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Abstract230

Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common231

respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with232

smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the Exome-233

array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed234

effects meta-analysis of up to 61 studies (346,813 participants). In a subset of 112,811 participants, a further235

one million SNVs were also genotyped and tested for association with the four smoking behaviour traits.236

SNV-trait associations with P<5x10-8 in either analysis were taken forward for replication in up to 275,596237

independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies238

was performed.239

Sixteen SNVs were associated with at least one of the smoking behaviour traits (P<5x10-8) in the discovery240

samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them241

(rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219242

near TMEM182) replicated at a Bonferroni significance threshold (P<4.5x10-3) with consistent direction of243

effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication244

meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-245

frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of246

REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the247

genetic aetiology of smoking behaviour and may lead to identification of potential drug targets for smoking248

prevention and/or cessation.249

250
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Introduction251

Smoking is a major risk factor for many diseases, including common respiratory disorders such as chronic252

obstructive pulmonary disease (COPD)1, 2, cancer3 and cardiovascular diseases4, and is reported to cause 1 in253

10 premature deaths worldwide5. A greater understanding of the genetic aetiology of smoking behaviour has254

the potential to lead to new therapeutic interventions to aid smoking prevention and cessation, and thereby255

reduce the global burden of such diseases.256

Previous genome-wide association studies (GWASs) identified 14 common SNVs1, 6-12 (with minor allele257

frequency, MAF>0.01) robustly associated with smoking behaviour related traits (P<5x10-8). The 15q25258

(CHRNA3/5-CHRNB4) region has the largest effect, explaining ~1% and 4-5% of the phenotypic variance of259

smoking quantity13 and cotinine, a biomarker of nicotine intake14, respectively. Overall, genetic loci identified260

to date explain ~2% of the estimated genetic heritability of smoking behaviour6, which is reported to be261

between 40-60%15-17. A recent study suggested that an important proportion (~3.3%) of the phenotypic262

variance of smoking behaviour related traits was explained by rare nonsynonymous variants (MAF<0.01)18.263

Hence, well-powered studies of rare variants are needed.264

To investigate the effect of rare coding variants on smoking behaviour, we studied 346,813 participants (of265

which 324,851 were of European ancestry) from 62 cohorts (Supp. Tables 1 and 2) at up to 235,116 SNVs266

from the exome array. As we had access to UK Biobank, we also interrogated SNVs present on the UK267

Biobank and UK BiLEVE Axiom arrays to identify additional associations across the genome beyond the268

exome array. To our knowledge, these datasets are an order of magnitude larger than the previous studies6,269

and constitute the most powerful exome-array study of smoking behaviour to date.270

Materials and Methods271

Participants272

Our study combined study-level summary association data from up to 59 studies of European ancestry and273

two studies of South Asian ancestry from three consortia (CGSB (Consortium for Genetics of Smoking274

Behaviour), GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN) and the Coronary275

Heart Disease (CHD) Exome+ consortium) INTERVAL and UK Biobank. In total, up to 324,851 individuals276

of European ancestry and 21,962 South Asian individuals were analysed in the discovery stage (Figure 1).277

Further information about the participating cohorts and consortia is given in Supp. Table 1 and the Supp.278

Material. All participants provided written informed consent and studies were approved by local Research279

Ethics Committees and/or Institutional Review boards.280

Phenotypes281
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We chose to analyse the following four smoking behaviour related traits because of their broad availability in282

existing epidemiological and medical studies, as well as their biological relevance for addiction behaviours:283

i) Smoking initiation (binary trait: ever vs never smokers). Ever smokers were defined as284

individuals who have smoked >99 cigarettes in their lifetime, which is consistent with the285

definition by the Centre for Disease Control19;286

ii) Cigarettes per day (CPD; quantitative trait: average number of cigarettes smoked per day by ever287

smokers);288

iii) Pack-years (quantitative trait; Packs per day x Years smoked, with a pack defined as 20289

cigarettes); years smoked is typically formed from age at smoking commencement to current age290

for current smokers or age at cessation for former smokers.291

iv) Smoking cessation (binary trait: former vs current smokers).292

In UK Biobank, phenotypes were defined using phenotype codes 1239, 1249, and 2644 for smoking initiation293

and smoking cessation, and 1239, 3436, 3456 for CPD and pack-years. CPD was inverse normal transformed294

in the CHD Exome+, INTERVAL and CGSB studies and categorised (1-10, 11-20, 21-30, and 31+ CPD) by295

the GSCAN studies and UK Biobank (Supp. Table 2). All studies performed an inverse normal296

transformation of pack-years. Summary statistics of study level phenotype distributions are provided in Supp.297

Table 1.298

Genotyping and quality control299

Fifty-nine cohorts were genotyped using exome arrays (up to 235,116 SNVs) and two (UK Biobank and300

INTERVAL) were genotyped using Axiom Biobank Arrays (up to 820,000 SNVs; Supp. Table 2). In total,301

~1.06M SNVs were analysed including ~64,000 SNVs on both the Axiom and Exome Arrays. Furthermore,302

two studies (NAGOZALC and GFG) genotyped their participants using arrays with custom content,303

increasing the total number of variants analysed to 1,207,583 SNVs. Individual studies performed quality304

control (QC; Supp. Material, Supp. Table 2) and additional QC was conducted centrally (i) to ensure alleles305

were consistently aligned, (ii) that there were no major sample overlaps between contributing studies, and (iii)306

variants conformed to Hardy-Weinberg equilibrium and call rate thresholds. We also examined the307

distribution of the effect sizes and test statistics across cohorts to ensure the test statistics were well-calibrated.308

Study level analyses309

Each study (including the case-cohort studies20) undertook analyses of up to four smoking traits using310

RAREMETALWORKER21 or RVTESTS22 (Supp. Table 2), which generated single variant score statistics311

and their covariance matrices within sliding windows of 1Mb. CPD and pack-years were analysed using linear312

models or linear mixed models. Smoking initiation and smoking cessation were analysed using logistic313
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models or linear mixed models. All studies adjusted each trait for age, sex, at least three genetic principal314

components and any study-specific covariates (Supp. Table 2). Chromosome X variants were analysed using315

the above described approach, but coding males as 0/2. This coding scheme ensures that on average females316

and males have equal dosages and so is optimal for genes that are inactivated (due to X chromosome317

inactivation) and is valid for genes that do not undergo X chromosome activation. Males and females were318

analysed together adjusting for sex as a covariate.319

Single variant meta-analyses320

Fixed effects meta-analyses across the individual contributing studies of single variant associations were321

undertaken using the Cochran-Mantel-Haenszel method in RAREMETAL. Z-score statistics were used in the322

meta-analysis to ensure that the association results are robust against potentially different units of323

measurement in the phenotype definitions across studies23. We performed genomic control correction on the324

meta-analysis results. Variants with P<1x10-6 in tests of heterogeneity were excluded. Variants with P≤5x10-8325

were taken forward for replication. In addition, rs12616219 was also taken forward for replication as its P-326

value was very close to this threshold (smoking initiation, P=5.49x10-8). None of the rare SNVs were genome-327

wide significant, therefore we also took forward the rare variant with the smallest association P-value,328

rs141611945 (P=2.95x10-7; MAF<0.0001).329

Replication and combined meta-analysis of discovery and replication data330

As UK biobank genetic data were released in two phases, we took the opportunity to replicate findings from331

the discovery stage in a further 275,596 individuals made available in the phase two release of UK Biobank332

genetic data. To avoid potential relatedness between discovery and replication samples, the replication333

samples were screened and individuals with relatedness closer than second degree with the discovery sample334

in the UK Biobank were removed 24. Phenotypes were defined in the same way as the discovery samples335

(described above). Since the exome array and the UK Biobank Axiom arrays do not fully overlap, we used336

both genotyped exome variants (approx. 64,000) as well as the additional ~90,000 well imputed exome array337

variants from UK Biobank (imputation quality score>0.3) for replication of single variant and gene-based338

tests. The rare ATF6 variant was absent from the UK Biobank array and is more prevalent in Africans339

(MAF=0.01) than Europeans (MAF=0.0007). Therefore, replication was sought in 1,437 individuals of340

African American-ancestry from the HRS and COGA studies. Analysis methods for replication cohorts were341

the same as for discovery cohorts, including methods to analyse chromosome X (Supp. Table 2). The criteria342

set for the replication were (i) the same direction of effect as the discovery analysis and (ii) P≤0.0045 in the343

replication studies (i.e. Bonferroni-adjusted for eleven SNVs at α=0.05). 344
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Finally, in order to fully utilise all available data, we carried out a combined meta-analysis of the discovery345

and replication samples across the exome array content using the same protocols mentioned above.346

Conditional analyses347

To identify conditionally independent variants associations within previously reported and novel loci a348

sequential forward stepwise selection was performed25. A 1MB region was defined around the reported or349

novel sentinel variant (500kb either side) and conditional analyses performed with all variants within the350

region. If a conditionally independent variant was identified, (P<5x10-6; Bonferroni adjusted for ~10,000351

independent variants in the test region) the analysis was repeated conditioning on both the most significant352

conditionally independent variant and the sentinel variant. This stepwise approach was repeated (conditioning353

on the variants identified in current and earlier iterations) until there were no variants remaining in the region354

that were conditionally independent. The same protocol was followed for the novel SNVs identified in this355

study.356

Gene-based analyses357

For discovery gene-based meta-analyses, we utilised three statistical methods as part of the RAREMETAL358

package: the Weighted Sum Test (WST)26, the burden test27 and the Sequence Kernel Association test359

(SKAT)28. EPACTS (v.3.3.0)29 was used to annotate variants (for use in gene-based meta-analyses), as360

recommended by RAREMETAL. Two MAF cut-offs were used, one used low frequency (MAF<0.05) and361

rare variants, the second only used rare variants (MAF<0.01). Nonsynonymous, stop gain, splice site, start362

gain, start loss, stop loss, and synonymous variants were selected for inclusion. A sensitivity analysis to363

exclusion of synonymous variants was also performed. Gene-level associations with P<8x10-7 were deemed364

statistically significant (Bonferroni-adjusted for ~20,000 genes and three tests at α=0.05). To examine if the365

gene associations were driven by a single variant, the gene tests were conducted conditional on the SNV with366

the smallest P-value in the gene, using the shared single variant association statistic and covariance matrices21,367

25.368

Mendelian Randomization analyses369

To evaluate the causal effect of SI and CPD on BMI, schizophrenia and educational attainment (EA), we370

conducted Mendelian randomization (MR) analyses using three complementary approaches available in MR-371

Base30: inverse variance weighted regression31, MR-Egger32, 33, and weighted median34. We used both the372

previously reported smoking associated SNVs and the SNVs from the current report (as provided in Tables 1-373

3 and Supp. Table 3) as instrumental variables. The BMI35, schizophrenia36 and educational attainment37 data374

came from previously published publicly available data. To assess possible reverse causation, we also used375
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outcome associated SNVs as instrumental variables and conducted MR analyses using SI and CPD as376

outcome. We considered P<0.05/3=0.017 as statistically significant (Bonferroni adjusted for three traits).377

In silico functional follow up of associated SNVs378

To identify whether the (replicated) SNVs identified here affected other traits, we queried the GWAS379

Catalog38 (version: e91/28/02/2018, downloaded on 01/03/18) for genome-wide significant (P<5x10-8)380

associations using all proxy SNVs (r2≥0.8) within 2Mb of the top variant in our study. 381

eQTL lookups were carried out in the 13 brain tissues available in GTEx V739, Brain xQTL (dorsolateral382

prefrontal cortex)40 and BRAINEAC41 databases, all of which had undergone QC by the individual studies.383

We did not perform additional QC on these data. In brief, GTEx used Storey’s q-value method to correct the384

FDR for testing multiple transcripts based upon the empirical P-values for the most significant SNV for each385

transcript43. BRAINEAC calculated the number of tests per transcript and used Benjamini-Hochberg386

procedure to calculate FDR per transcript using a FDR<1% as significant. BRAINxQTL used P<8x10-8 as a387

cut-off for significance for any given transcript. SNVs that met the study specific significance and FDR388

thresholds, which were in LD (r2>0.8 in 1000 Genomes Europeans) with the top eQTL or the sentinel eQTL389

for a given tissue/transcript combination were considered significant. The genes implicated by these eQTL390

databases and/or coding changes (e.g. missense and nonsense SNVs) were put into ConsensusPathDB44 to391

identify whether these genes were over-represented in any known biological pathways. Replicated missense392

SNVs were also put into PolyPhen-245 and FATHMM (unweighted)46 to obtain variant effect prediction.393

Results394

Single variant associations395

In the discovery meta-analyses, we identified 15 common SNVs that were genome-wide significant (P<5x10-396

8) for one or more of the smoking behaviour traits, of which 9 were novel (Table 1, Supp. Table 3). Seven397

novel loci were identified for smoking initiation, one for both CPD and pack-years and one for smoking398

cessation (Figures 1, 2, Table 1 and Supp. Figure 1). Results for the significant loci were consistent across399

participating cohorts and there was at least nominal evidence of association (P<0.05) at the novel loci within400

each of the contributing consortia (Supp. Table 4). Full association results for all novel SNVs across the four401

traits are provided in Supp. Table 5. No rare variants were genome-wide significant; the rare variant with the402

smallest P-value was a missense variant in ATF6, rs141611945 (MAF<0.0001, CPD P=2.95x10-7).403

Eleven SNVs (including rs12616219 near TMEM182 with P=5.49x10-8, and the rare variant, rs141611945)404

were taken forward for replication in independent samples (Table 1). The latest release of European UK405

Biobank individuals not included in the discovery stage (smoking initiation, n=275,596; smoking cessation406

n=123,851; CPD n=80,015; pack-years n=78,897), was used for replication of the common variants (Figure407
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1). Five of the common variants replicated (four for smoking initiation and one with CPD and pack-years) at408

P<0.0045. Two coding variants (rs11539157, rs1190736) were predicted to be ‘probably damaging’ by409

PolyPhen-2 and FATHMM. The remaining five SNVs were at least nominally associated (P<0.01) in the410

replication samples and had consistent direction of effect across discovery and replication. Replication for the411

rare variant rs141611945 could not be carried out in UK Biobank as the SNV nor its proxies (r2>0.3) were412

available. Thus we initiated replication in African American samples of the COGA (n=476) and HRS (n=961)413

cohorts (overall MAF≈0.01). The direction of effect was consistent in the two replication cohorts and 414

consistent with the discovery meta-analysis but a meta-analysis of the two replication cohorts yielded a415

P=0.28. Further data are required to replicate this association.416

We also performed a meta-analysis combining the discovery and replication samples (up to 622,409417

individuals). LD score regression showed that the λ (intercept) for all traits was ~1.00, which indicated that418

confounding factors inflating the results was not an issue47, 48. The combined analysis identified 35 additional419

novel SNV-smoking trait associations, 33 with smoking initiation, one with CPD and one with smoking420

cessation at P<5x10-8 (Table 2). We note that among our four SNVs that did not replicate, rs216195 (in421

SMG6) was genome-wide significant in the combined meta-analysis of discovery and replication studies422

(P=2.41x10-9; Table 2).423

We also calculated the phenotypic variance explained for novel and known variants. Results can be found in424

the ‘Calculation of Phenotypic Variance Explained’ section in the Supplementary Material.425

Associations at known smoking behaviour loci426

We assessed evidence for associations at the 14 SNVs previously reported for smoking behaviour-related427

traits. Seven were genotyped on the exome array and proxies (r2>0.3; ±2Mb) were identified for the remaining428

seven (Supp. Table 3). All showed nominal evidence of association at P<0.05 and six of these were genome-429

wide significant in the meta-analysis of the trait for which it was previously reported (Supp. Table 3 and 5).430

Conditional analyses identified five independent associations within three previously reported loci and all five431

replicated (Table 3). At the 19q13 (RAB4B) locus, there were three variants in or near CYP2A6 associated432

with CPD independently of the established variant (rs7937) and each other: rs8102683 (conditional433

P=4.53x10-16), rs28399442 (conditional P=2.63x10-12) and rs3865453 (conditional P=4.96x10-10) and434

rs28399442 was a low frequency variant. The same SNVs also showed evidence of independent effects with435

pack-years, albeit with larger P-values (P<5x10-6; Supp. Table 5). At the TEX41/PABPC1P2 locus,436

rs11694518 (conditional P=3.43x10-7) was associated with smoking initiation independently of the established437

variant (rs10427255). At 15q25, rs938682 (P=7.78x10-21) was associated with CPD independently of the438
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established variant (rs1051730) and (in agreement with a previous report49) is an eQTL for CHRNA5 in brain439

putamen basal ganglia tissues in GTEx.440

Gene-based association studies441

Gene-based collapsing tests using MAF<0.01 variants, did not identify any associated genes at the pre-442

specified P<8x10-7 threshold. Of the top four gene associations, three were novel (CHRNA2, MMP17, and443

CRCP) and one was known (CHRNA5), and had P<7x10-4, with CPD and/or pack-years (Supp. Table 6).444

Analyses conditional on the variant with the smallest P-value in the gene, revealed the associations at445

CHRNA2, MMP17 and CRCP were due to more than one rare variant (conditional P<0.05; Supp. Table 6).446

In contrast, the CHRNA5 gene association was attributable to a single variant (rs2229961).447

Mendelian Randomization analyses448

We conducted MR analyses to elucidate the potential causal impact of SI and CPD on BMI, schizophrenia and449

EA using the MR-Egger, median weighted and inverse variance weighted methods. We found a causal450

association between SI and EA using both the median weighted and inverse variance weighted methods451

(P<0.0001; Supp. Table 7) but not with MR-Egger (P=0.2). There was an association of SI with BMI using452

MR-Egger only (P=0.01; Supp. Table 7), but there was evidence of horizontal pleiotropy (P=0.001) and no453

support from the other methods. Similarly, increased CPD was only associated with reduced BMI using the454

weighted median approach (P=0.009) and not the other methods (P>0.017). We also tested if schizophrenia,455

EA or BMI causally influence CPD or SI using SNVs associated with schizophrenia, EA and BMI,456

respectively, as instrumental variables. No evidence of such reverse causation was found (Supp. Table 7).457

These results were consistent with previous analyses50. There was no evidence of a causal effect of SI on458

schizophrenia, or CPD on educational attainment (Supp. Table 7).459

Functional characterization of novel loci460

Using proxies with r2≥0.8 in1000 Genomes Europeans, we queried the GWAS catalogue38 (P≤5x10-8) for461

pleiotropic effects of our novel sentinel SNVs. Two, rs11539157 and rs3001723 were previously associated462

with schizophrenia36, suggesting shared biological pathways between schizophrenia and smoking behaviours463

(Table 2). This fits with the known association of smoking with schizophrenia51. Two, rs1514175 and464

rs2947411 have previously been associated with BMI52, and extreme obesity53.465

eQTL lookups in GTEx V7 (13 Brain tissues with ≥80 samples)39, Brain xQTL40 and BRAINEAC41 databases466

revealed that the A allele at rs462779, which decreases risk of smoking initiation, also decreased expression of467

REV3L in cerebellum in GTEx (A allele P=4.8x10-8; β =-0.40) and was in strong LD with the top eQTL for468

REV3L in cerebellum (r2=0.86 with rs9487668 in 1000 Genomes Europeans). The smoking initiation-469
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associated SNV, rs12780116, was an eQTL for BORCS7 in four brain tissues, and NT5C2 in the cerebellar470

hemisphere (A allele P=4.5x10-7; β =-0.32) and the cerebellum (P=5.6x10-6; β =-0.415; in strong LD with the471

top eQTL, r2=0.97 with rs11191546). The G allele of a second variant in the region, rs7096169 (intronic to472

BORCS7 and only in weak LD with rs12780116, r2=0.18 in 1000G Europeans) increases smoking initiation473

and reduces expression of BORCS7 and AS3MT in eight brain tissues (including dorsolateral prefrontal cortex474

in the Brain xQTL and was the top BORCS7 eSNP in GTEx in the Cerebellar Hemisphere, Cerebellum, and475

Spinal cord cervical-C1). The same variant also reduced expression of ARL3 in cerebellum in GTEx (Table476

2).477

Biological pathway enrichment analyses carried out in ConsensusPathDB44 using the genes implicated by the478

eQTL databases (Table 2) and/or a coding SNVs (i.e. PJA1, GPR101) showed that the (i) pyrimidine479

metabolism and (ii) activation of nicotinic acetylcholine receptors pathways are enriched for these smoking480

behaviour associated genes (false discovery rate<0.01; P<0.0001).481

Discussion482

Smoking is the most important preventable lifestyle risk factor for many diseases, including cancers3, 54, heart483

disease4, 55 and many respiratory diseases such as COPD1, 2. Not initiating is the best way to prevent smoking-484

related diseases and genetics can play a considerable part in smoking behaviours including initiation. We have485

performed the largest exome-wide genetic association study of smoking behaviour-related traits to date486

involving up to 622,409 individuals, and identified and replicated five associations, including two on the X-487

chromosome (Table 1). We identified a further 35 novel associations in a meta-analysis of discovery and488

replication cohorts (Table 2). We validated 14 previously reported SNV-smoking trait associations (Supp.489

Table 3) and identified secondary independent associations at three loci, including three in the 19q13 region490

(rs8102683, rs28399442, and rs3865453; Table 3).491

Gene-based tests improve power by aggregating effects of rare variants. While no genes reached our492

Bonferroni-adjusted P-value threshold, we identified three candidate genes with multiple rare variant493

associations for future replication: calcitonin gene-related peptide-receptor component (CRCP) with CPD and494

CHRNA2 and MMP17 with pack-years (Supp. Table 6; also see ‘Genes of Interest’ section in Supp.495

Material). CRCP’s protein product is expressed in brain tissues amongst others and functions as part of a496

receptor complex for a neuropeptide that increases intracellular cyclic adenosine monophosphate levels56.497

MMP17 encodes a matrix metalloproteinase that is also expressed in the brain and is a member of the498

peptidase M10 family, and proteins in this family are involved in the breakdown of extracellular matrix in499

normal physiological processes57. Given, we were not able conclusively to identify rare variant associations,500

even larger studies, are required to identify rare variants associated with smoking behaviours. In addition,501

phenotypes such as cotinine levels58 and nicotine metabolism speed59 could be interrogated using methods502

such as MTAG60 to improve power.503
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As recommended by UK Biobank, we analysed UK Biobank samples by adjusting for genotyping array504

because a subset of (extreme smokers in) UK Biobank were genotyped on a different array (UK BiLEVE).505

However, this adjustment could potentially introduce collider bias in analyses of smoking traits. Given that the506

UK BiLEVE study is relatively small compared to the full study, and the genetic effect sizes for smoking507

associated variants are small, we expect the influence of collider bias to be small70. Nevertheless, we508

performed sensitivity analyses to assess the impact of collider bias. Firstly, we performed a meta-analysis509

excluding the UK BiLEVE samples, and secondly, we re-analysed UK Biobank without adjusting for510

genotype array. As expected, the estimated genetic effects from these additional analyses were very similar to511

our reported results suggesting collider bias is not a concern (Suppl. Table 8).512

Follow-up of the replicated SNVs in the literature and eQTL databases implicated some potentially interesting513

genes: NT5C2 is known to hydrolyse purine nucleotides and be involved in maintaining cellular nucleotide514

balance, and was previously associated with schizophrenia61. REV3L, encodes the catalytic subunit of DNA515

polymerase ζ (zeta) which is involved in translesion DNA synthesis. Previously, polymorphisms in a 516

microRNA target site of REV3L were shown to be associated with lung cancer susceptibility62. We showed517

that decreased expression of REV3L may also lower the probability of smoking initiation. The SNV,518

rs11776293, intronic in EPHX2, associated with reduced SI in the combined meta-analysis, and is in LD with519

rs56372821 (r2=0.83), which is associated with reduced cannabis use disorder63. rs216195 (in SMG6) was520

genome-wide significant in the discovery and the combined meta-analysis. SMG6 is a plausible candidate521

gene as it was previously shown to be less methylated in current smokers compared to never smokers64. The522

combined meta-analysis also identified a rare missense variant in CCDC141, rs150493199 (MAF<0.01; Table523

2). Coding variants in CCDC141 were previously associated with heart rate65 and blood pressure66, 67.524

Smoking behaviours represent a complex phenotype that are linked to an array of socio-cultural and familial,525

as well as genetic determinants. Kong et al., recently reported that ‘genetic-nurture’ i.e. effects of non-526

transmitted parental alleles, affect educational attainment68. They also show that there is an effect of527

educational attainment and genetic nurture on smoking behaviour. Four of our sentinel SNVs (or a strong528

proxy; r2>0.8) were associated with years of educational attainment37 (rs2292239, rs3001723 (P<5x10-8),529

rs9320995 (P=8.90x10-7), and rs13022438 (P=3.79x10-6), in agreement with this paradigm and our MR530

analyses indicated that initiating smoking reduced years in education. Future family studies will be required to531

disentangle how much of the variance explained in the current analysis is due to direct versus genetic532

nurturing effects.533

Our study primarily focused on European ancestry, but we also included two non-European studies but these534

non-European studies lacked statistical power on their own to identify ancestry specific effects. Therefore, we535

did not perform ancestry specific meta-analyses. Nevertheless, our results offered cross ancestry replication.536

One of the associations identified in the conditional analyses, rs8102683 (near CYP2A6), confirmed an537
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association with CPD that was previously identified by Kumasaka et al. in a Japanese population69 but this is538

the first time it was associated in Europeans (rs8102683 is also correlated with rs56113850 (r2=0.43), a SNV539

identified previously by Loukola et al.59 in a genetic association study of nicotine metabolite ratio in540

Europeans). As more non-European studies become available, it would be of great interest to perform non-541

European ancestry studies, in order to fine-map causal variants for smoking related traits.542

CPD and pack-years are two correlated measures of smoking. In the ~40,000 individuals from UK Biobank543

with CPD and pack-years calculated, correlation between CPD and pack-years was 0.640. Interestingly, while544

pack-years was inversely correlated with smoking cessation (-0.18) i.e. the more years a smoker has been545

smoking the less likely they were to cease, CPD was positively correlated with smoking cessation (0.13) i.e.546

heavier smokers were more likely to stop smoking. In contrast, the DBH SNV, rs3025343, (first identified via547

its association with increased smoking cessation6) was associated with increased pack-years (P=1.29x10-14)548

and increased CPD (P=2.93x10-9) in our study. The association at DBH also represents the first time that a549

SNV has a smaller P-value for pack-years (n=131,892) compared to CPD (n=128,746). These findings may550

help elucidate the genetic basis of these correlated addiction phenotypes.551

We performed the largest exome-wide genetic association study of smoking behaviour-related traits to date552

and nearly doubled the number of replicated associations to 24 (including conditional analyses) including553

associations on the X-chromosome for the first time, which merit further study. We also identified a further 35554

novel smoking trait associated SNVs in the combined meta-analysis. The novel loci identified in this study555

will substantially expand our knowledge of the smoking addiction related traits, facilitate understanding the556

genetic aetiology of smoking behaviour and may lead to identification of drug targets of potential relevance to557

prevent individuals from initiating smoking and/or aid smokers to stop smoking.558
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Figure legends

Figure 1: Study design including discovery and replication stages. NB: Gene-based studies, conditional

analyses, and replication in African American ancestry samples not shown here for clarity. *GFG and

NAGOZALC studies contributed additional custom content.

Figure 2: A concentric Circos plot of the association results for Smoking Initiation (SI; outer ring), Cigarettes

per day (CPD) and Smoking Cessation (SC; inner ring) for chromosomes 1 to 22 (Pack-years results, which

can be found in Supp. Figure 1, are omitted for clarity). Each dot represents a SNV, with the X and Y axes

corresponding to genomic location in Mb and -log10 P-values, respectively. Labels show the nearest gene to

the novel sentinel variants identified in the discovery stage and taken forward to replication. The top signals

were truncated at 10-10 for clarity. Novel and previously reported signals are highlighted in red and dark blue,

respectively. Grey rings on the y-axis increase by increments of 2 (initial ring corresponding to P=0.001, then

0.00001 etc.); and the outer and inner red rings correspond to the genome-wide significance level (P=5x10-8)

and P=5x10-7, respectively. Image was created using Circos (v0.65).
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Tables

Table 1: AssociationresultsforS N Vsidentifiedinsinglevariantassociationm eta-analysesandtakenforw ardtoreplicationareprovided.N ovelsm okingtrait
associatedS N Vsthatreplicatedw ithP< 0.005 andhadconsistentdirectionofeffectindiscovery andreplicationarehighlightedin bold.T hereplicationsam plesize
forsm okinginitiation(S I),CP D,pack-years(P Y),andsm okingcessation(S C)w ere275,596,80,015,78,897,and123,851 respectively.Chrom osom e(Chr)and
position(P os)forhg19 build37.EA:Effectallele;O A:otherallele;Gene:closestgene;N :num berofindividuals;EAF:Effectallelefrequency inthepooledsam ples;
M AC:M inorallelecount;DoE:Directionofeffect;S E:S tandarderror.AllS N Vshadheterogeneity P>0.02 inthediscovery stage.*R eplicationw assoughtin1,437
individualsofAfricanAm erican-ancestry from theHR S andCO GA studies;** T hereplication-stagebeta(se)fortheassociationofrs1190736 w ithP Y inthe
replicationstagew as-0.026 (0.0039).

dbSNP ID
(Exom eID)

Chr:Pos EA/OA Gene Consequence Trait Discovery stage Replication stage

N EAF DoE P-value
Beta (SE)

P-value

rs141611945
(exm 118559)

1:161771868 G/A ATF6 M issense CP D 128,746 0.0065%
M AC=9

+ 2.95x10-7 0.184 (0.169) *P=0.276 inAfricanAm erican
sam ples

rs1190736 **
(exm 1659559)

X :136113464 A/C GPR101 M issense CP D
(P Y)

99,037
(96,824)

46.6%
(47.0% )

- 1.40x10-11

(4.98E-09)
-0.028(0.0041)
-0.027(0.0049)
-0.028(0.0073)

Allsam ples:8.20E-12 (2.7E-11)
M alesonly:1.90E-08 (6.0E-08)

Fem aleonly:1.10E-04 (7.1E-04)

rs462779
(exm 572256)

6:111695887 A/G REV3L M issense S I 346,682 80.1% - 4.52x10-8 -0.023 (0.0034) 9.7E-12

rs216195
(exm 1276230)

17:2203167 G/T SMG6 M issense S I 335,406 27.3% - 2.80x10-8 -0.008(0.0029) 8.5E-03

rs11539157
(exm 1643833)

X :68381264 A/C PJA1 M issense S I 289,917 16.5% + 1.39x10-11 0.022 (0.0026)
0.0158(0.0033)
0.0185 (0.0039)

Allsam ples:5.40E-17
M alesonly:1.30E-06

Fem alesonly:2.20E-06

Non-Exome-chip SNVs

rs12616219 2:104352495 A/C TMEM182 Intergenic S I 112,811 46.4% - 5.49x10-8 -0.015 (0.0027) 5.5E-08

rs1150691 6:28168033 G/A ZSCAN9 M issense S I 112,811 34.8% - 4.95x10-8 -0.007(0.0028) 8.0E-03

rs2841334 9:128122320 A/G GAPVD1 Intronic S I 112,811 20.9% - 2.28x10-8 -0.009 (0.0033) 7.5E-03

rs202664 22:41813886 C/T TOB2 Intergenic S C 51,043 19.9% - 1.02x10-8 -0.011 (0.0050) 2.1E-02

rs11895381 2:60053727 A/G BCL11A Intergenic S I 112,811 34.2% - 5.61x10-9 -0.007(0.0028) 1.2E-02

rs12780116 10:104821946 A/G CNNM2 Intronic S I 112,811 13.9% + 9.19x10-10 0.017(0.0039) 1.1E-05
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Table 2: AssociationresultsfornovelS N Vsidentifiedinthecom binedm eta-analysisofthediscovery andreplicationcohorts.Chrom osom e(Chr)andposition(P os)

foreachS N V isgivenforhg19 build37.O nly S N Vsreachinggenom e-w idesignificance(P<5x10-8)inthecom binedm eta-analysisareshow n.M agnitudeoftheeffect

sizeestim atesarenotpresentedastraitsw eretransform edindifferently by thethreeconsortiaanalysed.S N Vsidentifiedinthediscovery stageofthisstudy (see

T able1)aredenoted#.T hediscovery sam plesizeforsm okinginitiation(S I),CP D,pack-years(P Y),andsm okingcessation(S C)w ere346,813,128,746,131,892,and

121,543,respectively;andthereplicationsam plesizeforS I,CP D,P Y,andS C w ere275,596,80,015,78,897,and123,851,respectively.N B:rs6673752 (intronicto

UBAP2L)w asnotavailableinthediscovery cohorts.EA:Effectallele;O A:otherallele.Beta(se):betaandstandarderrorforassociationinthereplicationstage.All

S N Vshadheterogeneity P>0.0001.

dbSNP ID
(Exom e-chipID)

Chr:Pos EA/OA Gene Consequence Trait EAF Beta (se)in
replication
stage

P-value in combined meta-
analysis
(P-value in
Discovery/Replication stage)

Notes

Combining only genotyped Exome-chip content on the Axiom array

rs1514175 1:74991644 G/A TNNI3K Intronic S I 0.57 -0.011 (0.003) 5.42x10-9 (9.03x10-5/1.0x10-5) P reviously associatedw ithBM I

rs7096169 10:104618695 G/A BORCS7
(CNNM2# inT able
1)

Intronic S I 0.31 0.016 (0.003) 2.17x10-13 (3.38x10-7/7.3x10-9) r2=0.28betw een rs7096169 and
rs12780116 (T able1)in1000 Genom es
EU R .P reviously associatedw ith
S chizophrenia.rs7096169 aneQ T L for
ARL3, BO R CS 7,and AS3MT in ≥1 of the 
braintissuesinGT Ex

rs2292239 12:56482180 G/T ERBB3 Intronic S I 0.66 0.0121 (0.003) 2.78x10-8 (7.56x10-5/1.5x10-5) P reviously associatedw ithtype-1
diabetesandyearsofeducational
attainm ent.rs2292239 isaneQ T L for
RPS26 and SUOX in ≥4 of the brain 
tissuesinGT Ex

rs216195 17:2203167 G/T SMG6# M issense S I 0.29 -0.0076 (0.003) 2.41x10-9 (2.80x10-8/8.5x10-3) S am eS N V asinTable 1

Combining well-imputed Exome-chip content on the Axiom array

rs2960306
(exm 383568)

4:2990499 T /G GRK4 M issense CP D 0.34 -0.024 (0.005) 1.06x10-9 (3.99x10-5/3.8x10-6) rs2960306 isaneQ T L forGRK4 infour
ofthebraintissuesinGT Ex

rs4908760 1:8526142 A/G RERE Intronic S I 0.35 0.0078(0.003) 1.76x10-8 (3.36x10-6/4.7x10-3) P reviously associatedw ithVitiligo

rs6692219
(exm 127721)

1:179989584 C/G CEP350 M issense S I 0.028 -0.0257(0.008) 4.69x10-9 (1.08x10-6/1.3x10-3)

rs11971186 7:126437897 G/A GRM8 Intronic S I 0.20 -0.0080 (0.003) 1.45x10-8 (1.38x10-6/3.9x10-3)

rs150493199
(exm 249655)

2:179721072 A/T CCDC141 M issense S C 0.0098 0.048(0.134) 1.28x10-8 (6.45x10-8/0.72)

Non-Exome-chip SNVs
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rs3001723 1:44037685 A/G PTPRF Intronic S I 0.21 0.0159 (0.003) 6.64x10-11 (0.00015/4.1x10-8) P reviously associatedw ith
S chizophreniaand Yearsof
educationalattainm ent

rs1937455 1:66416939 G/A PDE4B Intronic S I 0.30 -0.0146
(0.0027)

1.23x10-9 (0.00073/5.6x10-8)

rs72720396 1:91191582 G/A BARHL2 Intergenic S I 0.16 -0.0150 (0.003) 9.86x10-9 (5.63x10-5/1.9x10-6)

rs6673752 1:154219177 C/G UBAP2L Intronic S I 0.055 -0.027(0.004) 1.1x10-11 (N A/1.1x10-11)

rs2947411 2:614168 G/A TMEM18 Intergenic S I 0.83 0.0189 (0.004) 4.97x10-10 (0.00017/7.1x10-8) P reviously associatedw ithBM I

rs528301 2:45154908 A/G SIX3 Intergenic S I 0.38 0.0136 (0.002) 4.12x10-11 (1.77x10-6/3.8x10-7)

rs6738833 2:104150891 T /C TMEM182# Intergenic S I 0.33 -0.018(0.003) 8.66x10-14 (1.63x10-6/4.4x10-11) r2=0.69 betw eenrs6738833 and
rs12616219 (T able1)inEuropean
sam plesofthe1000 Genom esP roject

rs13026471 2:137564022 T /C THSD7B Intronic S I 0.18 0.0127(0.003) 2.45x10-8 (0.00028/3.0x10-5)

rs6724928 2:156005991 C/T KCNJ3 Intergenic S I 0.32 -0.011 (0.003) 4.47x10-8 (0.0019/4.8x10-5)

rs13022438 2:162800372 G/A SLC4A10 Intronic S I 0.27 0.0146 (0.003) 1.41x10-11 (0.0005/8.1x10-8)

rs1869244 3:5724531 A/G LOC105376939 Intergenic S I 0.32 0.0123 (0.003) 2.76x10-9 (0.00040/4.1x10-6)

rs35438712 3:85588205 T /C CADM2 Intronic S I 0.25 0.017(0.003) 1.99x10-13 (1.15x10-5/3.2x10-10)

rs6883351 5:22193967 T /C CDH12 Intronic S I 0.34 0.0129 (0.003) 4.69x10-8 (0.0010/1.4x10-6)

rs6414946 5:87729711 C/A TMEM161B Intronic S I 0.32 -0.0137(0.003) 5.27x10-10 (3.63x10-5/2.8x10-7)

rs11747772 5:166992708 C/T TENM2 Intronic S I 0.25 0.0144 (0.003) 6.20x10-9 (0.011/2.2x10-7)

rs9320995 6:98726381 G/A POU3F2 Intergenic S I 0.18 0.0150 (0.003) 1.70x10-8 (0.00079/6.1x10-7)

rs10255516 7:1675621 G/A ELFN1 Intergenic S I 0.33 -0.0139 (0.003) 2.86x10-10 (0.0021/1.8x10-7)

rs10807839 7:3344629 G/A SDK1 Intronic S I 0.19 0.0162 (0.003) 8.93x10-11 (0.0026/4.4x10-8)

rs6965740 7:117514840 T /G CTTNBP2 Intergenic S I 0.31 -0.0126 (0.003) 9.66x10-9 (5.56x10-6/2.8x10-6)

rs11776293 8:27418429 T /C EPHX2 Intronic S I 0.12 -0.0200 (0.003) 2.23x10-12 (0.00011/8.9x10-9) rs11776293 isaneQ T L forCHRNA2 in
cerebellum inGT Ex

rs1562612 8:59817068 G/A TOX Intronic S I 0.35 -0.0112 (0.003) 1.15x10-9 (1.42x10-5/2.9x10-5)

rs3857914 8:93184065 C/T RUNX1T1 Intergenic S I 0.19 0.0157(0.003) 1.54x10-9 (0.065/7.1x10-8)

rs2799849 9:86752641 C/T RMI1 Intergenic S I 0.22 -0.0156 (0.003) 1.94x10-8 (0.026/4.8x10-8)

rs6482190 10:22037809 A/G LOC107984214 Intronic S I 0.17 0.0146 (0.003) 8.85x10-9 (0.0021/9.5x10-7)

rs4523689 11:7950797 G/A OR10A6 Intergenic S I 0.27 -0.012 (0.003) 7.77x10-9 (0.00030/2.2x10-5)
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rs933006 13:38350193 A/G TRPC4 Intronic S I 0.32 -0.0143 (0.003) 3.50x10-8 (0.022/9.6x10-8)

rs557899 15:47643795 A/C SEMA6D Intronic S I 0.26 0.0157(0.003) 2.99x10-13 (4.46x10-5/1.0x10-8)

rs76608582 19:4474725 A/C HDGFRP2 Intronic S I 0.029 -0.0360 (0.007) 8.50x10-9 (0.012/4.3x10-8)



24

Table 3: R esultsfrom conditionalanalysesatpreviously reportedsm okingbehaviourloci.S N Vsw ith P<5x10-8 arehighlightedinbold.T hediscovery sam ple
sizeforsm okinginitiation(S I)andCP D w as346,813 and128,746,respectively.T hereplicationsam plesizeforS IandCP D w ere275,596 and80,015,
respectively.Chr:Chrom osom e;P os:positionforhg19 build37;EA:Effectallele;O A:otherallele;EAF:Effectallelefrequency inthepooledsam ples;DoE:
Directionofeffect.

Gene region dbSNP ID Chr:Pos EA/OA Consequence Trait EAF P
(unconditional)

SNV(s)
conditioned
on

Discovery
Conditional P
[DoE]

Conditional P in
replication
[DoE]

19q13 (RAB4B) rs8102683 19:41363765 C/T Intergenic CP D 74.8% 4.53x10-16 rs7937 1.44x10-13 [+] 3.5x10-4 [+]

rs28399442 19:41354458 A/C Intronic
(CYP2A6)

CP D 1.3% 2.27x10-12 rs7937,
rs8102683

2.63x10-12 [+] 8.1x10-14 [+]

rs3865453 19:41338556 T /C Intergenic CP D 6.54% 2.96x10-12 rs7937,
rs8102683,
rs28399442

4.96x10-10 [-] 2.3x10-13 [-]

TEX41-PABPC1P2 rs11694518 2:146125523 T /C Intergenic S I 29.5% 2.90x10-9 rs10193706 3.43x10-7 [-] 4.0x10-31 [-]

15q25 (CHRNA3) rs938682 15:78882925 A/G Intronic
(CHRNA3)

CP D 76.4% 1.83x10-69 rs1051730 7.77x10-21 [+] 1.0x10-13 [+]
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