400 mg.h/L  (AUC/MIC>400). However, this PKPD endpoint was adopted from adults without 44 

further evaluation in children and without taking adverse effects such as nephrotoxicity into account. The overall aim 45 

of this study was to revisit the paediatric initial vancomycin dosing regimen and with this in mind there were four 46 

main aims.  47 

The first aim was to study vancomycin population PK in a large cohort. Several previous studies have sought to 48 

describe paediatric vancomycin PK reporting clearance (median [range] 4.52 [1.00-5.57] l/hr) and steady-state 49 

volume of distribution  (median [range] 37.8 [31.0-119] l) (2-8). Most of these studies used small sample sizes or 50 

focussed on paediatric sub populations such as neonates, meaning parameter comparisons between studies is 51 

challenging, not least because important covariates such as age and weight are often not parameterised in a 52 

standard way (13). Moreover, vancomycin distribution often requires two and in some cases three disposition 53 

compartments (14), although most paediatric vancomycin PK papers have previously reported a one-compartment 54 

model (2-7). Vancomycin is mainly bound to albumin in the blood (15) with protein binding ranging between 50% 55 

and 55%, resulting in free vancomycin exposure at only half the equivalent of total exposure (14).  56 

The second aim was to identify the target concentration for efficacy in paediatrics. Vancomycin AUC/MIC was found 57 

to be more predictive of efficacy than time above MIC in with methicillin-resistant Staphylococcus aureus sepsis or 58 

with a methicillin-resistant Staphylococcus aureus infection of the lower respiratory tract (16, 17). Adult patients 59 

with a target AUC/MIC value of ≥ 400 appeared to have a lower risk of treatment failure (16-18) and as free 60 

antibiotic concentrations drive the antibacterial effects AUC free/MIC ≥ 200 mg.h/L has consequently been reported 61 

as the target efficacy threshold (14).  62 

The third aim was to identify predictors of nephrotoxicity. Nephrotoxicity indices have been defined for paediatric 63 

patients (19), and risk factors for nephrotoxicity (20) such as vancomycin loading dose, , duration of vancomycin 64 
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therapy, concomitant therapy and demographic features have been defined in adult patients (21). Vancomycin 65 

trough levels and vancomycin AUC have been defined in both adults and children (22) resulting in a toxicity 66 

threshold AUC of 700 mg.h/L for the adult population and 800 mg.h/L for the paediatric population, rendering a 67 

therapeutic window of 400 to 700-800 mg.h/L (22, 23).  68 

The fourth aim was to further refine initial dosing recommendations, taking into account the findings from the 69 

modelling described above. Therapeutic Drug Monitoring (TDM), is often used to ensure that vancomycin 70 

concentrations fall within the therapeutic window (2) but optimising the starting dose may limit the need for dose 71 

adjustments. Traditionally vancomycin trough concentrations have been preferred for TDM although Bayesian 72 

forecasting is now more readily available so AUC is becoming the preferred endpoint (3). It is therefore crucial that 73 

efficacy and toxicity thresholds are adequately identified in paediatric patients.   74 
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Results 75 

Population pharmacokinetics 76 

A total of 616 patients contributing two or more vancomycin plasma samples, age, bodyweight, creatinine and 77 

dosing (intravenous infusion over one hour) data were used to build the PK model and labelled “training data” (Table 78 

1). Data from 169 patients contributing only one vancomycin plasma sample, age, bodyweight, creatinine, and 79 

dosing information (intravenous infusion over one hour) data were used for external validation of the population PK 80 

model and labelled “test data” (Table 1). Patients were only included if matching records in the TDM system were 81 

taken no later than 48 hours after a dose. Sample times reported before 1.5 hours (during or immediately after the 82 

infusion) after a dose were considered reporting errors (likely time of sample being left for the porter recorded 83 

rather than actual sampling time). These samples were subsequently considered trough values. This yielded 84 

vancomycin plasma concentration samples between 1.5 and 48 hours after dose.  85 

A two-compartment disposition model performed substantially better (p < 0.001) when compared to a one-86 

compartment model. Inter-individual variability on clearance (CL) and central volume (VC) displayed reasonably high 87 

shrinkage (24) (32% and 41%, respectively) but epsilon-shrinkage was low at 8%. Bodyweight as a continuous 88 

covariate on volume and clearance using allometric size scaling, a sigmoidal post-menstrual age maturation function 89 

and age corrected creatinine as a continuous covariate on clearance were all included a priori. A bodyweight power 90 

of 0.632 on elimination clearance provided a better fit to the data compared to a power of 0.75 (ΔOFV=-29.3). 91 

Backward exclusion of bodyweight as a continuous covariate on volume and clearance parameters (p < 0.001), post-92 

menstrual age as a maturation function on CL (p < 0.001) and creatinine on elimination CL (p < 0.001) resulted in 93 

significant worsening of the model fit and so were retained (Fig. S1).  94 

The model adequately described the vancomycin concentration-time data with a Mean Prediction Error on the test 95 

data of 0.96 mg/l (Fig. 1, Table 2, Fig. S2, Fig. S3). The final model was re-estimated on a dataset where the corrected 96 

time samples (originally reported before 1.5 hours) were omitted as sensitivity analysis, and this yielded similar 97 

parameter estimates: CL (-1.03%), PMA50 (-5.78%), Hill (36.9%) and Power Creatinine (-2.31%) which was important 98 

as dose optimisations focus on AUC. 99 
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Efficacy 100 

Among the included patients 102 had Gram positive bloodstream isolates for which MIC was measured (Table 1). 101 

Coagulase Negative Staphylococcus infections, which are largely as a result of line infections (25), or contamination, 102 

accounted for 80, rendering a limited number of true Gram-positive blood stream infections (Table 1).  103 

In patients with a blood stream organism, treatment failure was defined if at least one of the following criteria was 104 

met: 1.) deceased within 30 days of vancomycin treatment initiation, 2.) recurrent infection between 48 hours and 105 

60 days following vancomycin treatment discontinuation, and 3.) microbiologically confirmed growth 7 days after 106 

the initiation of therapy but before treatment completion (16). Treatment outcome was classified as successful if 107 

none of the above criteria were met. Neither trough concentration/MIC nor AUC/MIC correlated with probability of 108 

treatment failure in a multivariate generalised logistic regression model or in a Classification and Regression Tree 109 

analysis (Table 3, Fig. S4). 110 

Nephrotoxicity 111 

A total of 713 patients, contributing PK, baseline demographic, nephrotoxicity data and concomitant medication 112 

data were included for the characterisation of predictors for nephrotoxicity (Table 1). Urine output data were not 113 

available and hence nephrotoxicity severity was defined based on the change in creatinine criteria in the Paediatric 114 

Risk, Injury, Failure, Loss, End Stage Renal Disease (pRIFLE) score (19). The two outcome classes acute kidney injury 115 

and acute kidney failure corresponded to a 50% and 75% increase in plasma creatinine compared to baseline values, 116 

respectively. 117 

The multivariable logistic regression model (Table 4), demonstrated an increase in the probability of acute kidney 118 

injury or kidney failure with increasing cumulative Area Under the plasma concentration-time Curve up to 8 hours 119 

post last dose (AUCCUM) (increase of estimate±standard error 1.17±0.178 per unit increase in log(AUCCUM), p<0.001). 120 

Similarly an increase in the probability of acute kidney failure with increasing AUCCUM (increase of 1.32±0.237 per 121 

unit increase in log(AUCCUM), p<0.001) and concomitant therapy with ciclosporin (increase of 0.739±0.358 per unit 122 

increase in creatinine, p<0.05) was observed. Baseline plasma creatinine displayed a non-significant trend (p < .01) of 123 

increased probability of acute kidney injury and acute kidney failure (Table 4). Approximately half of the patients had 124 

their dose changed during the first week of the treatment, with most of the modifications being dose increases 125 
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(Table 1). Consequently, unlike AUCCUM, 24 hour AUC did not come out as a significant predictor for nephrotoxicity in 126 

the multivariable logistic regression (Table 4). 127 

The predictive performance of the multivariable logistic regression models for acute kidney injury and acute kidney 128 

failure, with only statistically significant predictors included, was further evaluated. The models were trained on 70% 129 

of the patients, which were selected at random. The models were subsequently tested on the other 30% of the 130 

patients and area under the ROC curve was used as diagnostic tool. If the area under the ROC curve was ≥ 0.6 the 131 

logistic regression model was refitted on the full dataset (26). AUCCUM was included a priori in the predictive logistic 132 

regression models for acute renal injury (Table S1) with ciclosporin concomitant therapy on top for acute renal 133 

failure (Table S2) and displayed an area under the ROC curve of 0.640 and 0.643, respectively. The predictive logistic 134 

regression model for acute renal injury on full data had an area under the ROC curve of 0.676 (Table S3) and the 135 

predictive logistic regression model for acute renal failure on full data had an area under the ROC curve of 0.685 136 

(Table S4). 137 

Dose optimisation 138 

Current paediatric initial vancomycin dosing regimens, 15 mg/kg 8 hourly for children 0-1 month, 10-15 mg/kg 6 139 

hourly for children 1 month – 11 years and 15-20 mg/kg 8-12 hourly for children 12 years and above (1), were 140 

revisited using the developed population pharmacokinetic model and 2,000 stochastic simulations. As the efficacy 141 

analysis in this study did not yield target levels in the paediatric patient population, a vancomycin AUC target 142 

attainment ≥ 400 was adopted from an adults (16-18). Most of patients achieved target attainment when 143 

vancomycin after the current standard dosing regimens were stratified by bodyweight although a clear positive 144 

correlation with increased plasma creatinine was apparent, hence patients in the lower creatinine band displayed a 145 

lower vancomycin AUC (Fig. 2). Further stratification of the vancomycin dosing regimen by baseline plasma 146 

creatinine yielded target attainment for most of the patients, both when stratified by bodyweight and baseline 147 

plasma creatinine  (Table 5; Fig. 2). Estimated Glomerular Filtration Rate (eGFR) for each baseline plasma creatinine 148 

and age group, using the Schwartz formula (27), indicated that the proposed dosing regimen remained untested for 149 

paediatric patients with kidney failure, with all eGFR estimates above 20 mL/min (Table 5). 150 

Subsequently, correlations between vancomycin AUCCUM and probability of acute kidney injury or acute kidney 151 

failure, with the optimised initial vancomycin dosing regimen, was studied using the predictive multivariable logistic 152 
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regression models for acute kidney injury and acute kidney failure and 500 stochastic simulations. The predicted 153 

probability of acute kidney injury and kidney failure at day 5 for children 0-1 month was 13.3 [4.95-27.3] % and 5.55 154 

[2.00-12.3]%, increasing to 19.4 [7.88-37.2]%  and 8.36 [3.21-18.0]% on day 7 and 27.7 [12.4-48.5%] and 12.6 [5.13-155 

25.8]% on day 10 (Fig. 3). A similar probability of acute kidney injury and kidney failure was predicted at day 5 for 156 

children 1 month –2 years at 14.2 [2.29-30.2] % and 6.78 [2.27-19.1]%, increasing to 20.4 [8.20-40.2] % and 10.0 157 

[3.54-26.7]% on day 7 and to 28.7 [12.6-51.5] % and 14.8 [5.52-36.2] % on day 10 (Fig. 3). Also for children 2-11 years 158 

predicted probability of acute kidney injury and kidney failure was similar with 12.9 [4.69-28.0] % and 6.10 [2.02-159 

17.9]% after 5 days of treatment, increasing to 18.7 [7.33-37.8]% and 9.07 [3.16-25.2] % on day 7 and 26.6 [11.4-160 

49.2] % and 13.5 [4.95-34.5]% on day 10 (Fig. 3). Day 5 predictions for probability of acute kidney injury and acute 161 

kidney failure in the eldest children of 12 years and above were in a similar range at 14.6 [5.24-31.1] % and 6.33 162 

[2.15-15.8]%, increasing to 21.1 [8.29-41.6] % and 9.47 [3.42-22.6] % on day 7 and 29.8 [12.9-53.1] % and 14.1 [5.44-163 

31.6] % on day 10 (Fig. 3). For comparison, approximately 6.38% and 3.55% of the patients in the data had observed 164 

acute kidney injury or acute renal failure at day 5 and approximately 13.0% and 4.63% of the patient in the data had 165 

observed acute kidney injury and acute renal failure at day 10.  166 
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Discussion 167 

This study provides a comprehensive evaluation of vancomycin PKPD in a paediatric population with to our 168 

knowledge the largest sample size to date. Our major finding is that AUCCUM is associated with risk of nephrotoxicity. 169 

The optimised dosing regimen resulted in a predicted 10-15% and 5-10 % probability of acute kidney injury and 170 

kidney failure at day 5, increasing by approximately 50% on day 7 and roughly 100% on day 10 across all age groups 171 

(Fig. 3). 172 

Population pharmacokinetics 173 

In general, vancomycin population PK characteristics were in agreement with those previously published literature. 174 

For example, creatinine levels, relative to the mean age adjusted creatinine levels for the individual patient, 175 

displayed a negative exponential correlation with vancomycin elimination clearance, similar to other renally cleared 176 

drugs such as gentamicin (28). Unlike in most other paediatric vancomycin PK studies, where mostly a one-177 

compartment disposition model was identified, a two-compartment disposition model was identified in this 178 

paediatric patient population due to 1 hour post infusion sampling taken in a part of our dataset (Fig. 1, Table 2, Fig. 179 

S2, Fig. S3). 180 

A 0.632 bodyweight power on CL was evaluated in addition to the conventional 0.75 power as vancomycin is 181 

eliminated renally. The 0.632 power provided a superior model fit (ΔOFV=-29.3) over the 0.75 power which could be 182 

explained by renal maturation and therefore drug elimination (29). The power function on inter-compartmental 183 

clearance was fixed to 0.75 and to 1 for distribution volumes based on tissue blood flow and proportional growth 184 

between body size, respectively.  185 

Efficacy 186 

Neither vancomycin trough concentrations or AUC correlated with treatment failure in this paediatric patient 187 

population with a variety of blood stream infections (Table 3, Fig. S3) although several studies in adults with 188 

methicillin resistant Staphylococcus aureus blood stream infections concluded that the PKPD endpoint of AUC/MIC ≥ 189 

400 mg.h/L was clinically relevant (16-18). A plausible explanation for this discrepancy is the large number of 190 

Coagulase Negative Staphylococcus infections (Table 1). Coagulase Negative Staphylococcus infections are likely to 191 

be a result of line infections (25) or contamination and cause limited morbidity. For the remaining 22 Gram-positive 192 
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blood stream infections there was insufficient statistical power to refute AUC target attainment ≥ 400 mg.h/L (16-193 

18). The fact that we only had 22 in 785 patients with confirmed Gram-positive isolates on blood culture highlights 194 

the lack of infections at the study centre, possibly due to good infection control procedures, and shows how difficult 195 

running prospective paediatric antimicrobial clinical trials is when so few patients have identifiable infections.  196 

Nephrotoxicity 197 

Validation of renal toxicity biomarkers in children is lacking which directly stipulates the limitation of the nephrotoxic 198 

results presented in this investigation. The most commonly studied renal biomarkers have limited use and validity, 199 

e.g. urinary and serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) – this biomarker rises with creatinine but 200 

also with white cell count, procalcitonin and C-Reactive Protein so its use is limited in the setting of infection/acute 201 

inflammation. “Normal ranges” are also lacking e.g. Smertka et al found similar NGAL levels in babies with and 202 

without renal impairment (30).  203 

Acute kidney injury and acute kidney failure corresponded to a 50% and 75% increase in plasma creatinine compared 204 

to baseline values in this study. Even though such increases in creatinine as a percentage of baseline levels may be 205 

high, creatinine level may be still in range further complicating the interpretation of the biomarker. 206 

Nonetheless, duration of treatment turned out to be an important risk factor for renal disease, underwritten by a 207 

significant correlation between acute kidney injury or acute kidney failure and AUCCUM (Table 4). The predictive 208 

performance of AUCCUM aligns with the previously described delay in nephrotoxicity, which has been found to occur 209 

late in the first week of vancomycin therapy (31). Creatinine levels should therefore be monitored carefully in 210 

patients on vancomycin to facilitate early detection and intervention. Moreover, vancomycin treatment for more 211 

than 7 days should be carefully considered and weighted against the probability of acute kidney injury and acute 212 

kidney failure. It should be noted here that our simulations show the probability of nephrotoxicity without dose 213 

adjustment.   214 

Whilst recently Zasowski et al suggested a toxicity threshold AUC of 700 mg x h/L, and thereby a therapeutic window 215 

of 400-700 mg.h/L (23) no significant correlation between acute kidney injury or acute kidney failure and AUC could 216 

be identified in our data (Table 4). The fact that almost half of the patients in this study had their doses changed 217 

during the first seven days of treatment, with the majority of the dose changes being dose increases (Table 1) may 218 
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be responsible. This may highlight that the use of 24 hour AUC as predictive variable for kidney injury and kidney 219 

failure is inappropriate in a clinical setting. 220 

Dose optimisation 221 

Vancomycin dosing recommendations have changed since the data collection period (32) with 15 mg/kg 8 hourly for 222 

children 0-1 month, 10-15 mg/kg 6 hourly for children 1 month – 11 years and 15-20 mg/kg 8-12 hourly for children 223 

12 years and above as most recent dosing recommendations (1). Using currently recommended vancomycin dosing 224 

we stratified the mg per kg doses by baseline creatinine level (Table 5). Even after stratifying mg per kg dose by age 225 

and creatinine, it is clear that TDM will continue to be required since target attainment is low in some categories 226 

(Fig. 2). Also from a nephrotoxicity perspective TDM continues to be required, hence vancomycin TDM is focused on 227 

avoiding renal failure. At day 5 approximately 6.38% and 3.55% of the patients had observed acute kidney injury or 228 

acute renal failure and at day 10, approximately 13.0% and 4.63% of the patient had observed acute kidney injury 229 

and acute renal failure. This was substantially lower compared to simulations in Figure 3 highlighting the impact of 230 

TDM as the virtual patient population remained on the initial dosing regimen for the entire duration of the simulated 231 

treatment whereas the real observed patients underwent TDM guided dose reduction. 232 

Although trough levels of 10-15 mg/l and 15-20 mg/l have been recommended (32, 33), we chose to target AUC > 233 

400 hr.mg/l, a target that is now becoming a preferred PK endpoint with increasing availability of Bayesian TDM 234 

software.  It should be noted that this target has not been evaluated in children, and our attempt at modelling 235 

efficacy was hampered by the limited number of patients in our study having non-coagulase negative Staphylococcus 236 

Gram positive blood stream infections. 237 

In summary, although we present one of the largest paediatric datasets, our study did have some limitations. A 238 

relatively high between patient variability and shrinkage on elimination clearance (Table 2) emphasises the need for 239 

caution with regards to the interpretation of dose optimisation results and the need for a confirmatory, prospective 240 

clinical study. Our centre does not have a maternity unit and hence only a small fraction of our patients were 241 

neonates (Table 1), most of whom were admitted for surgery. Moreover, eGFR might be most relevant for 242 

vancomycin dosing personalisation although patients heights were not routinely recorded making individual level 243 

eGFR calculations (27) impossible. Instead, baseline plasma creatinine band was used to further stratify initial 244 

paediatric vancomycin dosing and indicative eGFR values were reported for each age and baseline creatinine group 245 
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(Table 5). The use of eGFR for personalised initial paediatric vancomycin dosing has to be further evaluated in 246 

prospective clinical studies. Furthermore, whilst our PK model could potentially be used for extrapolation to the pre-247 

term neonatal population, given our similar maturation parameters (Table 2) to previous studies (28), in-depth 248 

evaluation of PD and nephrotoxicity in neonatal patients is required. 249 

The current paediatric dosing regimen for vancomycin adequately accounts for changes in bodyweight although 250 

variability could be substantially reduced by taking creatinine levels into account. Combining creatinine, age and 251 

bodyweight can reduce the risk of toxicity by reduced variability in target attainment, although TDM continues to be 252 

required in order to ensure vancomycin exposure is adequate. This work indicates that paediatric target attainment 253 

from an efficacy perspective tends to be adequately reached although monitoring of kidney function remains 254 

important in view of the increased probability of acute kidney injury or acute kidney failure with prolonged 255 

vancomycin treatment.   256 
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Materials and methods 257 

Experimental design 258 

This study was a retrospective analysis of paediatric patients treated with vancomycin at a large tertiary paediatric 259 

hospital (Great Ormond Street Hospital) in London, United Kingdom. De-identified data were extracted from 260 

electronic health records with ethical approval without the requirement for written informed consent provided 261 

(17/LO/0008). Patients included in the study were hospitalised between 2010 and 2016 and contributed vancomycin 262 

drug level, dosing (intravenous infusion over one hour) and demographic data. For a selection of patients, MIC was 263 

available for bloodstream isolates and these patients were included in the PKPD efficacy study.  264 

Vancomycin assay 265 

Vancomycin quantification in plasma was undertaken at the department of medical microbiology of the Great 266 

Ormond Street Hospital, London, United Kingdom using Indiko Plus (a CE marked assay). Indiko Plus is fully atomised 267 

and uses a Quantitative Microsphere System immunoassay. The assay is based on the competition between drug in 268 

the sample, and drug coated onto a micro particle for antibody binding sites and the rate of absorbance change, 269 

measured photometrically. The lower and upper limits of detection were 2.0 and 100 µg/ml. 270 

Plasma creatinine assay 271 

Plasma creatinine was measured using an enzymatic creatinine method on Vitros 5600 clinical chemistry auto 272 

analyser (Ortho Clinical Diagnostics, High Wycombe, UK).  The assay is traceable to a gas chromatography isotopic 273 

dilution mass spectroscopy method and National Institute of Standards and Technology (NIST) SRM 914 creatinine 274 

standard reference material. The coefficient of variance for the assay was 2.1% at 76 μmol/L and 2.5% at 479 275 

μmol/L. The limit of quantification is 4 μmol/L. 276 

MIC determination 277 

The MICs of vancomycin were determined by E-strips (manufactured by Oxoid) and Mueller-Hinton Agar. The 278 

laboratory has maintained full accreditation with CPA and now UKAS LTD under Standard: ISO 15189:2012 - Medical 279 

Laboratories. 280 
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Data analysis 281 

Population pharmacokinetics 282 

Vancomycin concentration-time data transformed into their natural logarithm was modelled using a First Order 283 

Conditional Estimation method with interaction in NONMEM v.7.3.0 with a gfortran compiler on a Windows 10 284 

operating system. The supporting software packages PsN v.4.2.0 (http://psn.sourceforge.net/) and R v.3.2.3 285 

(https://www.r-project.org/) were used for model building.  286 

One- and two-compartment disposition models were tested in combination with bodyweight as the continuous 287 

covariate for clearance and volume parameters, with allometric scaling standardised to a 70 kg individual included a 288 

priori (34). A sigmoidal maturation factor based on postmenstrual age (PMA) (34) was estimated, and the effect of 289 

deviation from age standardised serum creatinine was also tested using a power model (35, 36). Hierarchical models, 290 

developed using the model building data was evaluated and compared Normalised Prediction Distributed Error 291 

(NPDE) and the objective function (-2 x log likelihood) (37). Inter individual variability was calculated as 100 ×292 

√𝑒η − 1 and relative standard errors were derived non-parametric bootstraps in NONMEM (n = 1,000) as  293 

100 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑀𝑀𝑀𝑀

. The best performing model was subsequently externally evaluated using a visual predictive 294 

check (37) (nsimulations=2,000) on the test data and the Mean Prediction Error was calculated (𝑀𝑀𝑀 = ∑ 𝐷𝐷𝑖−𝐼𝐼𝐼𝐼𝐼𝑖𝑛
𝑖=1

𝑛
). 295 

Efficacy 296 

Steady state vancomycin AUC and trough concentrations after three doses of vancomycin were derived using 297 

Empirical Bayes Estimates (EBE-) parameter estimates for all patients in the training dataset and test dataset who 298 

also contributed MIC data. Logistic regression (p < 0.05) was used to identify the impact of vancomycin trough 299 

concentration, AUC, creatinine levels, bodyweight and post-natal age on treatment efficacy and breakpoints were 300 

identified using Classification and Regression Tree analysis (p < 0.05) (38). Besides a full Classification and Regression 301 

Tree analysis for treatment efficacy, another Classification and Regression Tree analysis was performed. AUC/MIC 302 

was excluded in the latter analysis to identify break points relevant for clinical use when Bayesian forecasting 303 

software is not available. 304 
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Nephrotoxicity 305 

Under the assumption that cumulative drug exposure may be important for nephrotoxicity development vancomycin 306 

AUCCUM, during the first treatment episode, was derived using EBE-parameter estimates for all patients in the 307 

training dataset and test dataset, where treatment episode was defined as a period of continuous vancomycin 308 

treatment of 48 hours or longer without disruption. Logistic regression (p < 0.05) was conducted to identify the 309 

impact of AUCCUM, baseline creatinine, post-natal age and concomitant therapy with aminoglycosides, diuretics, 310 

NSAIDs, ciclosporin and colistin on acute kidney injury (50% increase from baseline) and acute kidney failure (75% 311 

increase from baseline) (19). A predictive logistic regression model (p < 0.05) was developed using the variables that 312 

were significantly associated with acute kidney injury or acute kidney failure.  313 

Dose optimisations 314 

Dose optimisations were carried out aiming to optimise target attainment, AUC > 400 hr.mg/l in a virtual patient 315 

population (n=750) comprising demographics from patients in the training and test datasets with baseline creatinine 316 

levels of ≥ 15 µmol/l. First vancomycin AUC after 15 mg/kg 8 hourly for children 0-1 month, 10-15 mg/kg 6 hourly for 317 

children 1 month – 11 years and 15-20 mg/kg 8-12 hourly for children 12 years and above (1) were simulated (n = 318 

2,000) to elucidate the impact of bodyweight and creatinine in four distinct age ranges i.e. 0 – 1 month (n = 48), 1 319 

month – 2 years (n = 254), 2 – 12 years (n = 389) and older than 12 years (n = 94).  320 

Subsequently, dosages were refined based on baseline plasma creatinine band to ensure adequate exposure 321 

throughout the entire virtual patient population. The probability on AUC > 400 was compared between the standard 322 

and optimised treatment using 2,000 stochastic simulations of the identical virtual patient population characteristics 323 

as used for exploratory purposes. Corresponding eGFR for each of the age and baseline plasma creatinine level 324 

groups was calculated using the Schwartz formula: ( 𝑘×𝐻𝐻𝐻𝐻ℎ𝑡
𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

) with 0.413 for k, height in cm and plasma 325 

creatinine in mg/dL (27). Average height for age, derived from WHO tables, was 51.9, 76.1, 121 and 168 cm for 326 

children 0-1 month, 1 month – 2 years, 2-12 years and >12 years, respectively (39, 40). Median plasma creatinine 327 

was 0.255, 0.452, 0.792, and 1.02 mg/dl for the (15-30], (30-50], (50-90], and >90 µmol/l baseline creatinine band, 328 

respectively. Dose optimisations for patients with creatinine levels < 10 and creatinine levels > 100 µmol/l were 329 

considered unreliable and therefore should be interpreted with caution. 330 
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Predictive generalised linear models for acute kidney injury or acute kidney failure and AUCCUM and ciclosporin 331 

concomitant therapy were used to evaluate the nephrotoxicity risk profile during 10 days of treatment with the 332 

optimised vancomycin dosing schedule in a virtual patient population with baseline creatinine levels ≥ 15 µmol/l and 333 

for which concomitant therapy data was available (n=680).   334 
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Table 1: Summary of patient data mean [range]. 

Pharmacokinetic analysis 

 Training data Test data 

Study size (n) 616 169 

Sample size (n) 4137 169 

Samples per patient (n) 7 [2-50] 1 [1-1] 

Treatment length (days) 8 [0-83] 3 [0-15.2] 

First episodea 9 [0-83] 3 [0-15.2] 

Consecutive episodesa 7 [0-43.7] 2 [0-3.6] 

Age (months) 61 [0.03-255] 63 [0.08-204] 

0-1 month (n) 39 9 

1 month – 2 years (n) 195 59 

2 – 12 years (n) 314 75 

> 12 years (n) 68 26 

Body weight (kg) 19 [0.742-95] 20 [1.18-107] 

Creatinine (µmol/l) 39 [5-892] 35 [8-291] 

Creatinine samples per patient (n) 14 [1-118] 3 [1-13] 

Pharmacokinetic-pharmacodynamic analysis of efficacy 

 on M
arch 19, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


23 
 

 Study size Died Recurrence 
Microbiological 

failure 
MIC (mg/l) AUC/MIC 

All 102 3 6 7 2 [0.12-4] 320 [50-2755] 

CoNS 80 3 5 7 2 [0.5-4] 260 [50-846] 

M. luteus 1 0 0 0 0.12 2755 

Unknown 10 0 1 0 1 [0.5-2] 348 [127-620] 

S. aureus 9 0 0 0 2 [0.5-2] 369 [125-1007] 

V. streptococci 2 0 0 0 1 [0.5-1] 1155 [364-1947] 

Pharmacokinetic-pharmacodynamic analysis of nephrotoxicity 

 All data Normal kidney function Kidney injury Kidney failure 

Study size (n) 713 618 41 54 

Aminoglycosides (n) 405 (56.8 %) 336 (54.4 %) 30 (73.2 %) 39 (72.2 %) 

Diuretics (n) 219 (30.7 %) 172 (27.8 %) 18 (43.9 %) 29 (53.7 %) 

NSAIDs (n) 166 (23.3 %) 149 (24.1 %) 8 (19.5 %) 9 (16.7 %) 

Ciclosporin (n) 112 (15.7 %) 78 (12.6 %) 11 (26.8 %) 23 (42.6 %) 

Colistin (n) 6 (0.842 %) 5 (0.809 %) 1 (2.44 %) 0 (0 %) 

No dose change 381 346 16 19 

One dose change 200 170 12 18 
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Fraction increased dose 0.732 0.75 0.72 0.6 

Two dose changes 102 80 11 11 

Fraction increased dose 0.682 0.676 0.672 0.706 

Three dose changes 21 17 1 3 

Fraction increased dose 0.8 0.773 1 0.833 

Four dose changes 8 5 0 3 

Fraction increased dose 0.667 0.6 - 1 

Five dose changes 1 0 1 0 

Fraction increased dose 1 - 1 - 

a A treatment episode was defined as consecutive dosing no longer than 48 hours apart and 0 represents patients only having received one dose of vancomycin. CoNS: 459 

Coagulase negative staphylococcus 460 
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Table 2: Summary of population pharmacokinetic parameter estimates. 

 Fixed effects (RSE) IIV (RSE) 

Cl (l/h) 4.84 (2.38) 50.4 (11.8) 

   PMA50 50.2 (3.34) - 

   HILL 3.52 (14.8) - 

   PowerCreatinine  -0.692 (5.28) - 

VC (l) 39.9 (8.15) 232 (17.2) 

Q (l/h) 3.85 (17.3) - 

VP (l) 37.8 (10.2) - 

RUV 0.243 (4.85) - 

ηCL-ηVc 0.535 (11.2) - 

CL: elimination clearance, VC: distribution volume central compartment, Q: inter-compartmental clearance, VP: 

distribution volume peripheral compartment, PMA50: Post-natal age half-maximum organ maturation, 

PowerCreatinine: exponent on creatinine function, RUV: additive residual variability on log transformed data and ηCL-

ηVc: correlation between variability on clearance and distribution volume central compartment. Clearance and 

volume parameters were centralised around a 70 kg patient using 0.632, 0.75 and 1 as power functions for CL, Q 

and the distribution volumes (VC and VP), respectively. IIV: Inter Individual Variability (100 × √𝑒η − 1) and RSE: 

relative standard errors were derived from 962 (out of 1000) converged non-parametric bootstraps in NONMEM 

as  100 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑀𝑀𝑀𝑀

. 

 461 
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Table 3: Summary of pharmacokinetic-pharmacodynamic analysis of efficacy. 

 AUC/MIC Ctrough/MIC 

 Estimate Std. Error z-value Pr(>|z|) Estimate Std. Error z-value Pr(>|z|) 

Intercept -4.18 2.8 -1.49 0.135 -1.88 0.826 -2.27 0.0231* 

Log(AUC/MIC) 0.487 0.498 0.977 0.329 . . . . 

Log(Ctrough/MIC) . . . . 0.296 0.331 0.894 0.371 

M. luteus -18.5 6520 -0.00284 0.998 -18 6520 -0.00277 0.998 

Unknown -1.14 1.16 -0.982 0.326 -1.08 1.14 -0.941 0.347 

S. aureus -17.3 2140 -0.00806 0.994 -17.1 2120 -0.00803 0.994 

V. streptococci -18.8 4490 -0.00418 0.997 -18.4 4580 -0.00401 0.997 

Creatinine 0.000607 0.0147 0.0413 0.967 0.00116 0.0148 0.0786 0.937 

Age 0.0151 0.0127 1.19 0.234 0.0145 0.0128 1.14 0.256 

Bodyweight -0.0384 0.0683 -0.562 0.574 -0.0406 0.0679 -0.599 0.549 

Age:bodyweight -0.0000234 0.000376 -0.0624 0.95 -0.00000403 0.000375 -0.0107 0.991 

Unknown: unidentified bacterial species. 462 

* p < 0.05  463 
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 464 

Table 4: Summary of pharmacokinetic-pharmacodynamic analysis of nephrotoxicity. 

 AUC and kidney injury or failure AUC and kidney failure 

 Estimate Std. Error z-value Pr(>|z|) Estimate Std. Error z-value Pr(>|z|) 

Intercept -0.333 1.84 -0.18 0.857 -1.48 2.33 -0.639 0.523 

Log(AUC) -0.186 0.342 -0.544 0.586 0.0277 0.428 0.0647 0.948 

Aminoglycosides 0.372 0.263 1.41 0.158 0.17 0.341 0.498 0.618 

Diuretic 0.704 0.244 2.89 0.0039** 0.808 0.313 2.58 0.00995** 

NSAIDs -0.0129 0.313 -0.0412 0.967 0.0201 0.42 0.0479 0.962 

Ciclosporin 1.17 0.274 4.26 0.0000209** 1.44 0.341 4.23 0.0000234** 

Colistin 0.203 1.13 0.179 0.858 -14 955 -0.0147 0.988 

Creatinine -0.051 0.0203 -2.52 0.0118* -0.0811 0.0276 -2.94 0.0033** 

Age -0.00523 0.00419 -1.25 0.212 -0.0117 0.00504 -2.32 0.0203* 

Creatinine:Age 0.000281 0.000122 2.31 0.0211* 0.000484 0.000156 3.1 0.00192** 

 AUCCUM and kidney injury or failure AUCCUM and kidney failure 

Intercept -11.5 1.42 -8.12 4.68E-16** -13.4 1.92 -6.96 3.29E-12** 

Log(AUCCUM) 1.17 0.178 6.55 5.71E-11** 1.32 0.237 5.57 0.000000026** 

Aminoglycosides 0.276 0.276 1 0.317 0.0584 0.358 0.163 0.87 
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Diuretic 0.179 0.258 0.696 0.486 0.216 0.328 0.657 0.511 

NSAIDs 0.0274 0.327 0.0839 0.933 0.104 0.435 0.239 0.811 

Ciclosporin 0.549 0.291 1.88 0.0596 0.739 0.358 2.06 0.0391* 

Colistin 1.12 1.16 0.962 0.336 -13 923 -0.0141 0.989 

Creatinine 0.00591 0.00321 1.84 0.0655 0.00643 0.00361 1.78 0.0751 

Age -0.00369 0.00256 -1.44 0.15 -0.00556 0.00332 -1.68 0.0938 

Creatinine:Age -0.000000257 0.0000283 -0.00911 0.993 0.00000702 0.0000303 0.232 0.817 

* p < 0.05   ** p < 0.01465 
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Table 5: Overview refined paediatric initial dosing regimen (mg/kg). 

Creatinine 

band 

(µmol/l) 

0-1 month 1-month-2 years 2-12 years >12 years 

eGFR Dosage eGFR Dosage eGFR Dosage eGFR Dosage 

(15-30] 84.2 20 q8h 123 20 q6h 197 20 q6h 272 35 q8h 

(30-50] 47.4 15 q8h 69.4 15 q6h 111 15 q6h 153 25 q8h 

(50-90] 27.1 10 q8h 39.7 10 q6h 63.2 10 q6h 87.5 15 q8h 

>90 21.1 10 q8h* 30.9 5 q6h 49.2 5 q6h 68.0 7.5 q8h 

* Not supported by data as no patients were available in this category. eGFR: estimated Glomerular Filtration Rate 466 

( 𝑘×𝐻𝐻𝐻𝐻ℎ𝑡
𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

) in mL/min. 467 

  468 
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Figure 1: The left panel represents the simulation based goodness of fit plots on the training data including 469 

Normalised Prediction Distributed Error (NPDE) versus population predictions (on natural logarithm scale), NPDE 470 

versus Time After Dose, density distribution of NPDE and a qq-plot for NPDE. The right panel represents a visual 471 

predictive check of 2,000 simulated concentration-time profiles using the final model, for the test data. Points 472 

represent the observations, black lines represent the 2.5th, 50th, and 97.5th percentiles, and the shaded areas 473 

represent the 95% confidence intervals of the corresponding predicted vancomycin concentration percentiles. The x-474 

axis of visual predictive check was constrained between 1.5 and 12 hours leaving 14 scattered samples between 12 475 

and 48 hours not shown. 476 

  477 
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Figure 2 Vancomycin trough concentrations versus creatinine levels (top row) and bodyweight (bottom row) after 478 

the standard dosing regimen (green and red) and optimised dosing regimen (blue). Results were stratified for age 479 

group (by column). The dashed black horizontal lines represent the target exposure (i.e. 400 hrxmg/l). Dots 480 

represent the mean median values from 2,000 simulations and the error bars represent the mean 5th and 95th 481 

percentiles. The “(“ parentheses on the x-axes indicates equal and larger and the “]” parentheses indicates smaller 482 

than. 483 
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32 
 

Figure 3: Probability of nephrotoxicity (top row, grey: acute kidney injury and black: acute kidney failure) and 485 

vancomycin exposure (bottom row) for treatment with the optimised dosing regimen for different durations. Results 486 

were stratified for age group (by column). Dots represent the mean median values from 500 simulations and the 487 

error bars represent the mean 5th and 95th percentiles. 488 
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