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Abstract Congenital disorders are an important cause of preg-
nancy loss, premature death and life-long disability. A range of
interventions can greatly reduce their burden, but the absence
of local epidemiological data on their prevalence and the im-
pact of interventions impede policy and service development
in many countries. In an attempt to overcome these deficien-
cies, we have developed a tool—The Modell Global Database
of Congenital Disorders (MGDb) that combines general bio-
logical principles and available observational data with demo-
graphic data, to generate estimates of the birth prevalence and
effects of interventions on mortality and disability due to

congenital disorders. MGDb aims to support policy develop-
ment by generating country, regional and global epidemiolog-
ical estimates. Here we provide an overview of the concepts
and methodological approach used to develop MGDb.
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Abbreviations
EUROCAT European Surveillance of Congenital

Anomalies and Twins
ICBDSR International Clearinghouse for Birth Defects

Surveillance and Research
ICD International Classification of Disease
MGDb Modell Global Database of Congenital

Disorders
NTD Neural tube defect
OFC Orofacial cleft

Introduction

Congenital disorders, often also called birth defects, include
Bany potential pathological conditions arising before birth,
whether they are evident at birth or become manifest later in
life^ (World Health Organization 1985a; World Health
Organization 2000; World Health Organization 2010). Risk
factors for congenital disorders include genetic, environmen-
tal and wider societal factors. The occurrence and severity of
specific congenital disorders are differentially influenced by
these risk factors, with some disorders influenced more by
genes (e.g. single gene disorders) and others by environmental
agents (e.g. those caused by infections). They are an important
cause of premature death or life-long disability; however, the
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absence of local epidemiological data on their birth prevalence
and outcomes impedes policy and service development in
many countries.

To make up for this deficiency, the Modell Global Database
of Congenital Disorders (MGDb) was created to meet the in-
formation needs of health policy-makers. It does so through the
generation of country, regional and global estimates for select-
ed congenital disorders, by combining general biological prin-
ciples and available observational data with demographic data.
Here we describe the scope of MGDb and the general princi-
ples followed in its implementation; more detailed methodol-
ogy can be found in other articles within this journal supple-
ment and in the UCL repository (Modell et al. 2016).

Terminology

MGDb uses a set of defined methods to relate demographic
data to the known birth prevalence of selected congenital dis-
orders, in order to generate estimates relevant to public health,
policy-making and clinical practice. The creation of this tool
requires precise definitions of all input data and outputs.
Table 1 provides a list of some of the key terms along with

their definitions within the context of this tool; a comprehen-
sive glossary can be found in the UCL repository (Modell
et al. 2016).

Scope of conditions

Only severe, early-onset congenital disorders that cause early
death and/or life-long disability in the absence of care and
present before 20 years of age are included in MGDb. The
disorders currently modelled by MGDb are shown in Table 2.
The rationale for modelling these disorders, where data are
unavailable, is that their birth prevalence in the absence of
access to diagnosis and care (baseline birth prevalence) is
relatively constant in any given population. Estimation of
the birth prevalence of these conditions can therefore be un-
dertaken assuming that this will vary only with identified fac-
tors, such as interventions (e.g. folic acid fortification, prenatal
diagnosis, surgical repair). Modelled estimates can be gener-
ated on a country-specific annual basis of potential (in the
absence of interventions) and actual affected births. Thus,
the tool can also be used to estimate the actual effects of any
proposed future interventions. Although the same method can

Table 1 Terms and definitions
Term Definition

Miscarriage Foetal loss before 20 weeks of pregnancy (measured from the last menstrual period)

Foetal death Death in utero after 20 weeks from the last menstrual period. Used as an indicator of
prevalence of stillbirth

Birth Covers all pregnancy outcomes after 20 weeks of pregnancy (measured from the last
menstrual period)

Birth prevalence Used in place of Bincidence^ to describe the frequency of new cases as they present to
health services. Expressed in terms of affected births per 1000 live births. World
Population Prospects (WPP) estimates provide the denominator, and in WPP the term
Bbirths^ applies only for live births

Baseline birth
prevalence

The birth prevalence that would obtain in the absence of any intervention

Actual birth
prevalence

Actual births/1000 live births, allowing for the effects of interventions before or during
pregnancy

Total birth
prevalence

Includes all outcomes of affected pregnancies after 20 weeks’ gestation (termination of
pregnancy, foetal death/stillbirth, live birth). Expressed as total affected births /1000
live births

Live birth
prevalence

Affected live births/1000 live births

Optimal care Standard of care available in high-income settings with equitable access to services, at
any given point in time

No care The level of care available in the absence of any supportive medical services

Early mortality Deaths in children under 5 years of age

Severe disability Disability plus significantly shortened life expectancy

Less severe
disability

Disability with less effect on life expectancy. Ranges from less severe forms of spina
bifida to Bwell on treatment^ (e.g. congenital hypothyroidism)

Effective cure A disorder that has been sufficiently corrected to allow affected individuals to live their
lives free from continuing medical care, and to achieve life goals such as independent
living, finding a partner, reproductive success, even with some persisting problems. It
does not mean complete correction with no residual problems
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be applied to congenital disorders that arise as a result of
external risk factors, such as maternal exposure to infection,
malnutrition, or teratogens, at present there are insufficient
input data at the global level to define a baseline birth preva-
lence and outcomes of these disorders. This is due to lack of
precise estimates of risk associated with these exposures and
the fact that risk varies more widely with place and time,
requiring country-specific data.

The congenital malformation group includes the International
Classification of Disease (ICD 10) (World Health Organization
2016) system groups used in most congenital anomaly regis-
tries and focuses on isolated malformations (i.e. not those as-
sociated with chromosomal disorders or genetic syndromes.
Disorders associated with other malformations contribute to
the multiple malformations group. Neural tube defects,
orofacial clefts and congenital heart defects, are treated

Table 2 Groups of congenital disorders modelled by MGDb with principal sources of birth prevalence data

Major category Intermediate bundle Diagnostic group Principal sources for reference baseline
birth prevalence rates

Congenital
malformations

Neural tube defects Anencephaly Elwood et al. (1992), EUROCAT, ICBDSR,
literature review and personal communicationsSpina bifida and

encephalocele

Orofacial clefts Cleft palate
Cleft lip +/− cleft palate

Mossey and Little (2002), Kadir et al. (2016)

Congenital heart diseasea (CHD) Very severe CHD EUROCAT
Severe CHD

Other congenital malformations CNS not neural tube defect

Eye

Ear, face, neck

Respiratory system

Digestive system

Abdominal wall defects

Urinary system

Multiple malformations

Genital system

Limb

Congenital hypothyroidismb Modell and Modell (1992)

Pyloric stenosis Pedersen et al. (2008), Modell and Modell (1992)

Chromosomal disorders Down syndrome Down syndrome Maternal age calculation
Other severe autosomal abnormalities Other trisomies (+13, +18)

Other autosomal Wellesley et al. (2012)

Sex chromosome disorders Turner syndrome (XO) EUROCAT

Klinefelter syndrome (XXY) Visootsak and Graham (2006), Morris et al.
(2008)

Inherited disorders Rare single gene disorders Dominant Stevenson (1959) Trimble and Doughty (1974),
Carter (1977), Baird et al. (1988)X-linked

Recessive disordersc

Consanguinity-associatedd disorders Recessive disorders Bundey and Alam (1993), Bittles and Neel (1994).

Common autosomal recessive
disorders

Sickle cell disorders Modell and Darlison (2008)
Thalassaemia

Oculocutaneous albinism Kromberg et al. (1989), Lund and Taylor (2008)

Genetic risk factors Rhesus haemolytic disease Mourant et al. (1976), Bhutani et al. (2013)

G6PDd kernicterus World Health Organization (1985b),
Howes et al. (2012)

aCHD congenital heart defect that usually presents before 20 years of age and would cause premature death or disability in the absence of intervention
bHypothyroidism due to thyroid agenesis or dysgenesis. Hypothyroidism due to iodine deficiency is excluded
c Recessive disorders that would occur in the absence of consanguineous marriage and are disadvantageous without any identified compensating
selective advantage
d Parental consanguinity is associated with an increment in congenital disorders, the increment is mainly due to increased birth prevalence of recessive
single gene disorders as parental consanguinity increases the chances that a couple will both carry the same recessive gene variant
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separately, as data relating to these malformations are more
readily available. The chromosomal disorder group includes
all chromosomal disorders that cause substantial disability for
the affected person. In MGDb, Edwards and Patau syndrome
are treated together as Bother trisomies^ because their outcomes
are very similar. Inherited disorders have been bundled into
four broad groups. Rare single gene disorders include domi-
nant, X-linked and recessive disorders that are expected to have
a similar collective birth prevalence worldwide, because their
gene frequency is mainly determined by the balance between
new mutation rate and natural selection, neither of which is
thought to vary greatly between populations. The common re-
cessive disorders group includes three conditions (sickle cell
disorder, thalassaemia and oculocutaneous albinism) for which
there is known global variation in carrier prevalence.
Consanguinity-associated disorders refer to the increment of
recessive disorders that are associated with parental consan-
guinity (Corry 2014). Disorders due to genetic risk factors are
caused by the interaction of (often very common) DNAvariants
with other genetic and environmental factors. MGDb includes
two early-onset examples (rhesus haemolytic disease of the
newborn and neonatal jaundice due to G6PD deficiency) be-
cause (a) the underlying mechanisms are exceptionally well
understood and (b) they are potentially lethal but can be effec-
tively prevented and/or treated.

Overview of the methodological approach

The objective of MGDb is to estimate numbers of births af-
fected by one or more congenital disorders, and outcomes in

the no-care situation and with current care. Figure 1 shows the
range of possible outcomes and their modification by a variety
of diagnostic and therapeutic interventions. The effect of some
interventions is quantifiable as data relating to their impact are
available, for example, folic acid food fortification, the iden-
tification of genetic risk and the option of termination of preg-
nancy. In addition to the impact of particular interventions,
their availability and ease of access must be taken into account
(Blencowe et al. 2017). Estimates were derived in a stepwise
manner, beginning with baseline birth prevalence and out-
comes in the absence of interventions (Fig. 1). Once an esti-
mate is available for baseline birth prevalence, outcomes may
be calculated based on estimated actual live birth prevalence,
estimated access to services and survival with optimal or very
limited care.

Sources of data

Demographic data

Demographic data not only provide the basis for quantitative
epidemiological estimates and the assessment of service
needs, they offer an overall picture of many aspects of a pop-
ulation. It is particularly important to recognise the speed of
demographic change; all epidemiological estimates need to
take account of this dynamic background. The principal
source of demographic data is the UN World Population
Prospects (UN WPP) (United Nations Population Division
2015), with other data sources used for specific indicators
(Bittles and Black 2015; Blencowe et al. 2017; Institute for

Fig. 1 The sequence of events
covered in MGDb and stepwise
modelling process used to derive
estimates for specific congenital
disorders. The outcomes that are
impacted by interventions are
shown in italics
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Health Metrics and Evaluation (IHME) 2015; Inter-agency
Group for Child Mortality Estimation (UN-IGME) (2015);
UNAIDS 2016). Table 3 provides a summary of the demo-
graphic indicators and their sources used to generate estimates
for the prevalence and outcomes of congenital disorders.

Baseline birth prevalence

The frequency of a disorder in a population is usually de-
scribed in terms of incidence (number of new cases arising
in a defined time-period) and prevalence (number of cases
actually present in a given unit of population, e.g. per thou-
sand or per million). However, the incidence of congenital
disorders is usually expressed as birth prevalence because al-
though many congenital disorders arise at or around the time
of conception, many affected embryos either fail to implant or
miscarry in early pregnancy, and so never come to the atten-
tion of health services. Therefore, for practical purposes, their
prevalence at birth is counted as their incidence, and expressed
as rate per 1000 live births. MGDb follows the European

Surveillance of Congenital Anomalies and Twins
(EUROCAT) convention in counting all pregnancy outcomes
after 20 weeks gestation as births. In keeping with ICD-10, all
births with any signs of life following separation from the
mother, regardless of gestation, are counted as live births.

Baseline, or potential, birth prevalence is the prevalence
that would apply in the absence of any intervention. It is the
foundation of the MGDb and provides the Benvelope^ into
which all outcomes must fit. It includes stillbirths and live
births but excludes miscarriages, and uses Bfoetal death^
(death in utero after 20 weeks’ gestation) as a proxy for still-
birth. Once baseline birth prevalence is known, when appro-
priate observational data are available baseline births can be
allocated to each potential outcome (Fig. 1) thus generating an
overall epidemiological picture of the current status of each
disorder group.

The baseline birth prevalence for most countries worldwide
can be calculated from available data or estimated for many
congenital disorders (Table 2). The methodology used to ob-
tain these estimates is described in detail elsewhere (Modell

Table 3 Demographic indicators—sources and time period covered by data

Indicator Use within estimates Data source Time-period
covered by data

Population (1000 s) Denominator for prevalence calculations per 100,000 population UN WPP 1950–2016
Population age distribution This provides a baseline for estimating present patient numbers UN WPP

Annual number of
live births (1000 s)

Denominator for all rate calculations
(e.g. affected births/1000 births)a

UN WPP

Infant mortality rate (deaths under
1 year per 1000 births)

A basic indicator of health service development used for
estimating access to health services and adjusting estimates
of mortality and survival for all-cause mortality

UN WPP b

Under-5 mortality rate (deaths
before age 5 per 1000 births

Used for adjusting under-5 deaths due to congenital disorders
for all-cause mortality

UN WPP b

Total fertility rate (TFR) (estimated
average births per woman based
on current fertility)

Used in estimates for disorders whose prevalence
is related to birth number (e.g. rhesus haemolytic
disease of the newborn)

UN WPP

Mean life expectancy (average
both sexes)

Provides the basis for calculating years of life affected
by congenital disorders (years of life lost, lived with
disability or lived cured)

UN WPP

Maternal age distribution Proportion of mothers 35 or over is used in calculating
potential birth prevalence of maternal-age-related
chromosomal disorders

UN WPP

Stillbirth rate Used to estimate the contribution of congenital disorders to
stillbirths

Blencowe et al. 2017 2000–2014

Population neonatal mortality rate Total neonatal mortality rates are the denominator for calculating
the contribution of congenital disorders to country, regional
and global neonatal mortality

UN-IGME 1990–2013

Prevalence of consanguineousmarriage
(coefficient of consanguinity)

Used for estimating birth prevalence and outcomes of single
gene disorders and for adjusting estimated access to
services based on infant mortality rate

Bittles and
Black (2015)

Early mortality due to HIV infection Used for adjusting estimating access to services based
on infant mortality rate

Institute for Health
Metrics and Evaluation
(IHME) (2015)

1990–2013

UNWPP United Nations World Population Prospects(United Nations Population Division)
a Prevalences of congenital disorders are usually described per 10,000 births in congenital anomaly registries. MGDb uses rates n/1000 births because
this is the commonest expression in the context of public health
b Annual data from 1980, with methodology, is available from http://www.childmortality.org/
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et al. 2016). Briefly, the birth prevalence of maternal age-
related chromosomal disorders can be calculated from mater-
nal age distributions for which global data are available
(Moorthie et al. 2017). The Hardy-Weinberg (H-W) equation
can be used to calculate the birth prevalence of haemoglobin
disorders, consanguinity-related disorders, rhesus haemolytic
disease and susceptibility to neonatal jaundice due to G6PD
deficiency, from available global data on carrier prevalences
(Abbas and Yunis 2014; Bittles and Black 2015; Piel et al.
2013a, b). With regard to congenital malformations, there are
sufficient observational data available in the literature and
from registries on neural tube defects and orofacial clefts to
make estimates for countries in every region (Modell et al.
2016; Blencowe et al. 2017), since these severe malformations
are evident at birth.

However, data on all other congenital malformations and
rare single gene disorders are only available in high-income
settings. To generate estimates for congenital malformations
for countries outside high-income settings, we have utilised
publicly accessible data from the EUROCATwebsite to obtain
average European rates for birth prevalence (Moorthie et al.
2017; Modell et al. 2016). Studies examining ethnic differ-
ences have only shown variation for polydactyly, congenital
hypothyroidism, orofacial clefts and neural tube defects
(Chitty and Winter 1989; Petrini et al. 1997; Terry et al.
1985; Yang et al. 2004). In addition, data from the
International Clearinghouse for Birth Defects Surveillance
and Research (ICBDSR) indicate little inter-ethnic variation
for other malformations. As a result we have assumed that the
baseline birth prevalence for these conditions is little affected
by ethnicity; therefore, average European rates have been used
to generate estimates for countries with no or insufficient ob-
servational data (Modell et al. 2016). In the absence of more
recent data on the birth prevalence of rare single gene disor-
ders, we have utilised the rates of Baird et al. (Baird et al.
1988) to represent global collective baseline birth prevalences.
However, the contribution of specific single gene disorders to
collective birth prevalence is known to vary in countries, es-
pecially where there are founder effects.

Data on outcomes in the absence of diagnosis and care,
and with optimal care (i.e. with the interventions generally
available in high-income settings), can be obtained for
most groups of congenital disorders. In any setting, a pro-
portion of the population has access to optimal care; how-
ever, there is no routinely collected indicator from all
countries that provides this information. We have therefore
developed a method for estimating the proportion of ac-
cess to optimal care using infant mortality as a proxy
indicator (Modell et al. 2016). Country-specific estimates
of outcomes can then be calculated, based on outcomes in
the absence of care and with optimal care, and the pro-
portion of the population with access to care (Modell
et al. 2016).

There are only three possible outcomes for early-onset con-
genital disorders in the absence of interventions–foetal death,
life with some degree of disability and premature death (Fig. 1).
The types and availability of specific interventions have
evolved over time, impacting on birth prevalence for specific
disorders in different time-periods and the subsequent number
of survivors (Modell et al. 2016). Increased access to prenatal
diagnosis and termination of pregnancy can act to reduce birth
prevalence whilst improvements in diagnosis and care impact
on outcomes. Provision of early diagnosis and care can greatly
reduce annual numbers surviving with disability for disorders
with effective cures. For children with incurable disorders it can
both prolong survival and ameliorate the levels of disability. As
a result, theremay be a steady annual increase in the cumulative
number of individuals living with these disorders and requiring
appropriate care. The evolution of this effect needs to be quan-
tified in order to assess current and future patient numbers and
service needs. A full description of the sources of data on the
impact of interventions is available elsewhere (Blencowe et al.
2017; Modell et al. 2016).

Under-5 mortality

For most congenital disorders mortality is highest within the
first 5 years of life, the period for which survival data with no
care and with optimal care are most complete and most reli-
able. To avoid double counting, it is important to allow for the
overlaps inherent in multiple causes of death. For assessing
total deaths of people with a given disorder, all deaths of
affected individuals must be included, whatever the cause.
However, when the aim is to assess attributable deaths–deaths
that are specifically due to a defined disorder, the background
mortality should also be considered. This is because some
affected individuals who would have died of their disorder
in fact die earlier from unrelated causes, and the proportion
of such deaths varies with place and time.

To obtain attributable early deaths, numbers are adjusted
for deaths from other causes using country rates for neonatal,
infant and under-5 deaths (Modell et al. 2016). The adjustment
makes relatively little difference in countries where early
background mortality is low, but when background mortality
is high a sizeable difference is observed.

Long-term survival

Table 4 shows the main sources used for estimating survival
with limited care, and with optimal care, defined as the best
care available around the time the patients were born. The
upper age limit of the observational data is also shown. This
allows the construction of survival curves in a no-care and an
optimal care situation which were then used to estimate num-
ber of survivors.
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Lifetime survival curves with optimal care are only avail-
able for some congenital disorders—Down syndrome, spina
bifida, orofacial clefts, and haemoglobin disorders. For most
other disorders, observational survival data are only available
to age 20 or 30 years. Lifetime survival curves were complet-
ed for these disorder groups by extrapolating the observed rate
of attrition in the last full 5-year interval recorded to 80 years
of age. Normal survival is expected for correctable congenital
malformations, congenital hypothyroidism and disorders due

to genetic risk factors, as optimal care should allow for effec-
tive cure or appropriate management of these conditions.
Long-term survival in the absence of care is based on literature
available from high-income settings in the 1950s for spina
bifida, Down syndrome, congenital heart disease and
haemoglobin disorders and on expert opinion for most other
disorders (Table 4).

Lifetime survival curves are used to project future patient
numbers, but they need adjustment for use in calculating

Table 4 Main sources of data used for estimating survival with optimal care and no care

Intermediate bundle Diagnostic group Optimal survival Recorded
to age

No-care survival

Neural tube defects Anencephaly Lethal Lethal

Spina bifida and encephalocele Hunt and Oakeshott (2003)
Bowman et al. (2001)
Tennant et al. (2010)

30 years
20 years
20 years

Lorber (1971),
Laurence and Tew (1971)

Orofacial clefts Cleft palate
Cleft lip +/− cleft palate

Christensen et al. (2004) Lifetime (Mossey and Modell 2012)

Congenital heart
disease (CHD)

Very severe CHD Wren and O'Sullivan (2001),
Tennant et al. (2010)

Wren et al. (2012)

20 years Macmahon and McKeown (1953),
Campbell (1968),
Campbell et al. (1957),
Baylis and Campbell (1956)

Severe CHD

Other congenital
malformations

CNS not neural tube defect Tennant et al. (2010)
Skjaerven et al. (1999)
Lie et al. (2001)

20 years
Lifetime
Lifetime

Expert opinion
Eye

Ear, face, neck

Respiratory system

Digestive system

Abdominal wall defects

Urinary system

Multiple malformations

Genital system

Limb

Congenital hypothyroidism Assumed normal Assumed <20 years

Pyloric stenosis Lethal

Down syndrome Down syndrome Baird and Sadovnick (1988)
Baird and Sadovnick (1987)
Frid et al. (2004)

Lifetime
1 year

Penrose (1949),
Carter and Maley (1958),
Stevenson (1959)

Other severe autosomal
abnormalities

Other trisomies (+13, +18) Wu et al. (2013) 5 years Lethal

Other autosomal Estimated 10% < Down Estimated 10% < Down

Sex chromosome
disorders

Turner syndrome (XO) Price et al. (1986)
Stochholm et al. (2006)

60 years Mortality est. 2× optimal care

Klinefelter syndrome (XXY) Bojesen et al. (2004) Lifetime Bojesen et al. (2004)

Rare single-gene
disorders

Dominant Costa et al. (1985) Lifetime Baird et al. (1988)
X-linked

Recessive disorders

Consanguinity-associatedd

disorders
Recessive disorders Bundey and Alam (1993) 5 yr. Bittles and Neel (1994)

Common autosomal
recessive disorders

Sickle cell disorders Platt et al. (1994) Lifetime Fleming et al. (1979)

Thalassaemia Modell et al. (2000),
Modell et al. (2008)

45 Modell and Berdoukas (1984)

Genetic risk factors Rhesus haemolytic disease Bhutani et al. (2013) Assumed
normal

Stevenson (1959)

G6PDd kernicterus World Health Organization (1985b),
Bhutani et al. (2013)

World Health Organization (1985b)
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current patient numbers, since mortality is usually higher in
the early years. The current number of survivors in each age
group is largely determined by the services available around
their year of birth. Retrospective survival curves were derived
from prospective curves, taking into consideration the histor-
ical evolution of services, for use in calculating the number
and age distribution of patients living at any given time. For
this purpose, survival data for each phase in the evolution of
care were obtained from the literature (Modell et al. 2016).

Disability and cure with optimal care and with no care

Definitive cure of conditions is limited to operable congenital
malformations. Survivors with most other disorders live with
some disability. The survival outcome can range from well
(e.g. congenital hypothyroidism with regular replacement
treatment) to the very severe (e.g. associated severe physical
and mental disability). Due to this diversity, quantification of
physical disability is limited to estimates of the proportion of
survivors at age 5 with severe disability (including reduced

life expectancy), less severe disability (with lesser or no effect
on life expectancy) and effectively cured.

Data regarding long-term disability outcomes, depending
on the levels of access to care, were obtained through lit-
erature review. The proportion of each population without
optimal care is assumed to have no access to care.
Although we have used the term no-care, this does not
refer to the absolute lack of care as this is unlikely to be
the case in reality, with supportive care at home or in a
facility available in many settings. In addition, we have
used estimates for survival with no care based on available
data, which in large part is based on survival in the 1950s
in Bhigh income^ settings (Modell et al. 2016); consequent-
ly the survival that we have estimated is likely to be an
overestimate for a total absence of care.

Examples of MGDb outputs by WHO region

The aim of the present exercise is to support health policy
makers and practising clinicians at the country level.
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Outputs are therefore generated to provide a basis for
assessing non-financial and financial costs and benefits, and
to allow critical comparison with other estimates. MGDb out-
put data are generated for each disorder group by country;
these can be aggregated by WHO region. All outputs are
expressed in terms of annual numbers and rate per 1000 live
births.

Baseline birth prevalence and actual birth prevalence

Figure 2 shows the estimated baseline birth prevalence of the
groups of congenital disorders byWHO region. All charts also
include rates forWestern Europe because most currently avail-
able interventions are deployed in this sub-region near-equi-
tably at high coverage, and surveillance data are available.
Observed outcome data may therefore be used to describe
the Bpower^ of each intervention when fully deployed at the
population level. There is little inter-regional difference in the
baseline prevalence of chromosomal disorders, congenital
malformations and baseline single-gene disorders. Most of
the inter-region difference is due to genetic disorders where
there are inter-country differences in carrier prevalence, or
according to the prevalence of consanguinity.

Figure 3 shows the corresponding distribution of three pos-
sible outcomes in a situation with limited access to care, pro-
viding a baseline for assessing the effects of interventions. The
estimated effect of pre-birth interventions on affected birth
prevalence in 2010–2014 by type of intervention can be seen
in Fig. 4. Globally, the largest contributions were from anti-D
for rhesus negative mothers and termination of pregnancy for
foetal impairment. The effect of pre-pregnancy genetic
counselling is relatively small because in most cases risk is
only detected retrospectively, i.e. after the diagnosis of an
affected child (Modell et al. 2016).

Birth outcomes, outcome at 5 years of age and effect
of interventions

The estimated distribution of actual outcomes in 2010–2014,
taking account of interventions and charted within the enve-
lope of potential birth prevalence, can be seen in Fig. 5. By
definition, the sum of all outcomes fits into the envelope of
baseline birth prevalence. Rates for Western Europe indicate
that all available interventions, when deployed at the popula-
tion level, reduce mortality due to congenital malformations,
chromosomal disorders, the two genetic risk factors and
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haemoglobin disorders by over 80%, but there is far less effect
on mortality due to other single-gene disorders. Effective cure
is possible for many congenital malformations by paediatric
surgery (online resources Fig. 1). Table 5 shows the estimated
per cent reduction in unfavourable outcomes due to interven-
tions at 5 years of age, in 2010–2014. The greatest proportion-
al reduction is in under-5 deaths. There is much less reduction
in disability—in fact, disability at age 5 due to congenital
disorders was increasing in the Eastern Mediterranean,
African and South-East Asian regions.

Mean life expectancy

Table 6 shows disorder-specific mean life expectancy with no
care and optimal care, calculated from the full survival curves.
The difference between life expectancy with no care and with
optimal care measures the survival benefit of care. Mean life
expectancy is used to calculate costs of the disorder and the
benefits of interventions, in terms of years of life lost, lived
with disability or lived cured. The rates in Table 6 represent
life expectancy with the disorder in the absence of any other
cause of death. These Bideal^ rates are adjusted bymultiplying
local life expectancy divided by a notional optimal life expec-
tancy of 80 years.

Years affected per person born is the same as local mean
life expectancy. This provides the envelope for all estimates of
outcomes. The world average is 2.5 years affected per person
born (range 3.25 for the EMR to 2.2 for WPR). In the absence
of intervention, they would be responsible for 2 years loss of
life per person born (range 1.7–2.7 years). Figure 6 shows
estimated outcomes in terms of years of life lost, lived with
disability or lived cured per person born in 2010–2014. The
striking reduction in death and disability in Western Europe
demonstrates the potential of global implementation of inter-
ventions for congenital disorders.

Estimated number and age distribution of living patients

To plan for current service needs and project future changes,
policy-makers need to know the approximate numbers of per-
sons presently living with specific disorders. This information
can only be reliably obtained using a patient register.
However, few such registers exist even in high-income

Table 5 Per cent reduction in unfavourable outcomes below baseline
rates due to interventions, by WHO region, 2010–2014

WHO region Stillbirths Under-
5
deaths

Disability
at 5 years

Total
unfavourable
outcomes

African 5.2 7.0 −2.1 4.0

American 35.4 49.5 18.8 38.0

Eastern
Mediterranean

17.6 22.2 3.4 15.1

European 48.4 67.0 30.1 52.8

South-East
Asian

6.8 13.2 5.3 9.9

Western Pacific
Region

41.6 58.4 31.5 47.5

World 16.3 26.2 9.9 19.9

Western Europe 66.7 80.0 39.3 65.1

Table 6 Estimated mean life expectancy with congenital disorders
2010–2014

Major
category

Diagnostic group Mean life
expectancy,
years

Years
gained
per
affected
personNo

care
Optimal
care

Congenital
malformations

Anencephaly 0 0 0

Spina bifida and
encephalocele

0.5 41.2 40.7

Cleft palate
Cleft lip +/− cleft palate

4.4 73 68.6

Very severe CHD

Severe CHD 2 6.6 4.6

CNS not neural tube
defect

15.8 63.6 47.8

Eye 0.5 42.5 42

Ear, face, neck 39.6 74.7 35.1

Respiratory system 72.2 72.2 0

Digestive system 15.6 51 35.4

Abdominal wall defects 3.8 63.3 59.5

Urinary system 0.5 65.1 64.6

Multiple malformations 10.6 69.3 58.7

Genital system 0.5 37.5 37

Limb 76.7 76.7 0

Congenital
hypothyroidism

69.8 74.2 4.4

Pyloric stenosis 11.5 80 68.5

Chromosomal
disorders

Down syndrome 0.5 80 79.5

Other trisomies (+13,
+18)

7.7 50.6 42.9

Other autosomal 0.1 0.1 0

Turner syndrome (XO) 6.9 45.6 38.7

Klinefelter syndrome
(XXY)

56.8 67.8 11

Inherited
disorders

Dominant 66.4 66.4 0

X-linked 1.3 17.6 16.3

Recessive disorders 12.1 39.4 27.3

Consanguinity-associated
recessive disorders

6.7 28.1 21.4

Sickle cell disorders 6.7 28.1 21.4

Thalassaemia 3 41.5 38.5

Oculocutaneous albinism 2.4 65.1 62.7

Rhesus haemolytic
disease

30 70 40

G6PDd kernicterus 1.9 80 78.1
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settings, even for readily diagnosable disorders such as Down
syndrome. The method we have developed extends the prin-
ciples described above (i.e. consideration of availability of
interventions, their impact and evolution along with demo-
graphic data) to estimate the number and age distribution of
patients currently receiving care. As WPP provides age distri-
bution data from 1950 onwards, it is possible to generate es-
timates in any year from 1950 onwards, allowing a compre-
hensive picture of the history of selected disorders up to a
chosen year. As an example, Fig. 7 shows global estimates
for spina bifida by 5-year age intervals in 2010.

Future projections

Future projections of the likely effects of implementing inter-
ventions, such as folic acid food fortification or prenatal diag-
nosis with the option of termination of pregnancy are of par-
ticular interest to policy-makers. They can be calculated as
follows: (a) assuming no change in present policies and (b)

assuming worldwide spread of available interventions.
Table 7 summarises the estimated long-term effects of differ-
ent policy decisions for spina bifida at a global level. All of the
estimates take account of change in access to care during the
time period involved.

Discussion

The absence of epidemiological data on congenital disorders
has led to the creation of MGDb. However, as with all model-
ling initiatives, the estimates produced can only be as accurate
as the input data, and they are approximations only. We em-
phasise that our aim is only to produce order of magnitude
estimates that can be used as a starting point for service plan-
ning. They must not be considered as definitive, and require
continuous improvement and refinement as better information
becomes available. In undertaking this task, it proved neces-
sary to clarify some concepts and develop some new methods
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to address gaps in available observational data. Articles within
this journal describe some methodological aspects and further
details can be accessed via the UCL repository (Modell et al.
2016).

Most estimates generated by MGDb are likely to be under-
estimates. This is because it is difficult to diagnose many con-
genital disorders, especially when they cause stillbirth or early
death, or in settings with limited diagnostic capacity, which can
lead to death and disability being attributed to other causes and
a lack of reliable prevalence data. Reliable cause of death data
can only be obtained in high-income settings where, by defini-
tion, prevention and care are also available. Therefore, if med-
ically certified death rates are assumed to apply globally, early
deaths due to congenital disorders will be greatly
underestimated. In addition, wherever possible attempts were
made to avoid overestimation; some examples are given below.
The estimates for single gene disorders are based on older lit-
erature and hence only cover conditions diagnosable at that
time; but with advances in DNA technology new single gene
disorders are being steadily identified (Boycott et al. 2013). The
rates for effect of parental consanguinity are largely based on
the work of Alan Bittles; but this largely estimates mortality
rather than mortality plus disability (Bittles 2003; Bittles and
Black 2010), and rates for Rhesus haemolytic disease are lower
than those published elsewhere (Bhutani et al. 2013).

Strengths

The strength of this approach lies in beginning with baseline
birth prevalence, which provides the most robust estimates. It
provides the envelope for all possible outcomes; consequent-
ly, overestimation of one outcome leads to underestimation of
another, for example overestimation of mortality leads to un-
derestimation of disability. We have endeavoured to address

factors that can lead to overestimation of mortality and prev-
alence as detailed by Liu et al.(Liu et al. 2012, 2002) and
described below.

1. Potential bias towards high prevalence populations, which
is a possibility when rates are based on the literature.
However, we have endeavoured to use rates based on
international registry data. For high-income settings the
rates come from EUROCAT, which contains population-
based data. Most data for lower-income settings has been
obtained from ICBDSR, and most participating registries
are hospital-based. This could result in bias due to selec-
tive referral of high risk pregnancies, but is unlikely as this
often requires routine foetal anomaly scanning. Gene fre-
quency data for haemoglobinopathies, G6PD deficiency
and rhesus negativity are based on many large-scale pop-
ulation surveys. Where data were from selected popula-
tions, they were excluded.

2. The uncertainty in applying prevalence estimates derived
from largely European populations to populations with
different fertility patterns, or specific genetic and environ-
mental contexts. For congenital malformations, compara-
tive studies by ethnic group in high-income settings yield
comparable rates with two exceptions: (a) a lower birth
prevalence of neural tube defects and orofacial clefts
among people of Sub-Saharan African origin, and (b) an
increased prevalence of congenital malformation syn-
dromes in groups in which consanguineous marriage is
customary. Allowances have been made for differences in
maternal age distribution, total fertility rate and observed
ethnic differences in the birth prevalence of NTD, OFC,
CHT and the effect of parental consanguinity by using
country-specific data for these conditions and estimating
the impact of consanguinity.

Table 7 World picture of spina
bifida: past and potential future
numbers with different future
scenarios

Estimate Past history Future from 2010

No policy
change

Global FAF Global FAF
and TOP legal

Potential if no intervention 1950 1970 1990 2010

Unaffected due to FA 2532 3614 5231 6977

Termination of pregnancy 0 0 0 56

Potential with interventions 0 0 28 196

Total deaths 2532 3614 5203 6725

Living with NTD 2486 3490 4989 6347

% of potential unaffected due to FA 47 124 207 399

% of potential avoided by TOP 0.8

% of potential living with NTD 0.5 2.8

Potential if no intervention 1.8 3.4 4.0 5.9

FAF folic acid fortification, TOP termination of pregnancy
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3. The fact that some estimates include stillbirths and termi-
nations as well as live births. Due to differences in the
definition of stillbirths we have used foetal deaths as an
approximation for stillbirths. As many terminations occur
before 20 weeks, we have adjusted TOP rates to those that
would apply from 20 weeks onwards. In addition, when
observed data applied only to live births we added esti-
mates for foetal deaths based on data from registries and
the literature.

4. Double counting of infants with more than one congenital
disorder. We ensured throughout that numbers and rates
apply for affected individuals within the groups specified
in Table 1 and created a separate category for cases with
more than one congenital malformation.

5. Overestimating mortality due to congenital disorders in
lower income settings. Estimates for mortality in a no-
care situation are based on historical data from high-
income settings and are likely to underestimate a truly
no-care situation.

Weaknesses

As improved data become available from other regions, it will
be important to test the assumptions made and to modify them
as necessary. The biggest assumptions relate to our estimate of
access to care and long-term survival, due to the paucity of
data in these areas. A further limitation of this work is a pau-
city of population-based, cause-specific fatality rate data for
varying care settings, necessitating reliance on historical data
or expert opinion. There is an urgent need for improved out-
come data to verify or amend these estimates. This is an im-
portant area for future research, to fully document the long-
term impact of living with these conditions and improving the

estimates available to more fully quantify the benefits arising
from interventions.

Differences from other estimates

Currently, the only available national and regional estimates
for mortality and disability due to congenital disorders were
undertaken as part of the Global Burden of Diseases (GBD)
study. GBD estimates are limited to congenital anomalies,
defined as disorders included in ICD10 chapter VII (the Q
chapter)–BCongenital malformations, deformations and chro-
mosomal abnormalities^; that is, they deal only with develop-
mental structural anomalies. Congenital anomaly groups spec-
ified in the GBD are Down syndrome, unbalanced chromo-
somal rearrangements, neural tube defects, orofacial clefts,
congenital heart anomalies and other congenital anomalies.
These exclude single-gene disorders or genetic risk factors
modelled in MGDb; consequently, they were excluded from
the comparison.

Table 8 summarises the results of a comparison of esti-
mates of under-5 deaths produced by the GBD (Lopez et al.
2006b) and MGDb. There is reasonable correspondence be-
tween estimates for high-income regions and for East and
Central Europe where vital registration data are available,
but with wide divergences in other regions. The MGDb esti-
mates are consistently higher for most other regions; however,
they do fall within the uncertainty range of the GBD data for
North Africa and the Middle East and most of sub-Saharan
Africa (see online resources Fig. 2).

In existing global estimates, confusion about terminology
leads to under estimation of the true burden of congenital
disorders. For example, estimates of the Bcongenital^ contri-
bution to under-5 mortality published by the GBD study
(Lopez et al. 2006a, b) and WHO (Liu et al. 2012) cover only
congenital anomalies. They do not include genetically

Table 8 Comparison of MGDb and GBD estimates of the contribution of congenital anomalies and congenital disorders to under-5 deaths, by WHO
region

WHO region WPP under-5 deaths/
1000

Congenital
anomalies: under-5
deaths/1000

% of under-5 deaths
attributable to congenital
anomalies

MGDb estimates
(total congenital disorders)

2005–2009 2010–2014 MGDb
2010–2014

GBD
2012

MGDb %
of 2005–2009

GBD % of
2010–2014

Under-5 deaths/1000 % of under-5
deaths 2005–2009

African 114.8 96.4 11.4 4.7 9.9 4.9 27.8 24.2

American 22.9 20.4 6.9 3.2 30.2 15.7 10 43.7

Eastern Mediterranean 68.6 58.3 10.6 5.4 15.4 9.3 21.8 31.8

European 15.9 13.5 3.8 2.5 23.9 18.5 6.6 41.5

South-East Asian 59.1 47.1 11.7 2.7 19.7 5.7 18.6 31.5

Western Pacific Region 21.3 16 4.4 2.8 20.9 17.5 7.4 34.7

World 58.8 49.6 9.0 3.6 15.4 7.3 16.3 27.7

Western Europe 4.7 3.9 2.3 1.14 49.1 29.2 4 85.1
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determined disorders (single-gene disorders and disorders due
to genetic risk factors), although estimates from MGDb indi-
cate that they contribute to around 50% of under-5 deaths due
to congenital disorders. This important point underlines the
need for a clearly agreed terminology for community genetics.

It is widely recognised that the average baseline birth prev-
alence of congenital anomalies is at least 20/1000 while the
baseline birth prevalence of congenital disorders (including
single-gene disorders and early-onset disorders due to genetic
risk factors) is over 37/1000(Baird et al. 1988; Czeizel and
Sankaranarayanan 1984; World Health Organization 1985a).
Their contribution to early death and disability is masked in
lower-income settings by high early mortality from other
causes, but it has been estimated that infant mortality can fall
below 10/1000 only when interventions for the prevention and
care of congenital disorders are in place (Christianson and
Modell 2004; World Health Organization 1985a).
Consequently, they would be expected to hold a significant
place in the Sustainable Development Goals (to end prevent-
able deaths in children) and the WHO strategy for non-
communicable diseases (Darmstadt et al. 2016).

Conclusions

It is possible to overcome the current difficulties in collecting
high-quality population-based epidemiological data for con-
genital disorders in many low- and middle-income countries.
The method used here to generate estimates for countries with
little or no observational data makes it possible to generate
useful order of magnitude estimates by (a) starting from
evidence-based estimates of baseline affected birth preva-
lence; (b) basing estimates for high-income settings on obser-
vational data; (c) generating estimates for a baseline no-care
situation using the limited observational data supplemented by
expert opinion; and (d) using an empirical equation based on
infant mortality rates for estimating the proportion of each
population with access to the relevant services.
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