1 2

Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci

A Mesut Erzurumluoglu^{1*}, Mengzhen Liu^{2*}, Victoria E Jackson^{3,4,1*}, Daniel R Barnes⁵, Gargi Datta^{2,6}, Carl 3 A Melbourne¹, Robin Young⁵, Chiara Batini¹, Praveen Surendran⁵, Tao Jiang⁵, Sheikh Daud Adnan⁷, 4 Saima Afaq⁸, Arpana Agrawal⁹, Elisabeth Altmaier¹⁰, Antonis C Antoniou¹¹, Folkert W Asselbergs^{12,13,14,15}, 5 Clemens Baumbach¹⁰, Laura Beirut¹⁶, Sarah Bertelsen¹⁷, Michael Boehnke¹⁸, Michiel L Bots^{19,20}, David M 6 Brazel ^{6,21}, John C Chambers ^{22,8,23,24}, Jenny Chang-Claude ^{25,26}, Chu Chen ^{27,28}, Yi-Ling Chou ⁹, Janie Corley 7 ^{29,30}, Sean P David ³¹, Rudolf A de Boer ³², Christiaan A de Leeuw ³³, Joe G Dennis ¹¹, Anna F Dominiczak ³⁴, 8 Alison M Dunning ³⁵, Douglas F Easton ^{11,35}, Charles Eaton ²⁸, Paul Elliott ^{36,37,38,39}, Evangelos Evangelou ^{8,40}, 9 Tatiana Foroud⁴¹, Alison Goate⁴², Jian Gong⁴³, Hans J Grabe⁴⁴, Jeff Haessler⁴³, Christopher Haiman⁴⁵, 10 Göran Hallmans⁴⁶, Anke R Hammerschlag³³, Sarah E Harris^{29,47}, Andrew Hattersley⁴⁸, Andrew Heath⁹, 11 Chris Hsu⁴⁹, William G Iacono², Stavroula Kanoni^{50,51}, Manav Kapoor¹⁷, Jaakko Kaprio^{52,53}, Sharon L 12 Kardia ⁵⁴, Fredrik Karpe ^{55,56}, Jukka Kontto ⁵⁷, Jaspal S Kooner ^{23,24,37,58}, Charles Kooperberg ^{43,59}, Kari 13 Kuulasmaa⁵⁷, Markku Laakso⁶⁰, Dongbing Lai⁴¹, Claudia Langenberg⁶¹, Nhung Le⁶², Guillaume Lettre^{63,64}, 14 Anu Loukola 52,53, Jian'an Luan 61, Pamela A F Madden 9, Massimo Mangino 65, Riccardo E Marioni 29,47, 15 Eirini Marouli 50,51, Jonathan Marten 66, Nicholas G Martin 67, Matt McGue 2, Kyriaki Michailidou 68,11, Evelin 16 Mihailov ⁶⁹, Alireza Moayyeri ⁷⁰, Marie Moitry ⁷¹, Martina Müller-Nurasyid ^{72,73,74}, Aliya Naheed ⁷⁵, Matthias 17 Nauck ^{76,77}, Matthew J Neville ^{55,56}, Sune Fallgaard Nielsen ⁷⁸, Kari North ⁷⁹, Jessica D Faul ⁸⁰, Markus Perola 18 ^{52,57}, Paul D P Pharoah ^{11,35}, Giorgio Pistis ⁸¹, Tinca J Polderman ³³, Danielle Posthuma ^{33,82}, Neil Poulter ^{8,83}, 19 Beenish Qaiser ^{52,53}, Asif Rasheed ⁸⁴, Alex Reiner ^{43,28}, Frida Renström ^{85,86}, John Rice ⁸⁷, Rebecca Rohde ⁸⁸, 20 21 Olov Rolandsson⁸⁹, Nilesh J Samani⁹⁰, Maria Samuel⁸⁴, David Schlessinger⁹¹, Steven H Scholte⁹², Robert A Scott ⁶¹, Peter Sever ^{58,83}, Yaming Shao ⁸⁸, Nick Shrine ¹, Jennifer A Smith ⁵⁴, John M Starr ^{29,93}, Kathleen 22 Stirrups ^{94,50}, Danielle Stram ⁹⁵, Heather M Stringham ¹⁸, Ioanna Tachmazidou ⁹⁶, Jean-Claude Tardif ^{63,64}, 23 24 Deborah J Thompson¹¹, Hilary A Tindle⁹⁷, Vinicius Tragante⁹⁸, Stella Trompet^{99,100}, Valerie Turcot^{63,64}, Jessica Tyrrell⁴⁸, Ilonca Vaartjes^{19,20}, Andries R van der Leij⁹², Peter van der Meer³², Tibor V Varga⁸⁵, Niek 25 Verweij ^{32,101}, Henry Völzke ^{102,77}, Nicholas J Wareham ⁶¹, Helen R Warren ^{103,104}, David R Weir ⁸⁰, Stefan 26 Weiss ^{105,77}, Leah Wetherill ⁴¹, Hanieh Yaghootkar ⁴⁸, Ersin Yavas ^{106,107}, Yu Jiang ¹⁰⁸, Fang Chen ¹⁰⁸, Xiaowei 27 Zhan¹⁰⁹, Weihua Zhang^{8,110}, Wei Zhao¹¹¹, Wei Zhao⁵⁴, Kaixin Zhou¹¹², Philippe Amouyel¹¹³, Stefan 28 Blankenberg ^{114,115}, Mark J Caulfield ^{103,104}, Rajiv Chowdhury ⁵, Francesco Cucca ⁸¹, Ian J Deary ^{29,30}, Panos 29 Deloukas ^{116,96,117}, Emanuele Di Angelantonio ^{118,5}, Marco Ferrario ¹¹⁹, Jean Ferrières ¹²⁰, Paul W Franks ^{85,121}, 30 Tim M Frayling ⁴⁸, Philippe Frossard ⁸⁴, Ian P Hall ¹²², Caroline Hayward ⁶⁶, Jan-Håkan Jansson ¹²³, J Wouter 31 Jukema^{124,125}, Frank Kee¹²⁶, Satu Männistö⁵⁷, Andres Metspalu⁶⁹, Patricia B Munroe^{103,104}, Børge Grønne 32 Nordestgaard ⁷⁸, Colin N A Palmer ¹²⁷, Veikko Salomaa ⁵⁷, Naveed Sattar ¹²⁸, Timothy Spector ¹²⁹, David Peter 33 Strachan 130, Understanding Society Scientific Group, EPIC-CVD, GSCAN, Consortium for Genetics of 34 Smoking Behaviour, CHD Exome+ consortium, Pim van der Harst ^{32,131}, Eleftheria Zeggini ⁹⁶, Danish 35

- 36 Saleheen ^{132,133,134,5}, Adam S Butterworth ⁵, Louise V Wain ^{1,135}, Goncalo R Abecasis ¹⁸, John Danesh ^{5,96},
- 37 Martin D Tobin ^{1,135†}, Scott Vrieze ^{2†}, Dajiang J Liu ^{108†#}, Joanna M M Howson ^{5†#}
- 38
- 39 1. Department of Health Sciences, University of Leicester, Leicester, UK
- 40 2. Department of Psychology, University of Minnesota
- 41 3. Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G
- 42 Royal Pde, 3052 Parkville, Australia
- 43 4. Department of Medical Biology, University of Melbourne, 3010 Parkville, Australia
- 44 5. Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of
- 45 Cambridge, Cambridge, UK
- 46 6. Institute for Behavioral Genetics, University of Colorado Boulder
- 47 7. National Institute of Cardiovascular Diseases, Sher-e-Bangla Nagar, Dhaka, Bangladesh
- 48 8. Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK
- 49 9. Department of Psychiatry, Washington University
- 50 10. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for
- 51 Environmental Health, Neuherberg, Germany
- 52 11. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of
- 53 Cambridge, Cambridge, UK, CB1 8RN
- 54 12. Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, University of
- 55 Utrecht, the Netherlands
- 56 13. Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- 57 14. Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London,
- 58 London, United Kingdom
- 59 15. Farr Institute of Health Informatics Research and Institute of Health Informatics, University College
- 60 London, London, United Kingdom
- 61 16. Department of Psychiatry, Washington University School of Medicine
- 62 17. Department of Neuroscience, Icahn School of Medicine at Mount Sinai
- 63 18. Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor,
- 64 Michigan
- 65 19. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508GA Utrecht,
- 66 the Netherlands
- 67 20. Center for Circulatory Health, University Medical Center Utrecht, 3508GA Utrecht, the Netherlands
- 68 21. Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder
- 69 22. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- 70 23. Department of Cardiology, Ealing Hospital, Middlesex UB1 3HW, UK
- 71 24. Imperial College Healthcare NHS Trust, London W12 0HS, UK
- 72 25. Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany

- 73 26. Cancer Epidemiology Group, University Medical Centre Hamburg-Eppendorf, University Cancer Centre
- 74 Hamburg (UCCH), Hamburg, Germany
- 75 27. Public Health Sciences Division, Fred Hutchinson Cancer Research Center
- 76 28. Department of Epidemiology, University of Washington, Seattle, WA
- 29. Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK, EH8
 9JZ
- 79 30. Psychology, University of Edinburgh, Edinburgh, UK, EH8 9JZ
- 80 31. Department of Medicine, Stanford University, Stanford, CA
- 81 32. University Medical Center Groningen, University of Groningen, Department of Cardiology, the
- 82 Netherlands
- 83 33. Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam
- 84 Neuroscience, VU University Amsterdam
- 85 34. Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences,
- 86 University of Glasgow, Glasgow, UK
- 87 35. Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge Centre, University of
- 88 Cambridge, Cambridge, UK, CB1 8RN
- 89 36. Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- 90 37. MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
- 91 38. National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare
- 92 NHS Trust and Imperial College London, London, UK
- 93 39. UK Dementia Research Institute (UK DRI) at Imperial College London, London, UK
- 40. Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.
- 41. Department of Medical and Molecular Genetics, Indiana University School of Medicine
- 96 42. Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
- 97 43. Public Health Sciences Division, Fred Hutchinson Cancer Research Center
- 98 44. Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald,
- 99 Germany
- 100 45. Department of Preventative Medicine, Keck School of Medicine, University of Southern California
- 101 46. Department of Public Health and Clinical Medicine, Nutritional research, Umeå University, Sweden
- 102 47. Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK, EH4 2XU
- 103 48. Genetics of Complex Traits, University of Exeter Medical School, Exeter, United Kingdom
- 104 49. University of Southern California
- 105 50. William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary
- 106 University of London, London, UK, EC1M 6BQ
- 107 51. Centre for Genomic Health, Queen Mary University of London, London EC1M 6BQ, UK
- 108 52. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- 109 53. Department of Public Health, University of Helsinki, Helsinki, Finland

- 110 54. Department of Epidemiology, School of Public Health, University of Michigan
- 111 55. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford
- 112 56. Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford,
- 113 UK
- 114 57. Department of Public Health Solutions, National Institute for Health and Welfare, FI-00271, Helsinki,
- 115 Finland
- 116 58. National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
- 117 59. Department of Biostatistics, University of Washington School of Medicine, Seattle, WA
- 118 60. University of Eastern Finland, Finland
- 119 61. MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical
- 120 Medicine, Cambridge, CB2 0QQ, UK
- 121 62. Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School
- 122 of Medicine
- 123 63. Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
- 124 64. Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, H3T 1J4,
- 125 Canada
- 126 65. Twin Research & Genetic Epidemiology Unit, Kings College, London
- 127 66. MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of
- 128 Edinburgh, Edinburgh, UK
- 129 67. Queensland Institute for Medical Research
- 130 68. Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and
- 131 Genetics, 1683 Nicosia, Cyprus
- 132 69. Estonian Genome Center, University of Tartu, Tartu, Estonia
- 133 70. Institute of Health Informatics, University College London, London, UK
- 134 71. Department of Epidemiology and Public health, Strasbourg University hospital, University of Strasbourg,
- 135 France
- 136 72. Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for
- 137 Environmental Health, Neuherberg, Germany
- 138 73. Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
- 139 74. DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich,
- 140 Germany
- 141 75. Initiative for Noncommunicable Diseases, Health Systems and Population Studies Division, International
- 142 Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) International Centre for Diarrhoeal Disease
- 143 Research , Bangladesh (icddr,b)
- 144 76. Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475
- 145 Greifswald, Germany
- 146 77. DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine,

- 147 Greifswald, Germany
- 148 78. Department of Clinical Biochemistry Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej
- 149 74, DK-2730 Herlev, Denmark
- 150 79. Department of Epidemiology, University of North Carolina, Chapel Hill
- 151 80. Survey Research Center, Institute for Social Research, University of Michigan
- 152 81. Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato,
- 153 Cagliari, Italy
- 154 82. Department of Clinical Genetics, VU University Medical Centre Amsterdam, Amsterdam Neuroscience
- 155 83. International Centre for Circulatory Health, Imperial College London, UK
- 156 84. Centre for Non-Communicable Diseases, Karachi, Pakistan
- 157 85. Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical
- 158 Sciences, Skåne University Hospital, Lund University, SE-214 28, Malmö, Sweden
- 159 86. Department of Biobank Research, Umeå University, SE-901 87, Umeå, Sweden
- 160 87. Departments of Psychiatry and Mathematics, Washington University St. Louis
- 161 88. University of North Carolina, Chapel Hill
- 162 89. Department of Public Health & Clinical Medicine, Section for Family Medicine, Umeå universitet, SE-
- 163 90185 Umeå, Sweden
- 164 90. Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre,
- 165 Glenfield Hospital, Leicester, LE3 9QP, UK
- 166 91. National Institute on Aging, National Institutes of Health
- 167 92. Department of Psychology, University of Amsterdam & Amsterdam Brain and Cognition, University of
- 168 Amsterdam
- 169 93. Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, UK, EH8 9JZ
- 170 94. Department of Haematology, University of Cambridge, Cambridge, UK, CB2 0PT
- 171 95. Department of Preventative Medicine, Keck School of Medicine, University of Southern California
- 172 96. Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- 173 97. Department of Medicine, Vanderbilt University, Nashville, TN
- 174 98. Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht
- 175 University, 3508GA Utrecht, the Netherlands
- 176 99. Department of gerontology and geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- 177 100. Department of cardiology, Leiden University Medical Center, Leiden, The Netherlands
- 178 101. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 301 Binney Street,
- 179 Cambridge, MA 02142, USA
- 180 102. Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald
- 181 103. Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London,
- 182 EC1M 6BQ, UK
- 183 104. NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London,

- 184 EC1M 6BQ, UK
- 185 105. Interfaculty Institute for Genetics and Functional Genomics; University Medicine and Ernst-Moritz-
- 186 Arndt-University Greifswald, 17475 Greifswald, Germany
- 187 106. Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- 188 107. Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
- 189 108. Institute of Personalized Medicine, Penn State College of Medicine
- 190 109. Department of Clinical Science, Center for Genetics of Host Defense, University of Texas Southwestern
- 191 110. Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex UB1
- 192 3HW, UK
- 193 111. Department of Biostatistics and Epidemiology, University of Pennsylvania, USA
- 194 112. School of Medicine, University of Dundee, Dundee, UK
- 195 113. Department of Epidemiology and Public Health, Institut Pasteur de Lille, Lille, France
- 196 114. Department of General and Interventional Cardiology, University Heart Center Hamburg, Germany
- 197 115. University Medical Center Hamburg Eppendorf
- 198 116. William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen
- 199 Mary University of London, EC1M 6BQ UK
- 200 117. Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD),
- 201 King Abdulaziz University, Jeddah 21589, Saudi Arabia
- 202 118. NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health
- 203 and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- 204 119. EPIMED Research Centre, Department of Medicine and Surgery, University of Insubria at Varese, Italy
- 205 120. Department of Epidemiology, UMR 1027- INSERM, Toulouse University-CHU Toulouse, Toulouse,
- 206 France
- 207 121. Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- 208 122. Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
- 209 123. Department of Public Health and Clinical Medicine, Skellefteå Research Unit, Umeå University, Sweden
- 210 124. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- 211 125. The Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
- 212 126. UKCRC Centre of Excellence for Public Health, Queens, University, Belfast
- 213 127. Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- 214 128. University of Glasgow, Glasgow, UK
- 215 129. Department of Genetic Epidemiology, Kings College, London
- 216 130. Population Health Research Institute, St George!s, University of London, London SW17 0RE, UK
- 217 131. University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen,
- 218 The Netherlands
- 219 132. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of
- 220 Pennsylvania, USA

- 221 133. Center for Non-Communicable Diseases, Karachi, Pakistan
- 222 134. Department of Public Health and Primary Care, University of Cambridge, UK
- 223 135. National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield
- Hospital, Leicester, UK
- 225
- 226
- *Indicates that these authors contributed equally to this work and share the first author position
- ²²⁸ [†] Indicates that these authors contributed equally to this work and share the last author position
- # Correspondence: Joanna M M Howson, <u>jmmh2@medschl.cam.ac.uk</u> and Dajiang J Liu dxl46@psu.edu

230 Abstract

- 231 Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common
- 232 respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with
- smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the Exome-
- array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed
- effects meta-analysis of up to 61 studies (346,813 participants). In a subset of 112,811 participants, a further
- one million SNVs were also genotyped and tested for association with the four smoking behaviour traits.
- 237 SNV-trait associations with $P < 5 \times 10^{-8}$ in either analysis were taken forward for replication in up to 275,596 238 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies 239 was performed.
- Sixteen SNVs were associated with at least one of the smoking behaviour traits ($P < 5x10^{-8}$) in the discovery
- samples. Ten novel SNVs, including rs12616219 near *TMEM182*, were followed-up and five of them
- 242 (rs462779 in *REV3L*, rs12780116 in *CNNM2*, rs1190736 in *GPR101*, rs11539157 in *PJA1*, and rs12616219
- near *TMEM182*) replicated at a Bonferroni significance threshold ($P < 4.5 \times 10^{-3}$) with consistent direction of
- effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication
- meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in *CCDC141* and two low-
- frequency SNVs in *CEP350* and *HDGFRP2*. Functional follow-up implied that decreased expression of
- 247 *REV3L* may lower the probability of smoking initiation. The novel loci will facilitate understanding the
- 248 genetic aetiology of smoking behaviour and may lead to identification of potential drug targets for smoking
- 249 prevention and/or cessation.

250

251 Introduction

- 252 Smoking is a major risk factor for many diseases, including common respiratory disorders such as chronic
- 253 obstructive pulmonary disease $(COPD)^{1,2}$, cancer³ and cardiovascular diseases⁴, and is reported to cause 1 in
- 254 10 premature deaths worldwide⁵. A greater understanding of the genetic aetiology of smoking behaviour has
- the potential to lead to new therapeutic interventions to aid smoking prevention and cessation, and thereby
- reduce the global burden of such diseases.
- 257 Previous genome-wide association studies (GWASs) identified 14 common SNVs^{1, 6-12} (with minor allele
- frequency, MAF>0.01) robustly associated with smoking behaviour related traits ($P < 5x10^{-8}$). The 15q25
- 259 (CHRNA3/5-CHRNB4) region has the largest effect, explaining ~1% and 4-5% of the phenotypic variance of
- smoking quantity¹³ and cotinine, a biomarker of nicotine intake¹⁴, respectively. Overall, genetic loci identified
- to date explain $\sim 2\%$ of the estimated genetic heritability of smoking behaviour⁶, which is reported to be
- between $40-60\%^{15-17}$. A recent study suggested that an important proportion (~3.3%) of the phenotypic
- variance of smoking behaviour related traits was explained by rare nonsynonymous variants (MAF< 0.01)¹⁸.
- Hence, well-powered studies of rare variants are needed.
- To investigate the effect of rare coding variants on smoking behaviour, we studied 346,813 participants (of which 324,851 were of European ancestry) from 62 cohorts (**Supp. Tables 1** and **2**) at up to 235,116 SNVs from the exome array. As we had access to UK Biobank, we also interrogated SNVs present on the UK Biobank and UK BiLEVE Axiom arrays to identify additional associations across the genome beyond the exome array. To our knowledge, these datasets are an order of magnitude larger than the previous studies⁶,
- and constitute the most powerful exome-array study of smoking behaviour to date.

271 Materials and Methods

272 Participants

- Our study combined study-level summary association data from up to 59 studies of European ancestry and
 two studies of South Asian ancestry from three consortia (CGSB (Consortium for Genetics of Smoking
 Behaviour), GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN) and the Coronary
 Heart Disease (CHD) Exome+ consortium) INTERVAL and UK Biobank. In total, up to 324,851 individuals
 of European ancestry and 21,962 South Asian individuals were analysed in the discovery stage (Figure 1).
 Further information about the participating cohorts and consortia is given in Supp. Table 1 and the Supp.
 Material. All participants provided written informed consent and studies were approved by local Research
- 280 Ethics Committees and/or Institutional Review boards.

281 Phenotypes

We chose to analyse the following four smoking behaviour related traits because of their broad availability in existing epidemiological and medical studies, as well as their biological relevance for addiction behaviours:

- i) Smoking initiation (binary trait: ever vs never smokers). Ever smokers were defined as
 individuals who have smoked >99 cigarettes in their lifetime, which is consistent with the
 definition by the Centre for Disease Control¹⁹;
- 287 ii) Cigarettes per day (CPD; quantitative trait: average number of cigarettes smoked per day by ever
 288 smokers);
- 289 iii) Pack-years (quantitative trait; Packs per day x Years smoked, with a pack defined as 20
 290 cigarettes); years smoked is typically formed from age at smoking commencement to current age
 291 for current smokers or age at cessation for former smokers.
- 292 iv) Smoking cessation (binary trait: former vs current smokers).

In UK Biobank, phenotypes were defined using phenotype codes 1239, 1249, and 2644 for smoking initiation
and smoking cessation, and 1239, 3436, 3456 for CPD and pack-years. CPD was inverse normal transformed
in the CHD Exome+, INTERVAL and CGSB studies and categorised (1-10, 11-20, 21-30, and 31+ CPD) by
the GSCAN studies and UK Biobank (Supp. Table 2). All studies performed an inverse normal
transformation of pack-years. Summary statistics of study level phenotype distributions are provided in Supp.
Table 1.

299 Genotyping and quality control

- 300 Fifty-nine cohorts were genotyped using exome arrays (up to 235,116 SNVs) and two (UK Biobank and
- 301 INTERVAL) were genotyped using Axiom Biobank Arrays (up to 820,000 SNVs; Supp. Table 2). In total,
- 302 ~1.06M SNVs were analysed including ~64,000 SNVs on both the Axiom and Exome Arrays. Furthermore,
- 303 two studies (NAGOZALC and GFG) genotyped their participants using arrays with custom content,
- increasing the total number of variants analysed to 1,207,583 SNVs. Individual studies performed quality
- 305 control (QC; **Supp. Material, Supp. Table 2**) and additional QC was conducted centrally (i) to ensure alleles
- 306 were consistently aligned, (ii) that there were no major sample overlaps between contributing studies, and (iii)
- 307 variants conformed to Hardy-Weinberg equilibrium and call rate thresholds. We also examined the
- 308 distribution of the effect sizes and test statistics across cohorts to ensure the test statistics were well-calibrated.

309 Study level analyses

- Each study (including the case-cohort studies²⁰) undertook analyses of up to four smoking traits using
- 311 RAREMETALWORKER²¹ or RVTESTS²² (**Supp. Table 2**), which generated single variant score statistics
- and their covariance matrices within sliding windows of 1Mb. CPD and pack-years were analysed using linear
- 313 models or linear mixed models. Smoking initiation and smoking cessation were analysed using logistic

- models or linear mixed models. All studies adjusted each trait for age, sex, at least three genetic principal
- 315 components and any study-specific covariates (**Supp. Table 2**). Chromosome X variants were analysed using
- the above described approach, but coding males as 0/2. This coding scheme ensures that on average females
- 317 and males have equal dosages and so is optimal for genes that are inactivated (due to X chromosome
- 318 inactivation) and is valid for genes that do not undergo X chromosome activation. Males and females were
- analysed together adjusting for sex as a covariate.

320 Single variant meta-analyses

- 321 Fixed effects meta-analyses across the individual contributing studies of single variant associations were
- 322 undertaken using the Cochran-Mantel-Haenszel method in RAREMETAL. Z-score statistics were used in the
- 323 meta-analysis to ensure that the association results are robust against potentially different units of
- measurement in the phenotype definitions across studies²³. We performed genomic control correction on the
- meta-analysis results. Variants with $P < 1 \times 10^{-6}$ in tests of heterogeneity were excluded. Variants with $P \le 5 \times 10^{-8}$
- were taken forward for replication. In addition, rs12616219 was also taken forward for replication as its *P*-
- value was very close to this threshold (smoking initiation, $P=5.49 \times 10^{-8}$). None of the rare SNVs were genomewide significant, therefore we also took forward the rare variant with the smallest association *P*-value,
- 329 rs141611945 (*P*=2.95x10⁻⁷; MAF<0.0001).

330 Replication and combined meta-analysis of discovery and replication data

331 As UK biobank genetic data were released in two phases, we took the opportunity to replicate findings from 332 the discovery stage in a further 275,596 individuals made available in the phase two release of UK Biobank 333 genetic data. To avoid potential relatedness between discovery and replication samples, the replication 334 samples were screened and individuals with relatedness closer than second degree with the discovery sample in the UK Biobank were removed ²⁴. Phenotypes were defined in the same way as the discovery samples 335 336 (described above). Since the exome array and the UK Biobank Axiom arrays do not fully overlap, we used 337 both genotyped exome variants (approx. 64,000) as well as the additional ~90,000 well imputed exome array 338 variants from UK Biobank (imputation quality score>0.3) for replication of single variant and gene-based 339 tests. The rare ATF6 variant was absent from the UK Biobank array and is more prevalent in Africans 340 (MAF=0.01) than Europeans (MAF=0.0007). Therefore, replication was sought in 1,437 individuals of 341 African American-ancestry from the HRS and COGA studies. Analysis methods for replication cohorts were the same as for discovery cohorts, including methods to analyse chromosome X (Supp. Table 2). The criteria 342 343 set for the replication were (i) the same direction of effect as the discovery analysis and (ii) $P \le 0.0045$ in the 344 replication studies (i.e. Bonferroni-adjusted for eleven SNVs at α =0.05).

Finally, in order to fully utilise all available data, we carried out a combined meta-analysis of the discovery and replication samples across the exome array content using the same protocols mentioned above.

347 Conditional analyses

348 To identify conditionally independent variants associations within previously reported and novel loci a sequential forward stepwise selection was performed²⁵. A 1MB region was defined around the reported or 349 novel sentinel variant (500kb either side) and conditional analyses performed with all variants within the 350 351 region. If a conditionally independent variant was identified, ($P < 5 \times 10^{-6}$; Bonferroni adjusted for ~10,000 independent variants in the test region) the analysis was repeated conditioning on both the most significant 352 353 conditionally independent variant and the sentinel variant. This stepwise approach was repeated (conditioning 354 on the variants identified in current and earlier iterations) until there were no variants remaining in the region 355 that were conditionally independent. The same protocol was followed for the novel SNVs identified in this 356 study.

357 Gene-based analyses

358 For discovery gene-based meta-analyses, we utilised three statistical methods as part of the RAREMETAL package: the Weighted Sum Test (WST)²⁶, the burden test²⁷ and the Sequence Kernel Association test 359 (SKAT)²⁸. EPACTS (v.3.3.0)²⁹ was used to annotate variants (for use in gene-based meta-analyses), as 360 recommended by RAREMETAL. Two MAF cut-offs were used, one used low frequency (MAF<0.05) and 361 362 rare variants, the second only used rare variants (MAF<0.01). Nonsynonymous, stop gain, splice site, start gain, start loss, stop loss, and synonymous variants were selected for inclusion. A sensitivity analysis to 363 exclusion of synonymous variants was also performed. Gene-level associations with $P < 8 \times 10^{-7}$ were deemed 364 365 statistically significant (Bonferroni-adjusted for ~20,000 genes and three tests at α =0.05). To examine if the gene associations were driven by a single variant, the gene tests were conducted conditional on the SNV with 366 the smallest P-value in the gene, using the shared single variant association statistic and covariance matrices^{21,} 367 25. 368

369 Mendelian Randomization analyses

370 To evaluate the causal effect of SI and CPD on BMI, schizophrenia and educational attainment (EA), we

- 371 conducted Mendelian randomization (MR) analyses using three complementary approaches available in MR-
- Base³⁰: inverse variance weighted regression³¹, MR-Egger^{32, 33}, and weighted median³⁴. We used both the
- 373 previously reported smoking associated SNVs and the SNVs from the current report (as provided in Tables 1-
- 374 3 and Supp. Table 3) as instrumental variables. The BMI³⁵, schizophrenia³⁶ and educational attainment³⁷ data
- 375 came from previously published publicly available data. To assess possible reverse causation, we also used

- 376 outcome associated SNVs as instrumental variables and conducted MR analyses using SI and CPD as
- 377 outcome. We considered *P*<0.05/3=0.017 as statistically significant (Bonferroni adjusted for three traits).

378 In silico functional follow up of associated SNVs

- 379 To identify whether the (replicated) SNVs identified here affected other traits, we queried the GWAS
- 380 Catalog³⁸ (version: e91/28/02/2018, downloaded on 01/03/18) for genome-wide significant ($P < 5x10^{-8}$)
- associations using all proxy SNVs ($r^2 \ge 0.8$) within 2Mb of the top variant in our study.
- eQTL lookups were carried out in the 13 brain tissues available in GTEx V7³⁹, Brain xQTL (dorsolateral
- $prefrontal cortex)^{40}$ and BRAINEAC⁴¹ databases, all of which had undergone QC by the individual studies.
- We did not perform additional QC on these data. In brief, GTEx used Storey's q-value method to correct the
- FDR for testing multiple transcripts based upon the empirical *P*-values for the most significant SNV for each
- transcript⁴³. BRAINEAC calculated the number of tests per transcript and used Benjamini-Hochberg
- 387 procedure to calculate FDR per transcript using a FDR<1% as significant. BRAINxQTL used P<8x10⁻⁸ as a
- 388 cut-off for significance for any given transcript. SNVs that met the study specific significance and FDR
- thresholds, which were in LD (r^2 >0.8 in 1000 Genomes Europeans) with the top eQTL or the sentinel eQTL
- 390 for a given tissue/transcript combination were considered significant. The genes implicated by these eQTL
- databases and/or coding changes (e.g. missense and nonsense SNVs) were put into ConsensusPathDB⁴⁴ to
- identify whether these genes were over-represented in any known biological pathways. Replicated missense
- 393 SNVs were also put into PolyPhen- 2^{45} and FATHMM (unweighted)⁴⁶ to obtain variant effect prediction.

394 **Results**

395 Single variant associations

- 396 In the discovery meta-analyses, we identified 15 common SNVs that were genome-wide significant ($P < 5 \times 10^{-1}$
- ⁸) for one or more of the smoking behaviour traits, of which 9 were novel (**Table 1**, **Supp. Table 3**). Seven
- 398 novel loci were identified for smoking initiation, one for both CPD and pack-years and one for smoking
- 399 cessation (Figures 1, 2, Table 1 and Supp. Figure 1). Results for the significant loci were consistent across
- 400 participating cohorts and there was at least nominal evidence of association (P < 0.05) at the novel loci within
- 401 each of the contributing consortia (**Supp. Table 4**). Full association results for all novel SNVs across the four
- 402 traits are provided in **Supp. Table 5**. No rare variants were genome-wide significant; the rare variant with the 403 smallest *P*-value was a missense variant in *ATF6*, rs141611945 (MAF<0.0001, CPD $P=2.95 \times 10^{-7}$).
- Eleven SNVs (including rs12616219 near *TMEM182* with $P=5.49 \times 10^{-8}$, and the rare variant, rs141611945)
- 405 were taken forward for replication in independent samples (**Table 1**). The latest release of European UK
- 406 Biobank individuals not included in the discovery stage (smoking initiation, n=275,596; smoking cessation
- 407 n=123,851; CPD n=80,015; pack-years n=78,897), was used for replication of the common variants (Figure

- **408 1**). Five of the common variants replicated (four for smoking initiation and one with CPD and pack-years) at
- 409 P < 0.0045. Two coding variants (rs11539157, rs1190736) were predicted to be 'probably damaging' by
- 410 PolyPhen-2 and FATHMM. The remaining five SNVs were at least nominally associated (*P*<0.01) in the
- 411 replication samples and had consistent direction of effect across discovery and replication. Replication for the
- 412 rare variant rs141611945 could not be carried out in UK Biobank as the SNV nor its proxies ($r^2>0.3$) were
- 413 available. Thus we initiated replication in African American samples of the COGA (n=476) and HRS (n=961)
- 414 cohorts (overall MAF~0.01). The direction of effect was consistent in the two replication cohorts and
- 415 consistent with the discovery meta-analysis but a meta-analysis of the two replication cohorts yielded a
- 416 *P*=0.28. Further data are required to replicate this association.
- 417 We also performed a meta-analysis combining the discovery and replication samples (up to 622,409
- 418 individuals). LD score regression showed that the λ (intercept) for all traits was ~1.00, which indicated that
- 419 confounding factors inflating the results was not an issue 47, 48. The combined analysis identified 35 additional
- 420 novel SNV-smoking trait associations, 33 with smoking initiation, one with CPD and one with smoking
- 421 cessation at $P < 5x10^{-8}$ (**Table 2**). We note that among our four SNVs that did not replicate, rs216195 (in
- 422 *SMG6*) was genome-wide significant in the combined meta-analysis of discovery and replication studies
- 423 $(P=2.41 \times 10^{-9}; \text{ Table 2}).$
- We also calculated the phenotypic variance explained for novel and known variants. Results can be found in
 the 'Calculation of Phenotypic Variance Explained' section in the **Supplementary Material**.

426 Associations at known smoking behaviour loci

- 427 We assessed evidence for associations at the 14 SNVs previously reported for smoking behaviour-related 428 traits. Seven were genotyped on the exome array and proxies ($r^2>0.3$; ±2Mb) were identified for the remaining 429 seven (**Supp. Table 3**). All showed nominal evidence of association at *P*<0.05 and six of these were genome-430 wide significant in the meta-analysis of the trait for which it was previously reported (**Supp. Table 3 and 5**).
- 431 Conditional analyses identified five independent associations within three previously reported loci and all five
- 432 replicated (**Table 3**). At the 19q13 (*RAB4B*) locus, there were three variants in or near *CYP2A6* associated
- 433 with CPD independently of the established variant (rs7937) and each other: rs8102683 (conditional
- 434 $P=4.53 \times 10^{-16}$, rs28399442 (conditional $P=2.63 \times 10^{-12}$) and rs3865453 (conditional $P=4.96 \times 10^{-10}$) and
- 435 rs28399442 was a low frequency variant. The same SNVs also showed evidence of independent effects with
- 436 pack-years, albeit with larger *P*-values ($P < 5x10^{-6}$; **Supp. Table 5**). At the *TEX41/PABPC1P2* locus,
- 437 rs11694518 (conditional $P=3.43 \times 10^{-7}$) was associated with smoking initiation independently of the established
- 438 variant (rs10427255). At 15q25, rs938682 ($P=7.78 \times 10^{-21}$) was associated with CPD independently of the

established variant (rs1051730) and (in agreement with a previous report⁴⁹) is an eQTL for *CHRNA5* in brain
putamen basal ganglia tissues in GTEx.

441 Gene-based association studies

- 442 Gene-based collapsing tests using MAF<0.01 variants, did not identify any associated genes at the pre-
- 443 specified $P < 8x10^{-7}$ threshold. Of the top four gene associations, three were novel (*CHRNA2*, *MMP17*, and
- 444 *CRCP*) and one was known (*CHRNA5*), and had $P < 7x10^{-4}$, with CPD and/or pack-years (**Supp. Table 6**).
- 445 Analyses conditional on the variant with the smallest *P*-value in the gene, revealed the associations at
- 446 *CHRNA2*, *MMP17* and *CRCP* were due to more than one rare variant (conditional *P*<0.05; **Supp. Table 6**).
- 447 In contrast, the *CHRNA5* gene association was attributable to a single variant (rs2229961).

448 Mendelian Randomization analyses

- 449 We conducted MR analyses to elucidate the potential causal impact of SI and CPD on BMI, schizophrenia and
- 450 EA using the MR-Egger, median weighted and inverse variance weighted methods. We found a causal
- 451 association between SI and EA using both the median weighted and inverse variance weighted methods
- 452 (*P*<0.0001; Supp. Table 7) but not with MR-Egger (*P*=0.2). There was an association of SI with BMI using
- 453 MR-Egger only (*P*=0.01; **Supp. Table 7**), but there was evidence of horizontal pleiotropy (*P*=0.001) and no
- 454 support from the other methods. Similarly, increased CPD was only associated with reduced BMI using the
- 455 weighted median approach (P=0.009) and not the other methods (P>0.017). We also tested if schizophrenia,
- 456 EA or BMI causally influence CPD or SI using SNVs associated with schizophrenia, EA and BMI,
- 457 respectively, as instrumental variables. No evidence of such reverse causation was found (**Supp. Table 7**).
- 458 These results were consistent with previous analyses⁵⁰. There was no evidence of a causal effect of SI on
- 459 schizophrenia, or CPD on educational attainment (**Supp. Table 7**).

460 Functional characterization of novel loci

- 461 Using proxies with $r^2 \ge 0.8$ in 1000 Genomes Europeans, we queried the GWAS catalogue³⁸ ($P \le 5x10^{-8}$) for
- 462 pleiotropic effects of our novel sentinel SNVs. Two, rs11539157 and rs3001723 were previously associated
- 463 with schizophrenia³⁶, suggesting shared biological pathways between schizophrenia and smoking behaviours
- 464 (**Table 2**). This fits with the known association of smoking with schizophrenia⁵¹. Two, rs1514175 and
- 465 rs2947411 have previously been associated with BMI 52 , and extreme obesity 53 .
- 466 eQTL lookups in GTEx V7 (13 Brain tissues with ≥ 80 samples)³⁹, Brain xQTL⁴⁰ and BRAINEAC⁴¹ databases
- 467 revealed that the A allele at rs462779, which decreases risk of smoking initiation, also decreased expression of
- 468 *REV3L* in cerebellum in GTEx (A allele $P=4.8 \times 10^{-8}$; $\beta=-0.40$) and was in strong LD with the top eQTL for
- 469 *REV3L* in cerebellum (r^2 =0.86 with rs9487668 in 1000 Genomes Europeans). The smoking initiation-

- associated SNV, rs12780116, was an eQTL for *BORCS7* in four brain tissues, and *NT5C2* in the cerebellar
- 471 hemisphere (A allele $P=4.5 \times 10^{-7}$; $\beta=-0.32$) and the cerebellum ($P=5.6 \times 10^{-6}$; $\beta=-0.415$; in strong LD with the
- 472 top eQTL, $r^2=0.97$ with rs11191546). The G allele of a second variant in the region, rs7096169 (intronic to
- 473 BORCS7 and only in weak LD with rs12780116, $r^2=0.18$ in 1000G Europeans) increases smoking initiation
- 474 and reduces expression of *BORCS7* and *AS3MT* in eight brain tissues (including dorsolateral prefrontal cortex
- 475 in the Brain xQTL and was the top BORCS7 eSNP in GTEx in the Cerebellar Hemisphere, Cerebellum, and
- 476 Spinal cord cervical-C1). The same variant also reduced expression of ARL3 in cerebellum in GTEx (Table
- 477 **2**).
- 478 Biological pathway enrichment analyses carried out in ConsensusPathDB⁴⁴ using the genes implicated by the
- 479 eQTL databases (**Table 2**) and/or a coding SNVs (i.e. *PJA1*, *GPR101*) showed that the (i) pyrimidine
- 480 metabolism and (ii) activation of nicotinic acetylcholine receptors pathways are enriched for these smoking
- 481 behaviour associated genes (false discovery rate<0.01; *P*<0.0001).

482 Discussion

- Smoking is the most important preventable lifestyle risk factor for many diseases, including cancers^{3, 54}, heart 483 disease^{4, 55} and many respiratory diseases such as COPD^{1, 2}. Not initiating is the best way to prevent smoking-484 485 related diseases and genetics can play a considerable part in smoking behaviours including initiation. We have 486 performed the largest exome-wide genetic association study of smoking behaviour-related traits to date 487 involving up to 622,409 individuals, and identified and replicated five associations, including two on the X-488 chromosome (Table 1). We identified a further 35 novel associations in a meta-analysis of discovery and 489 replication cohorts (Table 2). We validated 14 previously reported SNV-smoking trait associations (Supp. 490 Table 3) and identified secondary independent associations at three loci, including three in the 19q13 region 491 (rs8102683, rs28399442, and rs3865453; Table 3).
- Gene-based tests improve power by aggregating effects of rare variants. While no genes reached our 492 493 Bonferroni-adjusted P-value threshold, we identified three candidate genes with multiple rare variant 494 associations for future replication: calcitonin gene-related peptide-receptor component (CRCP) with CPD and CHRNA2 and MMP17 with pack-years (Supp. Table 6; also see 'Genes of Interest' section in Supp. 495 496 Material). CRCP's protein product is expressed in brain tissues amongst others and functions as part of a 497 receptor complex for a neuropeptide that increases intracellular cyclic adenosine monophosphate levels⁵⁶. 498 MMP17 encodes a matrix metalloproteinase that is also expressed in the brain and is a member of the 499 peptidase M10 family, and proteins in this family are involved in the breakdown of extracellular matrix in normal physiological processes⁵⁷. Given, we were not able conclusively to identify rare variant associations, 500 501 even larger studies, are required to identify rare variants associated with smoking behaviours. In addition, phenotypes such as cotinine levels⁵⁸ and nicotine metabolism speed⁵⁹ could be interrogated using methods 502 such as MTAG⁶⁰ to improve power. 503

- As recommended by UK Biobank, we analysed UK Biobank samples by adjusting for genotyping array
- 505 because a subset of (extreme smokers in) UK Biobank were genotyped on a different array (UK BiLEVE).
- 506 However, this adjustment could potentially introduce collider bias in analyses of smoking traits. Given that the
- 507 UK BiLEVE study is relatively small compared to the full study, and the genetic effect sizes for smoking
- associated variants are small, we expect the influence of collider bias to be small⁷⁰. Nevertheless, we
- 509 performed sensitivity analyses to assess the impact of collider bias. Firstly, we performed a meta-analysis
- 510 excluding the UK BiLEVE samples, and secondly, we re-analysed UK Biobank without adjusting for
- 511 genotype array. As expected, the estimated genetic effects from these additional analyses were very similar to
- 512 our reported results suggesting collider bias is not a concern (**Suppl. Table 8**).
- 513 Follow-up of the replicated SNVs in the literature and eQTL databases implicated some potentially interesting
- 514 genes: *NT5C2* is known to hydrolyse purine nucleotides and be involved in maintaining cellular nucleotide
- balance, and was previously associated with schizophrenia⁶¹. *REV3L*, encodes the catalytic subunit of DNA
- 516 polymerase ζ (zeta) which is involved in translession DNA synthesis. Previously, polymorphisms in a
- 517 microRNA target site of *REV3L* were shown to be associated with lung cancer susceptibility⁶². We showed
- that decreased expression of *REV3L* may also lower the probability of smoking initiation. The SNV,
- 519 rs11776293, intronic in EPHX2, associated with reduced SI in the combined meta-analysis, and is in LD with
- 520 rs56372821 ($r^2=0.83$), which is associated with reduced cannabis use disorder⁶³. rs216195 (in *SMG6*) was
- 521 genome-wide significant in the discovery and the combined meta-analysis. *SMG6* is a plausible candidate
- 522 gene as it was previously shown to be less methylated in current smokers compared to never smokers⁶⁴. The
- 523 combined meta-analysis also identified a rare missense variant in *CCDC141*, rs150493199 (MAF<0.01; **Table**
- 524 2). Coding variants in *CCDC141* were previously associated with heart rate⁶⁵ and blood pressure^{66, 67}.
- 525 Smoking behaviours represent a complex phenotype that are linked to an array of socio-cultural and familial,
- 526 as well as genetic determinants. Kong *et al.*, recently reported that 'genetic-nurture' i.e. effects of non-
- 527 transmitted parental alleles, affect educational attainment⁶⁸. They also show that there is an effect of
- 528 educational attainment and genetic nurture on smoking behaviour. Four of our sentinel SNVs (or a strong
- 529 proxy; $r^2 > 0.8$) were associated with years of educational attainment³⁷ (rs2292239, rs3001723 ($P < 5x10^{-8}$),
- 530 rs9320995 (P=8.90x10⁻⁷), and rs13022438 (P=3.79x10⁻⁶), in agreement with this paradigm and our MR
- analyses indicated that initiating smoking reduced years in education. Future family studies will be required to
- 532 disentangle how much of the variance explained in the current analysis is due to direct versus genetic
- 533 nurturing effects.
- 534 Our study primarily focused on European ancestry, but we also included two non-European studies but these
- non-European studies lacked statistical power on their own to identify ancestry specific effects. Therefore, we
- did not perform ancestry specific meta-analyses. Nevertheless, our results offered cross ancestry replication.
- 537 One of the associations identified in the conditional analyses, rs8102683 (near *CYP2A6*), confirmed an

- association with CPD that was previously identified by Kumasaka et al. in a Japanese population⁶⁹ but this is 538
- 539 the first time it was associated in Europeans (rs8102683 is also correlated with rs56113850 (r²=0.43), a SNV identified previously by Loukola et al.⁵⁹ in a genetic association study of nicotine metabolite ratio in
- 540
- 541 Europeans). As more non-European studies become available, it would be of great interest to perform non-
- 542 European ancestry studies, in order to fine-map causal variants for smoking related traits.
- CPD and pack-years are two correlated measures of smoking. In the ~40,000 individuals from UK Biobank 543 544 with CPD and pack-years calculated, correlation between CPD and pack-years was 0.640. Interestingly, while 545 pack-years was inversely correlated with smoking cessation (-0.18) i.e. the more years a smoker has been 546 smoking the less likely they were to cease, CPD was positively correlated with smoking cessation (0.13) i.e. 547 heavier smokers were more likely to stop smoking. In contrast, the DBH SNV, rs3025343, (first identified via its association with increased smoking cessation⁶) was associated with increased pack-years ($P=1.29 \times 10^{-14}$) 548 and increased CPD ($P=2.93 \times 10^{-9}$) in our study. The association at DBH also represents the first time that a 549
- 550 SNV has a smaller *P*-value for pack-years (n=131,892) compared to CPD (n=128,746). These findings may
- 551 help elucidate the genetic basis of these correlated addiction phenotypes.
- 552 We performed the largest exome-wide genetic association study of smoking behaviour-related traits to date 553 and nearly doubled the number of replicated associations to 24 (including conditional analyses) including 554 associations on the X-chromosome for the first time, which merit further study. We also identified a further 35 555 novel smoking trait associated SNVs in the combined meta-analysis. The novel loci identified in this study 556 will substantially expand our knowledge of the smoking addiction related traits, facilitate understanding the 557 genetic actiology of smoking behaviour and may lead to identification of drug targets of potential relevance to prevent individuals from initiating smoking and/or aid smokers to stop smoking. 558

559

560 **Conflict of Interest Statement**

Paul W. Franks has been a paid consultant for Eli Lilly and Sanofi Aventis and has received research support 561 562 from several pharmaceutical companies as part of European Union Innovative Medicines Initiative (IMI) projects. Neil Poulter has received financial support from several pharmaceutical companies that manufacture 563 either blood pressure lowering or lipid lowering agents or both and consultancy fees. Peter Sever has received 564 565 research awards from Pfizer. Mark J. Caulfield is Chief Scientist for Genomics England, a UK government 566 company.

Figure legends

Figure 1: Study design including discovery and replication stages. NB: Gene-based studies, conditional analyses, and replication in African American ancestry samples not shown here for clarity. *GFG and NAGOZALC studies contributed additional custom content.

Figure 2: A concentric Circos plot of the association results for Smoking Initiation (SI; outer ring), Cigarettes per day (CPD) and Smoking Cessation (SC; inner ring) for chromosomes 1 to 22 (Pack-years results, which can be found in **Supp. Figure 1**, are omitted for clarity). Each dot represents a SNV, with the X and Y axes corresponding to genomic location in Mb and $-\log_{10} P$ -values, respectively. Labels show the nearest gene to the novel sentinel variants identified in the discovery stage and taken forward to replication. The top signals were truncated at 10^{-10} for clarity. Novel and previously reported signals are highlighted in red and dark blue, respectively. Grey rings on the y-axis increase by increments of 2 (initial ring corresponding to P=0.001, then 0.00001 etc.); and the outer and inner red rings correspond to the genome-wide significance level ($P=5x10^{-8}$) and $P=5x10^{-7}$, respectively. Image was created using Circos (v0.65).

Tables

Table 1: Association results for SNVs identified in single variant association meta-analyses and taken forward to replication are provided. Novel smoking trait associated SNVs that replicated with *P*< 0.005 and had consistent direction of effect in discovery and replication are highlighted in **bold**. The replication sample size for smoking initiation (SI), CPD, pack-years (PY), and smoking cessation (SC) were 275,596, 80,015, 78,897, and 123,851 respectively. Chromosome (Chr) and position (Pos) for hg19 build 37. EA: Effect allele; OA: other allele; Gene: closest gene; N: number of individuals; EAF: Effect allele frequency in the pooled samples; MAC: Minor allele count; DoE: Direction of effect; SE: Standard error. All SNVs had heterogeneity *P*>0.02 in the discovery stage. *Replication was sought in 1,437 individuals of African American-ancestry from the HRS and COGA studies; ** The replication-stage beta(se) for the association of rs1190736 with PY in the replication stage was -0.026 (0.0039).

dbSNP ID	Chr:Pos	EA/OA	Gene	Consequence	Trait		Discovery	stage		Replication stage		
(Exome ID)						N	EAF	DoE	P-value		P-value	
										Beta (SE)		
rs141611945	1:161771868	G/A	ATF6	Missense	CPD	128,746	0.0065%	+	2.95x10 ⁻⁷	0.184 (0.169)	*P=0.276 in African American	
(exm118559)							MAC=9				samples	
rs1190736 **	X:136113464	A/C	GPR101	Missense	CPD	99,037	46.6%	-	1.40x10 ⁻¹¹	-0.028 (0.0041)	All samples: 8.20E-12 (2.7E-11)	
(exm1659559)					(PY)	(96 <i>,</i> 824)	(47.0%)		(4.98E-09)	-0.027 (0.0049)	Males only: 1.90E-08 (6.0E-08)	
										-0.028 (0.0073)	Female only: 1.10E-04 (7.1E-04)	
rs462779	6:111695887	A/G	REV3L	Missense	SI	346,682	80.1%	-	4.52x10 ⁻⁸	-0.023 (0.0034)	9.7E-12	
(exm572256)												
rs216195	17:2203167	G/T	SMG6	Missense	SI	335,406	27.3%	-	2.80x10 ⁻⁸	-0.008 (0.0029)	8.5E-03	
(exm1276230)												
rs11539157	X:68381264	A/C	PJA1	Missense	SI	289,917	16.5%	+	1.39x10 ⁻¹¹	0.022 (0.0026)	All samples: 5.40E-17	
(exm1643833)										0.0158 (0.0033)	Males only: 1.30E-06	
										0.0185 (0.0039)	Females only: 2.20E-06	
Non-Exome-chip SNVs												
rs12616219	2:104352495	A/C	TMEM182	Intergenic	SI	112,811	46.4%	-	5.49x10 ⁻⁸	-0.015 (0.0027)	5.5E-08	
rs1150691	6:28168033	G/A	ZSCAN9	Missense	SI	112,811	34.8%	-	4.95x10 ⁻⁸	-0.007 (0.0028)	8.0E-03	
rs2841334	9:128122320	A/G	GAPVD1	Intronic	SI	112,811	20.9%	-	2.28x10 ⁻⁸	-0.009 (0.0033)	7.5E-03	
rs202664	22:41813886	C/T	TOB2	Intergenic	SC	51,043	19.9%	-	1.02x10 ⁻⁸	-0.011 (0.0050)	2.1E-02	
rs11895381	2:60053727	A/G	BCL11A	Intergenic	SI	112,811	34.2%	-	5.61x10 ⁻⁹	-0.007 (0.0028)	1.2E-02	
rs12780116	10:104821946	A/G	CNNM2	Intronic	SI	112,811	13.9%	+	9.19x10 ⁻¹⁰	0.017 (0.0039)	1.1E-05	

Table 2: Association results for novel SNVs identified in the combined meta-analysis of the discovery and replication cohorts. Chromosome (Chr) and position (Pos) for each SNV is given for hg19 build 37. Only SNVs reaching genome-wide significance ($P < 5 \times 10^{-8}$) in the combined meta-analysis are shown. Magnitude of the effect size estimates are not presented as traits were transformed in differently by the three consortia analysed. SNVs identified in the discovery stage of this study (see Table 1) are denoted #. The discovery sample size for smoking initiation (SI), CPD, pack-years (PY), and smoking cessation (SC) were 346,813, 128,746, 131,892, and 121,543, respectively; and the replication sample size for SI, CPD, PY, and SC were 275,596, 80,015, 78,897, and 123,851, respectively. NB: rs6673752 (intronic to *UBAP2L*) was not available in the discovery cohorts. EA: Effect allele; OA: other allele. Beta(se): beta and standard error for association in the replication stage. All SNVs had heterogeneity *P*>0.0001.

dbSNP ID	Chr:Pos	EA/OA	Gene	Consequence	Trait	EAF	Beta (se)in	P-value in combined meta-	Notes			
(Exome-chip ID)							replication	analysis				
							stage	(P-value in				
		l						Discovery/Replication stage)				
rs1514175	1:74991644	G/A	TNNI3K	Intronic	SI	0.57	-0.011 (0.003)	5.42x10 -9 (9.03x10-5/1.0x10-5)	Previously associated with BMI			
rs7096169	10:104618695	G/A	<i>BORCS7</i> (<i>CNNM2[#]</i> in Table 1)	Intronic	SI	0.31	0.016 (0.003)	2.17x10⁻¹³ (3.38x10 ⁻⁷ /7.3x10 ⁻⁹)	r^{2} =0.28 between rs7096169 and rs12780116 (Table 1) in 1000 Genomes EUR. Previously associated with Schizophrenia. rs7096169 an eQTL for <i>ARL3</i> , BORCS7, and <i>AS3MT</i> in ≥1 of the brain tissues in GTEx			
rs2292239	12:56482180	G/T	ERBB3	Intronic	SI	0.66	0.0121 (0.003)	2.78x10⁻⁸ (7.56x10 ⁻⁵ /1.5x10 ⁻⁵)	Previously associated with type-1 diabetes and years of educational attainment. rs2292239 is an eQTL for <i>RPS26</i> and <i>SUOX</i> in ≥4 of the brain tissues in GTEx			
rs216195	17:2203167	G/T	SMG6 [#]	Missense	SI	0.29	-0.0076 (0.003)	2.41x10⁻⁹ (2.80x10 ⁻⁸ /8.5x10 ⁻³)	Same SNV as in Table 1			
Combining well-i	mputed Exome-c	hip content on	the Axiom array	·								
rs2960306 (exm383568)	4:2990499	T/G	GRK4	Missense	CPD	0.34	-0.024 (0.005)	1.06x10⁻⁹ (3.99x10 ⁻⁵ /3.8x10 ⁻⁶)	rs2960306 is an eQTL for <i>GRK4</i> in four of the brain tissues in GTEx			
rs4908760	1:8526142	A/G	RERE	Intronic	SI	0.35	0.0078 (0.003)	1.76x10⁻⁸ (3.36x10 ⁻⁶ /4.7x10 ⁻³)	Previously associated with Vitiligo			
rs6692219 (exm127721)	1:179989584	C/G	CEP350	Missense	SI	0.028	-0.0257 (0.008)	4.69x10 ⁻⁹ (1.08x10 ⁻⁶ /1.3x10 ⁻³)				
rs11971186	7:126437897	G/A	GRM8	Intronic	SI	0.20	-0.0080 (0.003)	1.45x10⁻⁸ (1.38x10 ⁻⁶ /3.9x10 ⁻³)				
rs150493199 (exm249655)	2:179721072	A/T	CCDC141	Missense	SC	0.0098	0.048 (0.134)	1.28x10⁻⁸ (6.45x10 ⁻⁸ /0.72)				
Non-Exome-chip	SNVs											

rs3001723	1:44037685	A/G	PTPRF	Intronic	SI	0.21	0.0159 (0.003)	6.64x10 ⁻¹¹ (0.00015/4.1x10 ⁻⁸)	Previously associated with
									Schizophrenia and Years of
rc1027/155	1.66/16030	G/A		Intronic	SI	0.30	-0.0146	1 73×10- 9 (0 00073/5 6×10-8)	
131337433	1.00410555	0/7		intronic	51	0.50	(0.0027)	1.23410 (0.00073/3.0410)	
rs72720396	1:91191582	G/A	BARHL2	Intergenic	SI	0.16	-0.0150 (0.003)	9.86x10⁻⁹ (5.63x10 ⁻⁵ /1.9x10 ⁻⁶)	
rs6673752	1:154219177	C/G	UBAP2L	Intronic	SI	0.055	-0.027 (0.004)	1.1x10 ⁻¹¹ (NA/1.1x10 ⁻¹¹)	
rs2947411	2:614168	G/A	TMEM18	Intergenic	SI	0.83	0.0189 (0.004)	4.97x10⁻¹⁰ (0.00017/7.1x10 ⁻⁸)	Previously associated with BMI
rs528301	2:45154908	A/G	SIX3	Intergenic	SI	0.38	0.0136 (0.002)	4.12x10 ⁻¹¹ (1.77x10 ⁻⁶ /3.8x10 ⁻⁷)	
rs6738833	2:104150891	T/C	TMEM182 [#]	Intergenic	SI	0.33	-0.018 (0.003)	8.66x10 ⁻¹⁴ (1.63x10 ⁻⁶ /4.4x10 ⁻¹¹)	r ² =0.69 between rs6738833 and
									rs12616219 (Table 1) in European
12026474	2 4275 6 4022	T (0	700070		<u></u>	0.40	0.0107 (0.000)		samples of the 1000 Genomes Project
rs13026471	2:13/564022	1/C	THSD7B	Intronic	SI	0.18	0.0127 (0.003)	2.45x10 ⁻ ° (0.00028/3.0x10 ⁻)	
rs6724928	2:156005991	C/T	КСЛЈЗ	Intergenic	SI	0.32	-0.011 (0.003)	4.47x10⁻⁸ (0.0019/4.8x10 ⁻⁵)	
rs13022438	2:162800372	G/A	SLC4A10	Intronic	SI	0.27	0.0146 (0.003)	1.41x10 ⁻¹¹ (0.0005/8.1x10 ⁻⁸)	
rs1869244	3:5724531	A/G	LOC105376939	Intergenic	SI	0.32	0.0123 (0.003)	2.76x10 ⁻⁹ (0.00040/4.1x10 ⁻⁶)	
rs35438712	3:85588205	T/C	CADM2	Intronic	SI	0.25	0.017 (0.003)	1.99x10⁻¹³ (1.15x10 ⁻⁵ /3.2x10 ⁻¹⁰)	
rs6883351	5:22193967	T/C	CDH12	Intronic	SI	0.34	0.0129 (0.003)	4.69x10⁻⁸ (0.0010/1.4x10 ⁻⁶)	
rs6414946	5:87729711	C/A	TMEM161B	Intronic	SI	0.32	-0.0137 (0.003)	5.27x10⁻¹⁰ (3.63x10 ⁻⁵ /2.8x10 ⁻⁷)	
rs11747772	5:166992708	C/T	TENM2	Intronic	SI	0.25	0.0144 (0.003)	6.20x10 ⁻⁹ (0.011/2.2x10 ⁻⁷)	
rs9320995	6:98726381	G/A	POU3F2	Intergenic	SI	0.18	0.0150 (0.003)	1.70x10⁻⁸ (0.00079/6.1x10 ⁻⁷)	
rs10255516	7:1675621	G/A	ELFN1	Intergenic	SI	0.33	-0.0139 (0.003)	2.86x10 ⁻¹⁰ (0.0021/1.8x10 ⁻⁷)	
rs10807839	7:3344629	G/A	SDK1	Intronic	SI	0.19	0.0162 (0.003)	8.93x10 ⁻¹¹ (0.0026/4.4x10 ⁻⁸)	
rs6965740	7:117514840	T/G	CTTNBP2	Intergenic	SI	0.31	-0.0126 (0.003)	9.66x10⁻⁹ (5.56x10 ⁻⁶ /2.8x10 ⁻⁶)	
rs11776293	8:27418429	T/C	EPHX2	Intronic	SI	0.12	-0.0200 (0.003)	2.23x10⁻¹² (0.00011/8.9x10 ⁻⁹)	rs11776293 is an eQTL for CHRNA2 in cerebellum in GTEx
rs1562612	8:59817068	G/A	тох	Intronic	SI	0.35	-0.0112 (0.003)	1.15x10 -9 (1.42x10-5/2.9x10-5)	
rs3857914	8:93184065	C/T	RUNX1T1	Intergenic	SI	0.19	0.0157 (0.003)	1.54x10 ⁻⁹ (0.065/7.1x10 ⁻⁸)	
rs2799849	9:86752641	C/T	RMI1	Intergenic	SI	0.22	-0.0156 (0.003)	1.94x10 ⁻⁸ (0.026/4.8x10 ⁻⁸)	
rs6482190	10:22037809	A/G	LOC107984214	Intronic	SI	0.17	0.0146 (0.003)	8.85x10⁻⁹ (0.0021/9.5x10 ⁻⁷)	
rs4523689	11:7950797	G/A	OR10A6	Intergenic	SI	0.27	-0.012 (0.003)	7.77x10 -9 (0.00030/2.2x10-5)	

rs933006	13:38350193	A/G	TRPC4	Intronic	SI	0.32	-0.0143 (0.003)	3.50x10 ⁻⁸ (0.022/9.6x10 ⁻⁸)	
rs557899	15:47643795	A/C	SEMA6D	Intronic	SI	0.26	0.0157 (0.003)	2.99x10⁻¹³ (4.46x10 ⁻⁵ /1.0x10 ⁻⁸)	
rs76608582	19:4474725	A/C	HDGFRP2	Intronic	SI	0.029	-0.0360 (0.007)	8.50x10 ⁻⁹ (0.012/4.3x10 ⁻⁸)	

Table 3: Results from conditional analyses at previously reported smoking behaviour loci. SNVs with *P*<5x10⁻⁸ are highlighted in **bold**. The discovery sample size for smoking initiation (SI) and CPD was 346,813 and 128,746, respectively. The replication sample size for SI and CPD were 275,596 and 80,015, respectively. Chr: Chromosome; Pos: position for hg19 build 37; EA: Effect allele; OA: other allele; EAF: Effect allele frequency in the pooled samples; DoE: Direction of effect.

Gene region	dbSNP ID	Chr:Pos	EA/OA	Consequence	Trait	EAF	Р	SNV(s)	Discovery	Conditional P in
							(unconditional)	conditioned	Conditional P	replication
								on	[DoE]	[DoE]
19q13 (<i>RAB4B</i>)	rs8102683	19:41363765	C/T	Intergenic	CPD	74.8%	4.53x10 ⁻¹⁶	rs7937	1.44x10 ⁻¹³ [+]	3.5x10 ⁻⁴ [+]
	rs28399442	19:41354458	A/C	Intronic	CPD	1.3%	2.27x10 ⁻¹²	rs7937,	2.63x10 ⁻¹² [+]	8.1x10 ⁻¹⁴ [+]
				(CYP2A6)				rs8102683		
	rs3865453	19:41338556	T/C	Intergenic	CPD	6.54%	2.96x10 ⁻¹²	rs7937,	4.96x10 ⁻¹⁰ [-]	2.3x10 ⁻¹³ [-]
								rs8102683,		
								rs28399442		
TEX41-PABPC1P2	rs11694518	2:146125523	T/C	Intergenic	SI	29.5%	2.90x10 ⁻⁹	rs10193706	3.43x10 ⁻⁷ [-]	4.0x10 ⁻³¹ [-]
15q25 (CHRNA3)	rs938682	15:78882925	A/G	Intronic	CPD	76.4%	1.83x10 ⁻⁶⁹	rs1051730	7.77x10 ⁻²¹ [+]	1.0x10 ⁻¹³ [+]
				(CHRNA3)						

References

- 1. Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Soler Artigas M *et al.* Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. *Lancet Respir Med* 2015; **3**(10): 769-781.
- 2. Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L *et al.* Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. *Nature genetics* 2017; **49**(3): 416-425.
- 3. McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC *et al.* Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. *Nature genetics* 2017; **49**(7): 1126-1132.
- 4. O'Donnell CJ, Nabel EG. Genomics of Cardiovascular Disease. *New England Journal of Medicine* 2011; **365**(22): 2098-2109.
- 5. Reitsma MB, Fullman N, Ng M, Salama JS, Abajobir A, Abate KH *et al.* Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015: a systematic analysis from the Global Burden of Disease Study 2015. *The Lancet* 2017.
- 6. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. *Nature genetics* 2010; **42**(5): 441-447.
- 7. Hancock DB, Reginsson GW, Gaddis NC, Chen X, Saccone NL, Lutz SM *et al.* Genome-wide metaanalysis reveals common splice site acceptor variant in CHRNA4 associated with nicotine dependence. *Transl Psychiatry* 2015; **5**: e651.
- 8. Siedlinski M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W *et al.* Genome-wide association study of smoking behaviours in patients with COPD. *Thorax* 2011; **66**(10): 894-902.
- 9. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F *et al.* Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. *Nature genetics* 2010; **42**(5): 448-453.
- 10. Timofeeva MN, McKay JD, Smith GD, Johansson M, Byrnes GB, Chabrier A *et al.* Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. *Cancer Epidemiol Biomarkers Prev* 2011; **20**(10): 2250-2261.
- 11. Bloom AJ, Baker TB, Chen L-S, Breslau N, Hatsukami D, Bierut LJ *et al*. Variants in two adjacent genes, EGLN2 and CYP2A6, influence smoking behavior related to disease risk via different mechanisms. *Human Molecular Genetics* 2014; **23**(2): 555-561.

- 12. Thakur GA, Sengupta SM, Grizenko N, Choudhry Z, Joober R. Family-based association study of ADHD and genes increasing the risk for smoking behaviours. *Archives of disease in childhood* 2012; **97**(12): 1027.
- 13. Munafò MR, Flint J. The genetic architecture of psychophysiological phenotypes. *Psychophysiology* 2014; **51**(12): 1331-1332.
- 14. Keskitalo K, Broms U, Heliovaara M, Ripatti S, Surakka I, Perola M *et al.* Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. *Hum Mol Genet* 2009; **18**(20): 4007-4012.
- 15. Vink JM, Willemsen G, Boomsma DI. Heritability of smoking initiation and nicotine dependence. *Behav Genet* 2005; **35**(4): 397-406.
- 16. Carmelli D, Swan GE, Robinette D, Fabsitz R. Genetic Influence on Smoking A Study of Male Twins. *New England Journal of Medicine* 1992; **327**(12): 829-833.
- 17. Kaprio J, Koskenvuo M, Sarna S. Cigarette smoking, use of alcohol, and leisure-time physical activity among same-sexed adult male twins. *Prog Clin Biol Res* 1981; **69 Pt C:** 37-46.
- 18. Liu DJ, Brazel DM, Turcot V, Zhan X, Gong J, Barnes DR *et al*. Exome chip meta-analysis elucidates the genetic architecture of rare coding variants in smoking and drinking behavior. *bioRxiv* 2017.
- 19. Centers for Disease Control and Prevention (CDC). Cigarette smoking among adults--United States, 2007. *MMWR Morbidity and mortality weekly report* 2008; **57**(45): 1221-1226.
- 20. Staley JR, Jones E, Kaptoge S, Butterworth AS, Sweeting MJ, Wood AM *et al.* A comparison of Cox and logistic regression for use in genome-wide association studies of cohort and case-cohort design. *European journal of human genetics : EJHG* 2017; **25**(7): 854-862.
- 21. Feng S, Liu D, Zhan X, Wing MK, Abecasis GR. RAREMETAL: fast and powerful meta-analysis for rare variants. *Bioinformatics* 2014; **30**(19): 2828-2829.
- 22. Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. *Bioinformatics* 2016; **32**(9): 1423-1426.
- 23. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* 2010; **26**(17): 2190-2191.
- 24. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K *et al.* Genome-wide genetic data on ~500,000 UK Biobank participants. *bioRxiv* 2017.

- 25. Jiang B, Chen S, Jiang Y, Liu M, Iacono WG, Hewitt JK *et al.* Proper Conditional Analysis in the Presence of Missing Data Identified Novel Independently Associated Low Frequency Variants in Nicotine Dependence Genes. *bioRxiv* 2017.
- 26. Madsen BE, Browning SR. A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic. *PLoS genetics* 2009; **5**(2): e1000384.
- 27. Morris AP, Zeggini E. An evaluation of statistical approaches to rare variant analysis in genetic association studies. *Genet Epidemiol* 2010; **34**(2): 188-193.
- 28. Wu MC. Rare variant association testing for sequencing data using the sequence kernel association test (SKAT). *Am J Hum Genet* 2011; **89:** 82-93.
- 29. Zhan X, Liu DJ. SEQMINER: An R-Package to Facilitate the Functional Interpretation of Sequence-Based Associations. *Genet Epidemiol* 2015; **39**(8): 619-623.
- 30. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D *et al.* The MR-Base platform supports systematic causal inference across the human phenome. *Elife* 2018; **7**.
- 31. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. *American journal of epidemiology* 2013; **178**(7): 1177-1184.
- Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. *International journal of epidemiology* 2015; 44(2): 512-525.
- Rees JMB, Wood AM, Burgess S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. *Stat Med* 2017; 36(29): 4705-4718.
- 34. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. *Genet Epidemiol* 2016; **40**(4): 304-314.
- 35. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR *et al.* Genetic studies of body mass index yield new insights for obesity biology. *Nature* 2015; **518**(7538): 197-206.
- 36. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H *et al.* Biological insights from 108 schizophrenia-associated genetic loci. *Nature* 2014; **511**: 421.
- 37. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA *et al.* Genome-wide association study identifies 74 loci associated with educational attainment. *Nature* 2016; **533**(7604): 539-542.

- 38. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E *et al.* The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). *Nucleic acids research* 2017; **45**(D1): D896-D901.
- 39. Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. *Nature* 2017; **550**(7675): 204-213.
- 40. Ng B, White CC, Klein H-U, Sieberts SK, McCabe C, Patrick E *et al.* An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. *Nat Neurosci* 2017; **advance online publication**.
- 41. Trabzuni D, Ryten M, Walker R, Smith C, Imran S, Ramasamy A *et al.* Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. *Journal of Neurochemistry* 2011; **119**(2): 275-282.
- 42. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thousands of molecular phenotypes. *Bioinformatics* 2016; **32**(10): 1479-1485.
- 43. Storey JD, Tibshirani R. Statistical significance for genomewide studies. *Proceedings of the National Academy of Sciences of the United States of America* 2003; **100**(16): 9440-9445.
- 44. Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB—a database for integrating human functional interaction networks. *Nucleic acids research* 2009; **37**(suppl_1): D623-D628.
- 45. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P *et al.* A method and server for predicting damaging missense mutations. *Nat Meth* 2010; **7**(4): 248-249.
- 46. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ *et al.* Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. *Human mutation* 2013; **34**(1): 57-65.
- 47. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N *et al.* LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nature genetics* 2015; **47**(3): 291-295.
- 48. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC *et al.* LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. *Bioinformatics* 2017; **33**(2): 272-279.

- 49. Wang JC, Cruchaga C, Saccone NL, Bertelsen S, Liu P, Budde JP *et al.* Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5. *Hum Mol Genet* 2009; **18**(16): 3125-3135.
- 50. Gage SH, Jones HJ, Taylor AE, Burgess S, Zammit S, Munafo MR. Investigating causality in associations between smoking initiation and schizophrenia using Mendelian randomization. *Sci Rep* 2017; **7:** 40653.
- 51. Kelly C, McCreadie R. Cigarette smoking and schizophrenia. *Advances in Psychiatric Treatment* 2000; **6**(5): 327-331.
- Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU *et al.* Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. *Nature genetics* 2010; 42(11): 937-948.
- 53. Wheeler E, Huang N, Bochukova EG, Keogh JM, Lindsay S, Garg S *et al.* Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. *Nature genetics* 2013; **45**(5): 513-517.
- 54. Hecht SS. Tobacco Smoke Carcinogens and Lung Cancer. *JNCI: Journal of the National Cancer Institute* 1999; **91**(14): 1194-1210.
- 55. Ockene IS, Miller NH. Cigarette Smoking, Cardiovascular Disease, and Stroke. A Statement for Healthcare Professionals From the American Heart Association 1997; **96**(9): 3243-3247.
- 56. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A *et al.* Proteomics. Tissuebased map of the human proteome. *Science* 2015; **347**(6220): 1260419.
- 57. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R *et al.* Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic acids research* 2016; **44**(D1): D733-745.
- 58. Ware JJ, Chen X, Vink J, Loukola A, Minica C, Pool R *et al.* Genome-Wide Meta-Analysis of Cotinine Levels in Cigarette Smokers Identifies Locus at 4q13.2. *Sci Rep* 2016; **6:** 20092.
- 59. Loukola A, Buchwald J, Gupta R, Palviainen T, Hallfors J, Tikkanen E *et al.* A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism. *PLoS genetics* 2015; **11**(9): e1005498.
- 60. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA *et al.* Multi-trait analysis of genomewide association summary statistics using MTAG. *Nature genetics* 2018; **50**(2): 229-237.
- 61. Aberg KA, Liu Y, Bukszár J, et al. A comprehensive family-based replication study of schizophrenia genes. *JAMA Psychiatry* 2013; **70**(6): 573-581.

- 62. Zhang S, Chen H, Zhao X, Cao J, Tong J, Lu J *et al.* REV3L 3[prime]UTR 460 T>C polymorphism in microRNA target sites contributes to lung cancer susceptibility. *Oncogene* 2013; **32**(2): 242-250.
- 63. Demontis D, Rajagopal VM, Als TD, Grove J, Pallesen J, Hjorthoj C *et al.* Genome-wide association study implicates CHRNA2 in cannabis use disorder. *bioRxiv* 2018.
- 64. Steenaard RV, Ligthart S, Stolk L, Peters MJ, van Meurs JB, Uitterlinden AG *et al.* Tobacco smoking is associated with methylation of genes related to coronary artery disease. *Clin Epigenetics* 2015; **7:** 54.
- 65. van den Berg ME, Warren HR, Cabrera CP, Verweij N, Mifsud B, Haessler J *et al.* Discovery of novel heart rate-associated loci using the Exome Chip. *Hum Mol Genet* 2017; **26**(12): 2346-2363.
- 66. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B *et al.* Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. *Nature genetics* 2017; **49**(3): 403-415.
- 67. Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok PY *et al.* Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. *Nature genetics* 2017; **49**(1): 54-64.
- 68. Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, Thorgeirsson TE *et al.* The nature of nurture: Effects of parental genotypes. *Science* 2018; **359**(6374): 424-428.
- 69. Kumasaka N, Aoki M, Okada Y, Takahashi A, Ozaki K, Mushiroda T *et al.* Haplotypes with Copy Number and Single Nucleotide Polymorphisms in CYP2A6 Locus Are Associated with Smoking Quantity in a Japanese Population. *PloS one* 2012; **7**(9): e44507.
- 70. Munafo MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Collider scope: when selection bias can substantially influence observed associations. *International journal of epidemiology* 2018; **47**(1): 226-235.