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Abstract

Pulmonary arterial hypertension (PAH) is an often fatal disorder resulting from several causes 

including heterogeneous genetic defects. While mutations in the bone morphogenetic protein 

receptor type II (BMPR2) gene are the single most common causal factor for hereditary cases, 

pathogenic mutations have been observed in approximately 25% of idiopathic PAH patients 

without a prior family history of disease. Additional defects of the transforming growth factor beta 

(TGF-β) pathway have been implicated in disease pathogenesis. Specifically, studies have 

confirmed activin A receptor type II-like 1 (ACVRL1), endoglin (ENG) and members of the 

SMAD family as contributing to PAH both with and without associated clinical phenotypes. Most 

recently, next-generation sequencing has identified novel, rare genetic variation implicated in the 

PAH disease spectrum. Of importance, several identified genetic factors converge on related 

pathways and provide significant insight into the development, maintenance and pathogenetic 

transformation of the pulmonary vascular bed. Together, these analyses represent the largest 

comprehensive compilation of BMPR2 and associated genetic risk factors for PAH, comprising 

known and novel variation. Additionally, with the inclusion of an allelic series of locus-specific 

variation in BMPR2, these data provide a key resource in data interpretation and development of 

contemporary therapeutic and diagnostic tools.
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Introduction

Heritable pulmonary arterial hypertension (HPAH) (PPH1; MIM# 178600) is a severe, 

progressive autosomal dominant vascular disorder, predominantly affecting the arterial 

circulation and, in particular, the pulmonary arterioles [Tuder et al., 2013]. Histopathological 

investigation reveals abnormal muscularization of these structures, which leads to a chronic 

elevation of pulmonary arterial pressure, often resulting in right heart failure 2-3 years post-
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diagnosis in the absence of the contemporary treatment protocols [Vonk-Noordegraaf et al., 

2013]. Identification of mutations in the BMPR2 gene in probands with a family history of 

disease provided the first insight into the molecular pathogenesis of HPAH [Deng et al., 

2000; Lane et al., 2000]. Subsequently, BMPR2 mutations were identified in a cohort of 

idiopathic patients (IPAH) [Thomson et al., 2000]. Since, causal variation has been 

described in nine additional genes, in cases that include PAH associated with other 

conditions (APAH). Here, we describe molecular genetic analyses of the 10 functionally 

characterized genes that cause PAH (Figure 1) and provide a compilation of all mutations 

identified to date. The continuing identification of genetic factors, as explored in this report, 

provides unique insight to the genetic mechanisms driving disorders of pulmonary vascular 

function. Furthermore, these studies offer the foundation for the discovery and delivery of 

novel therapeutic options.

Key Components of the BMP Signaling Pathway

The BMPR2 gene (MIM# 600799) encodes a type II receptor of the TGF-β family of 

signaling molecules. The mature polypeptide is composed of a signal peptide (encoded by 

exon 1), an extracellular domain (exons 2-3), a single transmembrane domain (exons 4-5), a 

highly conserved eukaryotic protein kinase region (exons 6-11) and an unusually large 

cytoplasmic tail (exons 12-13) amongst TGF-β receptors species [Liu et al., 1995]. In the 

canonical pathway, BMPR-II binds ligand in a heteromeric complex with a type I receptor, 

which may be activin receptor-like kinase 1 (ALK1), -2 (ALK2), -3 (ALK3/BMPR1A) or -6 

(ALK6/BMPR1B), to initiate activation of intracellular partners within a cell-specific 

context [David et al., 2009; Rigueur et al., 2015]. Phosphorylation of the receptor SMAD 

proteins (R-SMADs) 1, 5 and 8 leads to their association with the nuclear chaperone 

SMAD4. This signaling complex translocates to the nucleus, where it acts in combination 

with transcriptional co-activators and -repressors to effect control of target gene expression 

(Figure 1). BMPR-II signaling has been established as essential to a multitude of 

fundamental cellular processes including proliferation, apoptosis, differentiation and 

migration [Shi and Massague, 2003].

Mutations of BMPR2 Predispose to the Majority of Hereditary and 

Idiopathic Forms of PAH

Herein, we describe an additional 370 independent variants of BMPR2 in patients either 

previously excluded from or ascertained since the last comprehensive mutation update in 

2009 [Machado et al., 2009]. Of these, 108 were identified as part of this study and were 

generated by specialist PAH centers based in Germany, France, North America and the UK 

(Table 1, Table 2). The research was prospectively reviewed and approved by a duly 

constituted ethics committee for each center. Probands were assessed for point mutations 

and large gene abnormalities using multiple screening technologies including Southern 

blotting, denaturing high-performance liquid chromatography, multiplex ligation-dependent 

probe amplification (MLPA), dye-terminator and next-generation sequencing (NGS). All 

variants considered to be pathogenic were absent from a control population of at least 200 

chromosomes and public variation databases including dbSNP v142 (http://

www.ncbi.nlm.nih.gov/SNP) and the 1000 genomes project (http://www.1000genomes.org) 
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and/or have been previously demonstrated to have a functional impact. For a current 

estimation of population frequencies, we have additionally checked all point mutations 

reported here against the Broad Institute Exome Aggregation Consortium (ExAC) database 

v0.3 (http://exac.broadinstitute.org), comprising over 60,000 exomes derived from 

independent sequencing projects. Mutation nomenclature employs parameters set by the 

Human Genome Variation Society (http://www.hgvs.org/mutnomen). Taken together with 

previous reports [Machado et al., 2006; 2009], these data provide evidence of a total of 668 

germline variants underlying PAH, thereby consolidating BMPR2 as the major causal gene 

for familial cases and subjects previously classified as IPAH. The spectrum and range of 

BMPR2 defects in this study comprise the major mutation categories which, in general, 

correlate with existing data [Machado et al., 2006; 2009]. Namely, we record missense 

variants leading to amino acid substitution (n=86, 23%), nonsense mutations (n=107, 29%), 

frameshift defects resulting from small insertions/deletions (n=79, 21%) and splice-site 

variation (n=33, 9%). However, and by contrast to earlier studies, we identified a 

significantly higher prevalence of major gene rearrangements (n=61, 16%) and single 

nucleotide mutations in the 5-prime untranslated region (5′ UTR) (Table 1, Table 2, Supp. 

Table S1). This, most likely, is a consequence of screening centers expanding the analysis of 

gene re-arrangements to include all exons of BMPR2, combined with a growing recognition 

that mutation short-fall within cohorts is potentially explained by defects harbored within 

non-coding regions of BMPR2 [Machado et al., 2006]. For example, we report a total of four 

recurrent 5′ UTR mutations resulting from a guanine to adenine change (c.−669G>A) likely 

to abolish specificity for an SP3 transcription factor binding site [Wang et al., 2009]. In 

combination, these genetic findings reinforce haploinsufficiency as the molecular 

mechanism for this disease [Machado et al., 2001; 2006; 2009]. Moreover, this report 

provides a comprehensive compilation of distinct variants (n=384) across the BMPR2 locus 

since the first identification of the gene (Supp. Table S2). A combination of genetic and 

functional studies have firmly established a large proportion of these to be likely pathogenic 

while others, although compelling, remain to be fully elucidated as disease-causing. These 

data have now been made available in the ClinVar database (http://www.ncbi.nlm.nih.gov/

clinvar).

Distribution and Biological Significance of BMPR2 Variation

Although variation has been described across the entire coding structure of the gene, the 

mutation load differs significantly across exons, indicating both the likely existence of 

mutation hot-spots and potential regions of key functional importance. Taken together with 

previously reported findings, our analyses indicate that the majority of amino acid 

substitutions cluster in exons encoding the ligand-binding domain and key catalytic regions 

of the kinase domain, namely exons 2-3, 6-9 and 11 respectively. By contrast, exons 1, 4, 10 

and 13, encoding receptor regions of uncertain importance to function, have a low frequency 

of missense mutation (Figure 2A). However, assessment of individual nucleotide defects 

within the BMPR2 open reading frame, relative to exon length, illustrates variant load by 

exon may be resultant on an abnormally high frequency of recurrence (e.g. exon 12) which 

corresponds to a low percentage of affected bases (Figure 2B). Conversely, exon 9 whilst 

harboring a relatively modest 6.7% of all reported coding variants, contains the highest 
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proportion of independent nucleotide defects (n=30) relative to exon size (148 bp). In 

combination with previous reports, the majority of mutations predict incorporation of a 

premature termination codon in the mRNA (n=483, 72%) and, as previous functional studies 

have demonstrated, result in degradation of the message through the nonsense-mediated 

decay pathway [Aldred et al., 2007; Nasim et al., 2008].

Cysteine substitutions comprise the majority of missense mutations in the extracellular 

ligand-binding domain and are concentrated on 9 of 10 conserved residues, which are 

essential for the formation of five disulfide bridges necessary to maintain the integrity of this 

highly ordered three-dimensional structure (Figure 3) [Greenwald et al., 1999]. Moreover, 

this analysis has indicated the existence of additional critical residues. Notably, mutation of 

an asparagine (p.N126S), adjacent to the frequently mutated cysteine residue (p.C123R, 

p.C123S), is observed on seven independent occasions [Machado et al., 2009] (Table 1, 

Supp. Table S1), highlighting its putative significance to extracellular domain function. The 

majority of tested mutations in the kinase domain of BMPR-II abolish catalytic function as 

determined by in vitro BMP/SMAD luciferase reporter gene assays. By contrast, the 

significance of mutations within the cytoplasmic tail remains enigmatic, as these receptors 

retain significant capacity for downstream signaling through the SMAD family. Yet, these 

defects appear to perturb non-canonical pathways which include signaling through the 

cytoskeleton-associated factors LIMK-1 and Tctex-1 [Foletta et al., 2003; Machado et al., 

2003]. In addition, studies have suggested that missense variants present across all the 

functional domains of BMPR-II trigger constitutive up-regulation of p38MAPK indicating a 

perturbation of one or more SMAD-independent pathways yet to be fully investigated 

[Nishihara et al., 2002; Rudarakanchana et al., 2002].

Clinical Significance

Extracellular Domain Mutation Spectrum

Transient over-expression and subcellular localization of constructs harboring cysteine 

substitutions, specifically p.C60Y, p.C117Y, p.C118Y, p.C123R and p.C123S, have 

previously shown intracellular retention of these receptor species combined with a dramatic 

diminution of SMAD activation [Rudarakanchana et al., 2002]. Here, we report further 

cysteine substitutions likely to underlie structural variation in BMPR-II (p.C34R, p.C60G/R, 

p.C66G/R/Y, p.C84F/G/R, p.C94G/R, p.C99F/R/Y, p.C117R/S, p.C118W) (Figure 3). 

Utilization of these genetic observations with combinatorial functional studies facilitated an 

exploration of receptor rescue and restoration of signaling. By targeting the p.C118W 

mutant receptor with chemical chaperones, namely thapsigargin, glycerol or sodium 4-

phenylbutyrate, a demonstrable and significant increase in plasma membrane localization of 

receptor species was observed concomitant with enhanced phosphorylation of SMADs 1 and 

5. Rescued trafficking also led to an increase in the density of wild-type BMPR-II at the cell 

surface [Sobolewski et al., 2008]. This study provides an arresting example of how 

exploitation of genetic insights may lead to the potential development of future targeted 

therapeutic options in PAH.
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Variants of Unknown Significance

Analyses of amino acid substitutions by PolyPhen, PROVEAN and SIFT bioinformatic tools 

[Kumar et al., 2009; Adzhubei et al., 2013; Choi and Chan, 2015] lead to ambiguous 

conclusions of pathogenicity in a proportion of observed missense variants reported herein. 

In the present dataset, a total of 13 variants are predicted by at least two algorithms to be 

non-damaging and/or benign (Table 2). In order to achieve greater confidence in assigning 

pathogenic status, it is important to assess such in silico predictions in the context of 

genomic data derived from substantive populations, for example the ExAC database. 

Comparison of missense variants against this combined cohort identified five variants with a 

population allele frequency greater than 0.000015, based on the most conservative measure 

of PAH prevalence in the literature (15 cases per million) [Archer et al., 2010]. Of interest, 

the two most commonly observed variants (p.V348I and p.Y589C) had been previously 

determined as damaging by at least two prediction methods and, therefore, had not been 

classified as variants of unknown significance (VUS). In the remaining three cases, the 

population data supported the in silico predictions which, taken together, provide further 

evidence for unclear pathogenicity (Table 2). One additional variant (p.T766A), previously 

designated VUS status by prediction algorithms, was present in the ExAC database but with 

a population allele frequency lower than our assigned threshold. Through these combined 

analytical techniques, we have identified a total of 15 variants that might be considered of 

uncertain significance from a genetic perspective (Table 2). While employing such analytical 

tools is of emerging value in mutation data interpretation, these analyses demonstrate that 

they must be treated with caution as: 1) the two approaches utilized may produce conflicting 

outputs, leading to ambiguity in interpretation; 2) large cohort datasets may contain study 

participants for whom the phenotype cannot be definitively assigned. Further, variants with a 

low population allele frequency in an apparently normal cohort may also be explained by the 

reduced penetrance of this condition. Together, this highlights a continuing role for 

functional studies, as a gold standard, to determine the true impact of observed variation in 

BMPR2, which is of value to both diagnostic and basic science understanding of the 

physiological role of this receptor. In addition, these observations indicate the likely 

existence of as yet unexplored pathways underlying pathogenesis.

Uncommon TGF-β Family Variation in PAH

Mutations of Receptor Species and Functional Outcomes

PAH infrequently clinically co-presents with the autosomal dominant vascular disorder 

hereditary hemorrhagic telangiectasia (HHT), characterized by the presence of 

mucocutaneous telangiectasia and visceral arteriovenous malformations. PAH-associated 

HHT is caused by molecular defects in ACVRL1, encoding a type I receptor of the TGF-β 

family, and to a lesser extent by mutations of the ENG gene which encodes a type III, or 

accessory receptor (Figure 1). In rare instances, ACVRL1 mutations have been identified in 

PAH patients without HHT but typically in early-onset disease thereby not precluding the 

development of the latter condition in later life [Harrison et al., 2003; Fujiwara et al., 2008]. 

Here we have compiled complete data on 66 mutations for both genes (ACVRL1, n=57; 

ENG, n=9), including 61 previously reported variants and 5 novel mutations underlying the 

development of PAH with and without HHT (Table 3). In ACVRL1, the majority of this 
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variation occurs within the vital kinase domain of the protein (exons 6-10) resulting in 

pathogenic amino acid substitutions (n=42, 74%) in marked contrast to the BMPR2 pattern 

of predominantly truncating mutations and, indeed, the mutation spectrum in HHT alone. A 

recent study conducted in a cohort of 43 IPAH patients identified two missense variants in 

BMPR1B (p.S160N and p.F392L). However, contrary to previous reports, these variants 

induced SMAD9 signaling with concomitant induction of transcriptional activity [Chida et 

al., 2012a]. These studies suggest that further functional investigations are required for 

clarification of the pathogenic impact of these variants.

Mutations within Intracellular Partners of the BMP Signaling Pathway

Conventional functional candidate gene strategies conducted in Asian and European patient 

panels have subsequently identified independent mutations in the BMP-specific SMAD 

pathway, namely SMAD1 (n=1), SMAD4 (n=2) and SMAD9 (n=3) [Shintani et al., 2009; 

Drake et al., 2011; Nasim et al., 2011] (Table 3). Of these, the SMAD1 and -4 defects have 

been described as VUS due to in vitro luciferase SMAD responsive elements reporter assays 

demonstrating an unclear impact on the canonical pathways [Nasim et al., 2011]. However, 

these analyses did not investigate SMAD-independent pathways, implicated in disease 

pathogenesis, leaving open the possibility that the identified variants may deleteriously 

affect other BMP related systems. By contrast, SMAD9 mutations (PPH2; MIM# 615342) 

lead to a marked reduction of SMAD transcriptional activity and a down-regulation of the 

BMP target gene Id1 [Shintani et al., 2009; Nasim et al., 2011]. Of interest, heterozygous 

SMAD9 mutations have been observed to perturb non-canonical downstream pathways, in 

particular, micro-RNA (miRNA) processing. Examination of a human patient with a 

SMAD9 nonsense mutation (p.R294*) indicated a modest reduction of Id1 expression in 

contrast to a complete abrogation of miR-21. In vitro restoration of miR-21 by over-

expression led to a reversal of the hyperproliferative mutation-positive phenotype. These 

data suggest a specific role for SMAD8 in PAH pathogenesis and SMAD4-independent 

signaling [Drake et al., 2011].

Genotype-Phenotype Correlation in Risk Alleles of the BMP Pathway

In 53-86% of patients with familial aggregation and 14-35% of IPAH patients mutations in 

the BMPR2 gene have been identified [Sztrymf et al., 2008; Girerd et al., 2010a; Pfarr et al., 

2011; Liu et al., 2012; Kabata et al., 2013]. Patients who carry BMPR2 mutations differ in 

several important aspects from IPAH patients who are BMPR2-negative [Soubrier et al., 

2013]. Investigators have reported that HPAH patients with pathogenic variants in BMPR2 
develop this disorder at a younger age (38.53 ± 12.38 vs. 45.78 ± 11.32 years, p <0.001) 

[Girerd et al., 2010b; Pfarr et al., 2011], and have a more severe clinical and hemodynamic 

phenotype at diagnosis [Koehler et al., 2004; Sztrymf et al., 2008; Austin et al., 2009a; Pfarr 

et al., 2011]. BMPR2 mutation carriers undergo diagnostic catheterization almost 10 years 

earlier than patients with no identified BMPR2 defect. Furthermore, compared with 

BMPR2-negative IPAH patients, BMPR2-positive patients have a higher pulmonary vascular 

resistance measured at diagnostic catheterization, are less likely to demonstrate acute 

vasoreactivity [Elliott et al., 2006; Rosenzweig et al., 2008], and are more likely to progress 

to death or lung transplantation [Sztrymf et al., 2008]. These observations all suggest that 
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BMPR2 mutations lead to a more severe PAH phenotype. Of note, patients with missense 

variants present with a higher degree of morbidity and mortality than those with truncating 

defects, suggestive of a more severe impact on the signaling pathway [Austin et al., 2009b]. 

However, BMPR2 mutations are not associated with a worse exercise capacity and 

prognosis. The younger age of BMPR2 mutation carriers may explain the similar survival 

and exercise capacity despite worse hemodynamics as compared with BMPR2-negative 

patients. Most recently, Girerd et al. indicated that BMPR2 mutation position may influence 

clinical phenotype. Specifically, PAH patients with a point mutation within the cytoplasmic 

tail of BMPR2 displayed a later age of onset, lower pulmonary vascular resistance and, of 

note, a higher proportion of acute vasodilator response by contrast to patients harboring 

mutations outside of this domain. In addition, in vitro assays suggested that cytoplasmic 

domain mutations tolerated activation of the Smad pathway, which is indicative of a lower 

degree of penetrance [Girerd et al., 2015].

These findings appear not to be influenced by gender [Girerd et al., 2010b]. However, there 

is a trend for more severe prognosis of the disease in males, particularly in male BMPR2 
mutation carriers. This observation is consistent with the observation that PAH mortality is 

most closely associated with male gender [Humbert et al., 2010]. Even though no significant 

impact of gender was observed on age at diagnosis and outcomes, it should be emphasized 

that PAH mostly occurs in females, irrespective of BMPR2 status (sex ratio females:males = 

2.4:1 in both BMPR2 mutation carriers and non-carriers). To explain over-representation of 

female patients it has been suggested that estrogens and estrogen metabolism might be 

involved in the pathogenesis of PAH [West et al., 2008a; Austin et al., 2009a; Mair et al., 

2015]. These studies support the hypothesis that altered estrogen metabolism could 

contribute to the penetrance of PAH in women and suggest Cytochrome P450 1B1 

(CYP1B1) as a sex-specific modifier gene.

Similar findings are observed with ACVRL1 mutations with a significant number of 

pediatric cases and a dismal prognosis [Girerd et al., 2010a]. In this study, ACVRL1 
mutation carriers were shown to be characterized by a younger age at PAH diagnosis (21.8 

± 16.7 years) than BMPR2 mutation carriers and non-carriers (35.7 ± 14.9 and 47.6 ± 16.3 

years, respectively; p <0.0001). However, ACVRL1-positive patients had better 

hemodynamic status at diagnosis, but none responded to acute vasodilator challenge. Thus, 

despite less severe initial hemodynamics and similar management, these patients had a 

worse prognosis than other patients with PAH, suggesting more rapid disease progression.

Most recently, a ‘two-hit’ model has been proposed, wherein digenic mutations may account 

for earlier occurrence, increased severity and more rapid deterioration of PAH patients 

[Wang et al., 2014].

Expansion of the Genetic Architecture of PAH by Next-Generation 

Sequence Analysis

Caveolin 1 (CAV1)

Whole-exome sequencing was used to study one large family with six PAH cases across 

three generations with autosomal dominant transmission and without known mutation. 
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Specifically, the exomes of 4 of the 6 PAH patients were evaluated and following 

bioinformatic analyses 11 rare candidate variants were determined to be shared by all four 

patients in the family. Genetic analysis of an additional patient in the family supported the 

conclusion that a rare mutation in the CAV1 gene (PPH3; MIM# 615343) was of pertinence 

to disease. The observed mutation in exon 3 (c.474delA; p.L159Sfs*22), impacts a highly 

conserved region and predicts deleterious functional consequences.

An additional 62 independent PAH families and 198 unrelated idiopathic PAH patients, all 

without detectable TGF-β gene mutations, were screened for CAV1 mutations by Sanger 

sequencing. Of 260 patients one early-onset idiopathic patient harbored a de novo CAV1 
mutation in exon 3 of the gene (c.473delC; p.P158Hfs*23) (Table 4). Of note, identified 

variants were not present in over 1000 ethnically-matched Caucasian controls [Austin et al., 

2012].

Potassium Channel, Subfamily K, Member 3 (KCNK3)

Most recently, whole-exome sequencing has led to the identification of KCNK3 as a risk 

factor for familial and idiopathic disease (PPH4; MIM# 615344). By screening three 

affected subjects from an autosomal dominant family negative for mutation in BMPR2, 

ACVRL1, ENG, SMAD9 and CAV1, Ma et al. detected a novel coding variant of KCNK3 
that was shared among all three subjects and predicted to be pathogenic by in silico 
bioinformatic tools. Subsequent Sanger sequencing across the extended family confirmed 

co-segregation of the disease with the c.608G>A (p.G203D) variant, which was absent from 

100 ethnically matched control individuals [Ma et al., 2013]. Analysis of exome sequence 

from 10 further HPAH probands identified two additional novel heterozygous variants, 

which also segregated with disease, providing strong evidence for a role of KCNK3 in PAH 

pathogenesis. To assess the frequency of KCNK3 variation in familial and idiopathic 

disease, an extended cohort of 82 HPAH and 230 IPAH cases were screened for mutation. 

Three novel heterozygous missense variants were detected in the idiopathic cohort, 

suggesting that KCNK3 mutation accounts for 1.3% of IPAH cases and 3.2% of HPAH 

families [Ma et al., 2013] (Table 4).

Eukaryotic Translation Initiation Factor 2 Alpha Kinase 4 (EIF2AK4)

Similarly, exome sequencing has revealed several disease causing mutations in the EIF2AK4 
gene in pulmonary veno-occlusive disease (PVOD) and pulmonary capillary 

hemangiomatosis (PCH), together classified as group 1′ of PAH in the most recent 

diagnostic classification [Simonneau et al., 2013]. Both conditions are inherited in an 

autosomal recessive manner (PVOD2; MIM# 234810) and are mainly characterized by 

proliferation of capillaries in the lung leading to an occlusion of pulmonary vasculature. 

Eyries et al. assessed five families with PVOD and focused on rare variants (minor allele 

frequency <0.1% in control populations), which were homozygous or compound 

heterozygous in affected children and heterozygous in unaffected parents. Using this 

analysis strategy, mutations in EIF2AK4 were identified in all 13 families studied. The 

examination of 20 sporadic cases revealed EIF2AK4 mutations in 5 additional patients 

[Eyries et al., 2014]. Mutations were distributed throughout the gene and belonged to the 
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major mutation categories (Table 5). The range of mutations situated upon this locus 

underlines its functional importance in the development of PVOD.

In parallel, mutations in EIF2AK4 were independently identified by Best et al. in patients 

with heritable PCH. The exomes of two affected brothers were sequenced and filtered for 

variants with a minor allele frequency of less than 1% in public repositories of polymorphic 

data resulting in the identification of two pathogenic variants in the gene. The unaffected 

parents and sister were confirmed to be heterozygous carriers of one of the two mutations 

[Best et al., 2014]. Further sequencing of EIF2AK4 in 10 patients with pathologically 

verified sporadic PCH and one familial case detected three additional mutations in two 

sporadic patients (Table 5). The genetic correlation between PVOD and PCH further 

supports the likelihood that these diseases define different clinical spectra of the same 

underlying disorder.

Most recently, EIF2AK4 has also been investigated in an itinerant Iberian population with 

PAH [Tenorio et al., 2015]. The authors identified a homozygous c.3344C>T (p.P1115L) 

missense mutation in five patients from five independent families with HPAH. Likely 

ancestral, this mutation co-segregated with a more severe phenotype than previously 

reported for other EIF2AK4 mutations. The majority of affected subjects presented with an 

early onset, aggressive form of the disease resulting in an abnormally low survival rate post-

lung transplantation (1.1 years).

Biological Significance of Mutations in Non-Canonical BMP Pathways

While rare, the biologic plausibility for CAV1 mutations in PAH is strong. CAV1 encodes 

Caveolin-1, a membrane protein required to form the flask-shaped invaginations of the cell 

membrane known as caveolae, abundant in lung endothelial and mesenchymal cells 

[Minshall et al., 2003; Xu et al., 2008]. Caveolae are critical to a number of cellular 

processes and receptor rich regions of the cell membrane [Nohe et al., 2005; Mercier et al., 

2009; Chidlow and Sessa, 2010]. Intriguingly, mice haploinsufficient for Cav1 display 

pulmonary vascular disease analogous to PAH [Drab et al., 2001; Zhao et al., 2002; Murata 

et al., 2007; Maniatis et al., 2008]. Moreover, Caveolin-1 protein staining is reduced in lung 

endothelial cells from human PAH patients [Zhao and Malik, 2009]. Nevertheless, although 

under careful scrutiny, the precise mechanism(s) by which CAV1 mutations promote PAH 

remain unclear.

The KCNK3 gene is located on chromosome 2p24 and encodes a pH-sensitive potassium 

channel with a role in regulation of resting membrane potential in a variety of cell types. 

Electrophysiological analyses demonstrated that all identified mutations lead to a loss of 

function as measured by current density. A subset of identified mutations (p.T8K, p.E182K 

and p.G203D) exhibited a significant increase in potassium-channel current when treated 

with the phospholipase inhibitor ONO-RS-082. The identification of this gene provides an 

additional avenue of treatment strategies for PAH.

The EIF2AK4 gene encodes a kinase, which phosphorylates an initiation factor in protein 

synthesis that is primarily responsible for the translation of stress response proteins 

[Donnelly et al., 2013]. Interactions between the kinase and various members of the BMPR-
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II pathway have also been detected, but the exact link to the clinical manifestations of 

pulmonary veno-occlusive PH remains to be clarified [Eyries et al., 2014]. The EIF2AK4 

protein belongs to a family of kinases that regulate angiogenesis in response to cellular 

stress. Of interest, these properties are compatible with the angiogenic pathology of PCH, a 

disorder characterized by uncontrolled proliferation of pulmonary microvessels.

Modifying Predisposition to PAH

Cerebellin 2 Precursor (CBLN2)

PAH demonstrates several complex traits including incomplete penetrance, sex bias and 

variable age of disease onset both within and across families. This has led to the hypothesis 

that modifier genes contribute to disease manifestation and/or progression. To examine the 

role of common variation in PAH predisposition, Germain et al. performed a genome-wide 

association study (GWAS) to identify susceptibility loci in IPAH and HPAH cases without 

BMPR2 mutation. The discovery dataset comprised 340 PAH patients and 1,068 healthy 

controls, genotyped for ∼470,000 variants, from which the 384 most significant variants 

were assessed in an independent replication cohort of 285 cases and 457 controls. This 

approach, which represents the best powered study to date, identified two variants 52 kb 

downstream of the CBLN2 gene that were associated with a two-fold increased risk of 

disease [Germain et al., 2013].

CBLN2 encodes a secreted neuronal glyocoprotein primarily expressed in the brain. 

However, real-time PCR studies demonstrated CBLN2 mRNA expression in the whole lung, 

significantly higher in explants from PAH patients comparative to histologically normal lung 

tissue. Similar results were obtained for pulmonary arterial endothelial cells. Furthermore, 

an inhibition of pulmonary artery smooth muscle cell (PASMC) proliferation was observed 

when treated with increasing concentrations of CBLN2 peptide [Germain et al., 2013].

Potassium Channel, Voltage Gated Shaker Related Subfamily A, Member 5 (KCNA5)

Membrane potential is essential for contraction and vasodilation of PASMCs. Expression of 

potassium channels is regulated by BMP signaling in vitro and in vivo and knockouts in 

Drosophila melanogaster result in defects that are strikingly similar to phenotypes that result 

from disrupted TGF-β/BMP signaling [Young et al., 2006; Dahal et al., 2012]. Variation of 

the potassium channel KCNA5 has been identified in IPAH patients [Remillard et al., 2007; 

Wang et al., 2014] suggesting a potential role in PAH development and penetrance. The 

potassium channel response in PASMCs of IPAH patients has been proven to be down 

regulated [Yuan et al., 1998] likely increasing pulmonary vasoconstriction and PASMC 

proliferation. Moreover, the channel, which is responsive to nitric oxide, is reduced in 

patients carrying a specific coding missense mutation [Remillard et al., 2007]. Mutations 

within KCNA5 have been identified as a so-called ‘second hit’ in an index patient additional 

to a BMPR2 missense mutation leading to an early onset and severe phenotype [Wang et al., 

2014]. While these findings may represent a rare case of genetic modification in PAH, 

replication of this digenic genotype in an independent cohort has not been observed. Further, 

in the absence of comprehensive functional analysis, interpretation of the significance of this 

study requires caution.
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Animal Models of PAH

Model systems of PAH serve a two-fold purpose in providing 1) a source of relevant, 

genetically modified cell types for in vitro studies, and 2) an in vivo platform for the analysis 

and refinement of direct therapeutic intervention. Several natural and engineered models of 

disease exist, for example, the fawn-hooded rat and the Bmpr2 transgenic mouse over-

expressing the p.R899* mutant allele, the latter being generated by introduction of a smooth 

muscle-specific doxycycline-inducible mutant transgene [West et al., 2008b; Ryan et al., 

2011]. Further, knock-out models lacking exons 4 and 5 of Bmpr2 generated by homologous 

recombination have been developed. These models develop mild to moderate disease 

phenotypes, often upon the application of environmental insults including exposure to 

hypoxia and 5-lipoxygenase as previously described [Machado et al., 2006]. Conditional 

targeting of mutant alleles to hallmark sites of damage in PAH, in particular the pulmonary 

artery endothelial or smooth muscle cell layers, has produced a more convincing in vivo 
reflection of the human disease state [West et al., 2004; Hong et al., 2008]. Most recently a 

heterozygous knock-in mouse model of the p.R899* mutation has been shown to develop 

age-related disease with close phenotypic relatedness to the human condition [Long et al., 

2015]. Additionally a rat model of PAH (BMPR2Δ140Ex1/+), the first of its kind, has 

provided support to the hypothesis that endothelial-to-mesenchymal transition represents a 

pathophysiological process in PAH [Ranchoux et al., 2015]. Of note, mice representative of 

recently observed defects in previously uncharacterized genes, namely Cav1 and Smad9, 

support the emerging concept of greater than anticipated genetic heterogeneity in PAH. 

Homozygous knock-out models of both genes develop spontaneous indications of PAH 

providing a powerful correlation to the human studies described herein [Zhao et al., 2002; 

Huang et al., 2009].

Genetic Counseling

Current guidelines recommend offering molecular genetic analysis and genetic counseling 

for HPAH patients [Badesch et al., 2007; McLaughlin et al., 2009]. Genetic counseling 

typically offers a combinatorial approach of dealing with putative outcomes and 

consequences of the analysis, based upon structured protocols determined by specialist 

centers evaluates the family history, educates patients about the causes of PAH, discusses the 

risks and benefits of genetic testing and supports patients and families through the process of 

genetic testing and disclosure of results. In addition to HPAH patients, IPAH patients and 

their relatives may also benefit from these analyses since up to 25% will have a BMPR2 
mutation; therefore, genetic testing in these populations should be considered [Badesch et 

al., 2007]. Current findings indicate that in patient populations with PVOD and PCH, 

autosomal recessive inheritance of the EIF2AK4 gene is the most likely mode of 

transmission. Hence, within the PAH spectrum of disease, based on current classification, 

genetic counseling should take account of both autosomal dominant and recessive 

inheritance models, as well as the higher penetrance of bi-allelic mutations in patients 

carrying this genetic defect.

Following identification of an established molecular defect in the proband, at-risk 

asymptomatic family members should be offered the option of genetic counseling and 
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targeted mutation analysis within the parameters of full informed consent. Importantly, the 

data provided here offer an indication of the likely pathogenicity of identified variation. A 

significant factor to consider is the reduced penetrance of mutant alleles which must be 

addressed by informed pre-test counseling, comprising robust estimations of risk based on 

available population-specific epidemiological data and gender [Cogan et al., 2012; Larkin et 

al., 2012]. Of note, where a mutation is identified, implications for reproductive planning 

must be considered. In families harboring mutation, early mutational analysis of offspring is 

essential and should be combined with clinical assessment and initiation of treatment as 

deemed necessary by specialist centers. Additionally, a possible future avenue of medical 

care has been explored. Within a BMPR2-positive family, pre-implantation genetic analysis 

of blastomeres following in vitro fertilization led to the successful implantation and delivery 

of a mutation-negative offspring [Frydman et al., 2012]. Although in its earliest stages this 

strategy is of significant clinical potential in the context of considered, long-term genetic 

evaluation.

Diagnostic Strategies

Molecular diagnostics for PAH have traditionally focused around dideoxy Sanger 

sequencing methods to screen the BMPR2, ACVRL1 and ENG protein-coding regions for 

heterozygous mutation. However, based on these and previous studies, for a complete 

exploration of deletion and duplication across these three genes, the application of MLPA or 

targeted comparative genomic hybridization (CGH) array technology is required. The HHT/

PPH1 MLPA panel was introduced by MRC-Holland in the mid-2000s, with the current 

version containing 51 probes across BMPR2, ACVRL1 and ENG, and has led to the 

successful detection of numerous gene rearrangements that would otherwise not be 

identified by sequence analysis [Aldred et al., 2006; Cogan et al., 2006].

Despite the success of this combined approach to mutation detection in PAH, the recent 

expansion of candidate disease genes has resulted in traditional sequencing methods 

becoming more labor-intensive and less cost-effective. Indeed, to comprehensively screen 

the 10 genes detailed here would involve sequencing approximately 105 coding exons, 

totaling over 19 kb of DNA sequence. Custom capture and NGS are now becoming chosen 

methodologies across screening centers globally for the analysis of established candidate 

genes.

Future Prospects

It is clear that the most significant advance in the identification of risk factors for PAH over 

recent years has been the advent of exome sequencing, which has led to the rapid 

identification of multiple novel genes using relatively small sample sets. Whilst exome 

sequencing is undoubtedly a powerful method for detecting rare, highly penetrant genes in 

families with multiple affected individuals, there remain important caveats in applying these 

technologies to the identification of novel genes across cohorts of unrelated subjects and 

genetically divergent patient groups. In PAH, complexities such as locus heterogeneity, 

incomplete penetrance, de novo mutation and late onset of disease introduce significant 

challenges to the interpretation of exome sequence data, highlighting the need for large 
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homogeneous patient cohorts to detect pathogenic variation. In terms of technical 

limitations, exome sequencing also only focuses on the exonic regions. While these regions 

represent the most likely sites of functional mutations in PAH, there is increasing evidence 

supporting pathogenic variants in the promoter and 5′ UTR of BMPR2, suggesting this may 

also be true of other PAH genes. A recent report by Hinderhofer et al. has also identified an 

intronic mutation of BMPR2 that leads to aberrant splicing due to an insertion of an intronic 

Alu element 26 bp upstream from exon 6 [Hinderhofer et al., 2014]. This points to a 

potential role for other intronic variants or regulatory elements such as intra- or intergenic 

enhancer and repressor motifs in the pathogenesis of PAH.

To address some of these issues, it is likely that future avenues will include the use of more 

NGS technologies, the pinnacle of which is whole-genome sequencing. Harnessing the 

complete genetic information of individuals affected with PAH will not only offer 

opportunities to identify the causative mutation but will also provide an important tool to 

correlate phenotypic information to individual genotype data, allowing for tailored 

approaches to the clinical management of disease, or so-called personalized or precision 

medicine. While this technology remains financially prohibitive to some centers, custom 

capture of genes with defined causal links to disease offers an alternative, yet powerful, 

means of analyses. These studies would, ideally, include non-coding sections of the genes to 

determine the presence of regulatory mutations increasingly implicated in PAH etiology as 

described herein. The catalogue of mutations described in this report provides an important 

tool for the determination of deleterious mutation, both within the context of conventional 

and indeed NGS analyses.

For future gene identification and follow-up GWAS studies, it is of particular importance in 

PAH, which exhibits traits of complex disease, that phenotype is precisely assigned for this 

disorder. This degree of rigor is most likely to lead to further advances in both the 

understanding and treatment of PAH at a significantly accelerated pace.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of canonical BMP signaling and additional pathways implicated in PAH 

pathogenesis by conventional and next-generation sequence analysis. Causal genes are 

indicated by the asterisks.
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Figure 2. 
A) Distribution of reported exonic mutations across the BMPR2 gene. Black bars represent 

all mutation categories; grey bars indicate missense mutations only. This graph excludes data 

from non-coding regions and gene rearrangements for which start and/or end points have not 

been conclusively determined. B) Proportion of distinct point mutations relative to exon size. 

Multiple and/or recurrent variants at the same nucleotide were counted as a single event. The 

total number of mutated residues confined to the open-reading frame was calculated as a 

percentage of exon length in nucleotides.
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Figure 3. 
Three-dimensional structure of the BMPR-II extracellular domain highlighting the location 

of substitutions impacting upon 9 of the 10 key cysteine residues responsible for disulfide 

bridge formation, indicated in dark blue. Defects in the Cys116 residue have not been 

identified in PAH thus far. Figure was reproduced from the crystal structure (PDB ID: 

2HLQ) and processed using Cn3D v4.3 software.
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