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Abstract: Toxocariasis is a widespread helminth infection of dogs and cats, caused by Toxocara canis and Toxocara cati larvae, respectively. Toxocara spp. can cause zoonotic infections in humans by invading tissues and organs causing pathology. Toxocara spp. larvae release excretory-secretory molecules (TES) into the body of their host that are fundamental to the host-parasite interaction and could be used as targets for novel diagnostics and vaccines. In the present study, we identified 646 T. canis proteins from TES and larval extract using 1D-SDS PAGE followed by mass spectrometry. A wide range of proteins was identified that may play a role both in the induction of the host immune response and host pathology, and in parasite metabolism and survival.  Among these proteins there are potential candidates for novel diagnostics and vaccines for use in humans and natural animal hosts.
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1. Introduction 
The nematodes Toxocara canis and Toxocara cati, whose definitive hosts are dogs and cats, respectively, are the causative agents of human toxocariasis, a neglected zoonotic infection with a worldwide distribution. Toxocariasis is considered to be of significant public health relevance, particularly in low and middle-income countries among populations living in conditions of poor hygiene (Despommier, 2003; Pelloux and Faure, 2004; Smith et al., 2009). Humans are paratenic hosts that acquire infection through accidental ingestion of embryonated eggs (Aguiar-Santos et al., 2004; Mazur-Melewska et al., 2012; Overgaauw and van Knapen, 2013). Larvae hatch in the small intestine and migrate to tissues and organs such as eyes, muscle, liver, lungs, and brain, where they may survive for months to years as larvae (BEAVER et al., 1952; Carvalho and Rocha, 2011; Strube et al., 2013). 
Most human infections are asymptomatic, and the development of clinical disease depends on parasite load and the intensity of the host inflammatory response against the larvae. Four clinical forms of toxocariasis are described in humans: visceral larva migrans (LMV), ocular larva migrans (LMO), neurological larva migrans (NLM) and covert (or asymptomatic) toxocariasis (Glickman and Schantz, 1981; Macpherson, 2013). During the acute phase of infection, a complex host immune response is mounted against Toxocara spp. larvae involving both innate and adaptive arms of the immune response and resulting in tissue inflammation at the sites of larval invasion. During chronic infections, the larvae induce mechanisms to allow them to survive in the tissues through the release of immune modulatory molecules (Badley et al., 1987; Gasser et al., 2016; Meghji and Maizels, 1986).
Routine laboratory diagnosis of toxocariasis relies on the detection of IgG antibodies to excretory-secretory antigens of T. canis (TES) using enzyme-linked immunosorbent assays (ELISA) (Alcantara-Neves et al., 2008; Bojanich et al., 2012; de Savigny and Tizard, 1977). Anthelmintic treatment with albendazole, thiabendazole or ivermectin for toxocariasis is recommended in patients with specific IgG antibodies to Toxocara spp. in the presence of relevant clinical manifestations. To date, no vaccine has been developed against toxocariasis. A vaccine would be particularly useful for use in dogs and cats to prevent infection and transmission to humans (Despommier, 2003; Nicholas et al., 1984). 
Proteomics has permitted the identification of parasite-derived molecules that can be potentially used to develop new diagnostic tests, vaccines or immunomodulatory agents for the treatment of immune mediated diseases (Huang et al., 2014; Liu et al., 2009; Mutapi, 2012; van der Ree and Mutapi, 2015; Wang et al., 2009b). In the present study, we used a proteomics strategy for profiling the T. canis larvae somatic extracts and excreted-secreted products (TES), to identify novel candidates for improved diagnostics, therapeutics and vaccines for human and animal toxocariasis. 

2. Materials and methods 
2.1 Protein sample preparation 
Toxocara canis eggs were obtained by dissection of uteri from fertile female Toxocara adults from infected puppies. Eggs were kept in 3% formalin solution at 25°C for approximately 28 days until embryonation. Larvae were hatched mechanically and maintained at 37ºC in RPMI 1640 medium supplemented with streptomycin (1mg/mL), penicillin (1,000 U/mL), gentamicin (0.2 mg/mL) and amphotericin (2.5µg/mL). 
Supernatants were collected at 3-day intervals over three months. Supernatants were supplemented with 0.2 M phenylmethylsulfonyl fluoride (PMSF, Sigma, St. Louis, MO, USA) and cryopreseved at -70oC. TES proteins were concentrated by ultrafiltration (Millipore Corporate, MA, USA), dialyzed and the protein content estimated using the Bradford method. To obtain the somatic larval extract, third stage larvae were collected from supernatants, washed four times with PBS, and centrifuged at 8000 x g for 10 minutes. The pellet was re-suspended in phosphate saline, pH 7.4 (PBS) and subjected to thermal shock, alternating between liquid nitrogen and heating at 37° C. After this, protease inhibitors (Sigma, St. Louis, Mo.; 2 mM phenylmethylsulfonyl fluoride, 0.2 mM Nα-p-tosyl-l-lysine chloromethyl ketone, 0.2 nM N-tosyl-l-phenylalanine chloromethyl ketone, 25 μg of leupeptin/ml, and 10 mM EDTA) were added and the larvae were ground and the soluble material collected after centrifugation, and stored at -80°C until analysis. The supernatant was stored at -80°C after determination of protein concentration. 

2.2 SDS-PAGE of protein extracts and liquid chromatography – tandem mass spectrometry (LC-MS/MS)
TES proteins and larval extracts were separated on 12% polyacrylamide gel in the presence of sodium dodecyl sulfate (SDS-PAGE) at 20 mA (120V) for 2 hours and stained using Comassie Brilliant G250 (Neuhoff et al., 1988). Gel digests were performed with the ProteoExtract® trypsin digestion kit (EMD Millipore) according to the manufacturer’s instructions. Peptides generated by proteolysis were separated by reverse-phase nano-HPLC (Dionex Ultimate 3000, Thermo Fisher Scientific, Bremen, Germany), loaded onto a trap column (PepSwift Monolithic Trap Column, Dionex) and desalted with 0.1 % (v/v) heptafluorobutyric acid at a flow rate of 10 l/min. After 5 minutes, trap and separation column (PepSwift Monolithic Nano Column, 100 m x 25 cm, Dionex) were coupled with a switching valve and the peptides were eluted with an acetonitrile gradient (Solvent A: 0.1% (v/v) FA/0.01% (v/v) TFA/5% (v/v) ACN; solvent B: 0.1% (v/v) FA/0.01% (v/v) TFA/90% (v/v) ACN; 5–45% B in 60 min) at flow rate of 1 l/min at 55°C. The HPLC was directly coupled via nano electrospray to a Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific). Capillary voltage was 2 kV. For peptide identification, a top 12 data-dependent analysis method was used. The instrument was tuned to maximum sensitivity. The normalized fragmentation energy was 27%. 

2.3 Data analysis and identification of proteins
Survey and fragment spectra were analyzed with Proteome Discoverer Version 1.4 (Thermo Fisher Scientific) with SequestHT as the search engine and PEAKS Studio 8 (Bioinformatics Solutions, Waterloo, ON, Canada). Searches were done with an in-house database with T. canis sequences from UniProtKB (www.uniprot.org). Only peptides with high confidence scores (XCorr ≥ 2.3 for SequestHT, −10lgP ≥ 35 for PEAKS) were considered. Blast2GO (www.blast2go.de/b2ghome) was used for functional classifications of Biological Process, Molecular Function and Cellular Components. Prediction of signal peptides in the identified proteins was done using SignalP v.4.0 (http://www.cbs.ctu.dk/services/Signal/).

3. Results
3.1 Proteomic profiles of larval excretory/secretory products (TES) and larval extract
The protein profiles of the T. canis larval excretory-secretory products and larval extract revealed complex but distinct banding patterns. Proteins were distributed between 12–175 kDa for TES products, whereas those of larval extract were mainly between 10–97 kDa. We identified with high confidence a total of 64 distinct TES proteins and 582 larval extract proteins (Tables 1 and 2; Supplementary 1 and 2). Lists of the main proteins identified with their molecular functions and biological processes are provided in Table 1 and Table 2 for TES and larval extract respectively. The lists contain proteins with 2 or more peptides identified with high confidence and proteins identified in previous studies, containing only one peptide hit.  

3.2 Functional annotation of the identified proteins
Functional annotation of the proteins was done using Blast2GO, which revealed structurally and functionally diverse molecules representing proteins whose functions were related to stress responses, reproductive processes, locomotion, response to stimuli, localization, biological regulation, and cellular and metabolic processes (Figures 1). These proteins were present in different families including metalloproteases, metallopeptidases, peptides containing protease inhibition domains, antimicrobial peptides (PAMPS), immunomodulators, nucleases, cytokines, chemokines, digestive enzymes, antibodies, glycine-rich transport proteins, antioxidants such as glutathione S-transferase, phosphatases, and kinases (Tables 1 and 2). 
We also identified molecules involved in parasite evasion mechanisms, in addition to those involved in the interaction and modulation of host immune response. Among these proteins, in TES we identified C-type lectin, Tc-ctl-4, CTL-2, phosphatidylethanolamine, collectin 12, cathepsin B-like cysteine proteinase, onchocystatin and serpin (Table 1). In the larval extract, we identified molecules with immunomodulatory properties such as arginase, cystatin, calreticulin, and cathepsins B, L and Z. In both protein preparations, we identified mucin heat shock proteins (HSP), superoxide dismutase and galectin (Tables 1 and 2).
We identified also in the larval extract allergenic proteins such as OV-17 and polyprotein ABA-1 (supplementary Table 1).  Furthermore, we found proteins such as troponin, tubulin, actin and ubiquitin, essential for muscular contraction of the parasite (Table 1 and 2). We detected bioproducts in both components of T. canis (TES and larval extract), including enzymes involved in metabolic and energy processes such as phosphoglycerate, enolase, glucose-6-phosphate isomerase, phosphoglucomutase, and pyruvate kinase. Among the metalloendopeptidases, superoxide dismutase was present in TES, while aminopeptidase, leukotriene, macrophage migration inhibitory factor-like protein, neprilysin, and neuroserpin were present in the larval extracts.

 4. Discussion
4.1 Overview of excretory-secretory products and somatic proteins of Toxocara canis larvae proteomics
Toxocara canis infection is the most important cause of human toxocariasis, an infection that is of significant public health relevance in human populations with a worldwide distribution (Despommier, 2003; Pelloux and Faure, 2004; Smith et al., 2009). In this study, a proteomic approach allowed us to identify proteins that may potentially be important for parasite survival within the host. T. canis infection causes a polarized Th2 immune response profile, associated with enhanced production of cytokines such as IL-4, IL-5 and IL-13, which lead to elevated levels of serum IgE and eosinophilia (Hewitson et al., 2009; Maizels, 2013).  A better understanding of the role of T. canis molecules in evading the host immune response has implications, both, for the development of vaccines and novel immune modulatory therapies.
To survive in the human host, Toxocara spp. larvae employ mechanisms to modulate the host immune response such as by the secretion of molecules that induce the proliferation and activation of regulatory T cells and the production of anti-inflammatory cytokines such as IL-10 and TGF-β (Dlugosz et al., 2015; Długosz et al., 2015; Kuroda et al., 2001; Pinelli et al., 2005). Anti-inflammatory cytokine homologues may actually be released by some helminths to suppress the host inflammatory response (O'Garra et al., 2008; Pinelli et al., 2005). Here we identified several proteins by proteomic analysis of T. canis larvae TES and larval extracts that have been shown to have immune modulatory effects such as inhibitors of cysteine protease, onchocystatin, serpin, MIF-like protein and calreticulin.  These proteins participate in signal transduction, activation and polarization of cellular immune response pathways. We identified also galectin that has the ability to promote endothelial proliferation, binding to IgE, regulation of the macrophage activation, and inhibition of the T-cell traffic (Bennuru et al., 2009; Hewitson et al., 2008; Kiel et al., 2007; Turner et al., 2008).

4.2 Immunomodulatory molecules 
Macrophage migration inhibitory factor (MIF), a cytokine found in humans has homologies with several MIF-like proteins reported in different helminth species that function as modulators of the cellular and humoral immune response. There is evidence that these MIF-like proteins control the inflammatory response through the induction of Treg cells to produce IL-10 and TGF-β (Park et al., 2009; Stavitsky et al., 2003). One of the most representative groups present in the T. canis extracts and TES were inhibitors of cysteine proteases, also found in other helminth species such as Brugia malayi, Ascaris lumbricoides and Onchocerca volvulus (Britton and Murray, 2002; Ford et al., 2005; Tort et al., 1999; Winter et al., 2013). 
Cysteine proteases have a role in the turnover of the parasite cuticle, and degrade and activate proteolytic enzymes during invasion and migration in the host (Donnelly et al., 2011). Some of these proteins are involved in vital biological processes, such as larval growth and development, tissue degradation, adhesion, migration, molecular communication and differentiation, and parasite evasion mechanisms. Many of the molecules identified are derived primarily from the surface of the parasite or from its excretory/secretory products (Kopitar-Jerala, 2012; Sajid and McKerrow, 2002). 
In addition, we detected a cystatin, a reversible cysteine protease inhibitor, homologous to a similar molecule previously identified in O. volvulus (Schönemeyer et al., 2001). Cystatin had a molecular weight of 11 kDa and is believed to be involved in the regulation of cysteine protease activity in the parasite, in the modulation of the host immune response, maintaining dendritic cells in an immature state, and compromising the presentation and processing of antigens (Schönemeyer et al., 2001). Recent studies have revealed that cystatins of helminths contribute to downregulation of T-cell proliferation in hosts and induction of anti-inﬂammatory cytokine responses, increasing the production of interleukin 10 (IL)-10 by macrophages (Hartmann and Lucius, 2003; Hewitson et al., 2009; Jang et al., 2011; Zavasnik-Bergant et al., 2005). Previous studies have described the modulatory effect of this molecule from different nematodes such as OV-17 of O. volvulus and Av17 of Acanthocheilonema viteae (Hartmann et al., 1997; Schönemeyer et al., 2001). 

4.3 Cysteine-rich proteins
In this study, we identified important proteases, such as the members of the cysteine protease C1 family, among them cathepsin B, L and Z (present in the larval extract). Cathepsins have been demonstrated in other nematodes with key roles in the modulation of the host immune response, including the proteolytic degradation of the invariant chain of the MHC-II and regulating the intracellular trafficking of this molecule (Williamson et al., 2003). In addition, they participate in antigen processing and cleavage of the intracellular domain of the toll-like receptor (TLR)-9. Suppression of cysteine proteases leads also to the suppression of dendritic cell activation, interference in the formation of the MHC-II peptide antigen complex, and affects the antigen presenting capacity of dendritic cells and the CD4 + T cell response (ten Broeke et al., 2013). 

4.4 Heat shock proteins (HSP)
	Another important protein group identified here was the heat shock proteins (HSP) family, present in both T. canis larval preparations. HSPs are immunomodulatory molecules, commonly identified in nematodes, which play crucial roles in parasite survival (Narberhaus, 2002; Perez-Morales and Espinoza, 2015; Sotillo et al., 2010). They function as chaperones, facilitating folding and preventing protein aggregation. Furthermore, some authors have suggested that HSPs are immunogenic by stimulating IgG and IgM responses (Dea-Ayuela and Bolas-Fernandez, 2005; Schmitt et al., 2007; Tsan and Gao, 2009).  It has been reported that such proteins are potential vaccine targets (Liddell et al., 2003). Several studies have shown that HSPs can induce subsets of regulatory CD4+CD25+ Tregs and stimulate the production of regulatory cytokines, such IL-10 and transforming growth factor-β (TGF-β); therefore, they are candidates as therapeutic agents in allergic and autoimmune diseases (Gaston, 1998; Mansilla et al., 2014; Wang et al., 2009a). 

4.5 Structural constituents
In relation to the structural constituents, proteins associated with cytoskeletal and motor activities were identified in T. canis larval extract and TES, such as troponin, tubulin, actin and ubiquitin. Actin binds to myosin sites to mediate muscle contraction (Marcilla et al., 2007). Troponin forms a complex that regulates the calcium-dependent interaction of myosin and actin (McArdle et al., 1998; Obinata et al., 2011). These proteins have been reported to be present in other nematodes, (Barstead et al., 1991; Bennuru et al., 2009; Hewitson et al., 2008; Kiel et al., 2007) in addition to T. canis (Sperotto et al., 2017). 

4.6 Transmembrane and transport
Transmembrane and transport receptor proteins including transthyretin-like protein 46 were identified in both larval components studied.  In the larval extract, we identified vitellogenin-6, exportin-1, ferritin, importin-5, phosphoenolpyruvate carboxykinase and transportin-3. In TES, we found apolipophorin, 26 kDa secreted antigen, and collection-12. Transthyretin-like protein, present in A. suum and Caenorhabditis elegans, is responsible for the transport of retinoic acid and vitamin A (Eneqvist et al., 2003; Vercauteren et al., 2003).

4.7 Evasion mechanisms
The present study also identified T. canis surface proteins involved in evasion mechanisms including TES 26 and mucins that coat glycoproteins in the parasite's integument (Gems and Maizels, 1996; Maizels et al., 2000). This latter protein elicits a humoral and cellular immune response with a typical Th2 profile, as well as an innate immune response, with adherence to CDs via the binding of LPS to toll-like receptor (TLR)- 4,  and increasing the secretion of IFN-γ and production of IgG antibodies (Dlugosz et al., 2015). It has been shown that this protein may constitute an important target for the development of vaccines against Fasciola hepatica, as well as use as diagnostic tool for different nematode infections (Loukas et al., 2000b; Noya et al., 2017). 
TES-26, a protein homolog to the family of phosphatidylethanolamine-binding protein (PEBP), is anchored in the plasma membrane and involved in the transport of lipids and cell signalling (Banfield et al., 1998; Gems et al., 1995; Maizels et al., 2000); it is homologous to Sm 14 of Schistosoma mansoni (induces immune cross-protection against infection by S. mansoni; thus, TES 26 of T. canis may be a good vaccine candidate), FABPs of F. hepatica and As-p18 of  O. volvulus (Figueroa-Santiago and Espino, 2014; Thaumaturgo et al., 2002; Zhan et al., 2015). This protein may also play a role in the interaction of parasite ligands with Toll-like receptors of antigen-presenting cells (APCs).
C-Type lectins were also identified in TES and larval extract; they are proteins capable of recognizing carbohydrates associated with glycoconjugates. According to Maizela et al. (2013), these molecules are responsible for mediating the inflammatory immune response in tissues and actively participate in the processes of antigen presentation, apoptosis, cell adhesion and polarization of T cells (Hewitson et al., 2009; Loukas et al., 2000a; Loukas et al., 1999; Maizels, 2013). Galectin is another type of lectin linked to galactoside, found in different nematode species, and participates in modulation of the cellular immune response, control of cell adhesion, tumour genesis,  apoptosis, inflammatory processes and immune regulation (Turner et al., 2008). 
We also found superoxide dismutase and glutathione s-transferase, present on the parasite surface; they participate in evasion mechanisms of the host immune response, neutralizing attack by reactive oxygen species and removing immunomodulatory lipids from the host (Joachim and Ruttkowski, 2008, 2011; Tew and Ronai, 1999; Yim et al., 1993; Zelck and Von Janowsky, 2004). Interestingly, we identified superoxide dismutase, which has anti-inflammatory properties, only in the larval extracts. Superoxide dismutase antagonizes the inflammatory response in the host, protecting the parasite against cell death mediated by the host reactive oxygen species (Bannister et al., 1991; Cardoso et al., 2004; Kim et al., 2000), and is present in various helminths such as S. mansoni, O. volvulus, Echinococcus granulosus, B. malayi, and F. hepatica  (Dabir et al., 2008; James et al., 1994; Jang et al., 2011; Kim et al., 2000; Li et al., 2004; Vermeire and Yoshino, 2007).

4.8 Development of the parasite
Several proteins involved in the development of the parasite were detected in the larval extracts, among which was serpin (serine protease inhibitor).  In nematode species serpin regulates the proteolytic activity of serine proteases and can be secreted during spermatogenesis of the parasite, besides participating in several immunological processes such as host-parasite interaction, immune evasion by inhibition of neutrophils and cathepsin G (Gettins, 2002; Law et al., 2006). It is homologous to Anisakis simplex  (Valdivieso et al., 2015), Schistosoma japonicum (Molehin et al., 2014) and B. malayi (Zang et al., 1999) serpins.

4.8.1 Energy Metabolism
	We identified many proteins in the larval extracts of T. canis involved in energy metabolism related to glycolysis or gluconeogens (glucose-6-phosphate, phosphoenolpyruvate carboxykinase, 2,3-bisphosphoglycerate, phosphoglycerate mutase activity, hexokinase). These molecules actively participate in the energy processes required by the parasite; they can act on the mechanisms of evasion, migration and survival of the parasite within the host. Examples of these were enolases, phosphoenolpyruvate carboxykinase and glyceraldehyde-3-phosphate dehydrogenase; the latter binds to plasminogen, inducing plasmin-mediated proteolysis (Chen et al., 2012; Sotillo et al., 2008).  In addition to regulating damage caused by oxidative processes, some authors have described these proteins as immunodominant, probably because they are found on the surface of the parasites, thus interacting directly with the host immune system (Bernal et al., 2006).

4.9 Other functions
	Notably, we found calcium-binding proteins, which were described by Zhu et. al (2015) in the transcriptome of T. canis, such as annexin, calnexin, calreticulin, calumenin-A in the larval extracts.  It has been suggested that helminth annexins are important in the regulation of inflammation, coagulation and intracellular calcium signalling and in the formation and regulation of ion channels, thus representing potential candidates for the development of vaccines against helminth infections (Cross et al., 2016; Gao et al., 2007; Hofmann et al., 2010; Young et al., 2012). Calreticulins in other helminths have been shown to be involved in cellular Ca2+ homeostasis and immune regulation, binding to C1q and inactivating lysis mediated by the classical complement pathway (Coppolino and Dedhar, 1998; Ferreira et al., 2004; Michalak et al., 1999). Mice injected with recombinant calreticulin of Taenia solium demonstrated a Th2-modified immune response profile, characterized by the induction of IL-10 in mucosal and systemic lymphoid organs (Rzepecka et al., 2009; Zahreddine et al., 2010).
	Finally, in agreement with the findings of Zhu et. al. (2015) we also identified the signaling proteins Ser/Thr protein kinase and protein-tyrosine phosphatase (Zhu et al., 2015). Previous study showed that these molecules are present in several helminths, including in T. canis (Ma et al., 2015). They have been implicated in developmental processes such as cell signalling, signal transduction receptors, cell division, ion channel electrophysiology, neurological activity, apoptosis and exocytosis (Forrester et al., 2004; Hoppe et al., 2010; Hu et al., 2007; Klumpp and Krieglstein, 2002).
In conclusion, in this study we used a proteomic approach to identify proteins present in excretory/secretory products and extract of Toxocara canis larvae. Among these proteins many are likely to be molecules with important roles in parasite development and survival in the host. We identified proteins likely to be involved in the induction and regulation of the host immune response providing candidate molecules for novel diagnostics, vaccines, and the modulation of the host immune response.
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 Figure legends
Fig. 1 - GO pie chart shows representation of the proteins categorized according to Biological process (A and C) and molecular function (B and D) in the TES and larval extract of T. canis, respectively.
Note: Supplementary data associated with this article
	Table 1. List of most abundant proteins identiﬁed in TES from Toxocara canis  by LC-MS/MS 
	

	Description
	Accession
	Coverage (%)
	Peptides
	MW (kDa)
	SP
	Molecular function
	Biological Process
	Cellular component

	Heat shock 70 kDa 
	A0A0B2V5Y2
	6
	5
	101
	No
	ATP binding
	Unknown function
	Unknown function

	Myosin
	A0A0B2W3E0
	20
	37
	23
	No
	ATP binding and motor activity
	Unknown function
	Unknown function

	Filamin-A 
	A0A0B2VIW2
	1
	2
	238
	No
	ATP binding and transmembrane receptor protein serine/threonine kinase activity

	Unknown function
	Integral component of membrane

	Myosin, essential light chain 
	A0A0B2USP9
	26
	3
	21
	No
	Calcium ion binding
	Unknown function
	Unknown function

	Galectin 
	A0A0B2V054
	8
	2
	30
	No
	Carbohydrate binding
	Galactose metabolic process
	Unknown function

	Excretory/secretory C-type lectin TES-32
	O44927
	24
	4
	23
	Yes
	Carbohydrate binding
	Unknown function
	Unknown function

	Histone H4
	A0A0B2V2I6
	63
	13
	11
	No
	Dna bindin
	Nucleosome assembly
	Chromosome and nucleus

	Histone H2B 
	A0A0B2UPH8
	52
	9
	13
	No
	Dna binding
	Unknown function
	Nucleosome and nucleus

	Histone H2A 
	A0A0B2UQD6
	35
	5
	13
	No
	Dna binding
	Unknown function
	Nucleosome and nucleus

	Histone H3
	A0A0B2V2I9
	60
	10
	15
	No
	Dna binding
	Unknown function
	Nucleosome and nucleus

	Glucose-6-phosphate isomerase 
	A0A0B2W5Z0
	4
	3
	67
	No
	Glucose-6-phosphate isomerase activity
	Gluconeogenesis and glycolytic process
	Unknown function

	Phosphoenolpyruvate carboxykinase [GTP] 
	A0A0B2V286
	4
	3
	72
	No
	Gtp binding, kinase activity and phosphoenolpyruvate carboxykinase (gtp) activity
	Gluconeogenesis
	Unknown function

	Elongation factor 1-alpha 
	A0A0B2W5Q7
	3
	2
	50
	No
	Gtpase activity, gtp binding and translation elongation factor activity
	Unknown function
	Cytoplasm

	Apolipophorin 
	A0A0B2VHM0
	3
	7
	349
	No
	Lipid transporter activity

	Unknown function
	Unknown function

	26 kDa secreted antigen 
	A0A0B2UWT5
	10
	3
	28
	Yes
	Lipid binding
	Transport
	Unknown function

	Collectin-12 
	A0A0B2VX95
	6
	2
	27
	Yes
	Lipid binding
	Transport
	Unknown function

	Table 1 (Continued)
	

	Enolase 
	A0A0B2VEA6
	5
	2
	47
	No
	Magnesium ion binding and phosphopyruvate hydratase activity
	Glycolytic process
	Phosphopyruvate hydratase complex

	Superoxide dismutase [Cu-Zn] 
	A0A0B2VI69
	9
	3
	21
	Yes
	Metal ion binding and superoxide dismutase activity
	Unknown function
	Unknown function

	Phosphoethanolamine N-methyltransferase 1
	A0A0B2VTW9
	12
	3
	30
	No
	Methyltransferase activity
	Unknown function
	Unknown function

	Paramyosin 
	A0A0B2V6Q8
	2
	2
	101
	No
	Motor activity
	Unknown function
	Unknown function

	Tropomyosin
	A0A0B2VDB8
	29
	11
	31
	No
	Motor activity
	Unknown function
	Unknown function

	Aspartyl protease inhibitor 
	A0A0B2V7F9
	48
	9
	16
	No
	Peptidase activity
	Unknown function
	Unknown function

	Phosphoglycerate kinase 
	A0A0B2V4Q8
	3
	2
	66
	No
	Phosphoglycerate kinase activity
	Glycolytic process
	Unknown function

	Protein disulfide-isomerase 
	A0A0B2UJM4
	12
	7
	55
	Yes
	Protein disulfide isomerase activity
	Cell redox homeostasis
	Endoplasmic reticulum

	Transthyretin-like protein 46
	A0A0B2W0X7
	34
	3
	19
	Yes
	Transthyretin-like family protein
	Transport
	Extracellular space

	Ancylostoma secreted protein 
	A0A0B2UP29
	8
	3
	46
	No
	Unknown function
	Unknown function
	Extracellular region

	Ancylostoma secreted protein 
	A0A0B2VNW7
	7
	2
	27
	No
	Unknown function
	Unknown function
	Extracellular region

	Major antigen
	A0A0B2VV61
	1
	3
	24
	No
	Unknown function
	Unknown function
	Unknown function

	Macrophage migration inhibitory factor-like protein
	A0A0B2V815
	21
	3
	20
	No
	Unknown function
	Unknown function
	Unknown function

	Proteoglycan core protein 
	O76131
	23
	4
	24
	Yes
	Unknown function
	Unknown function
	Unknown function


The proteins identified were categorized by their molecular function, biological process and cellular component according to information obtained from  the Gene Ontology database (UNIPROT).* Signal peptide.
	Table 2. List of most abundant proteins identiﬁed in larval extract from Toxocara canis  by LC-MS/MS. (See Supplemental Table 1 for details)

	Description
	Accession
	Coverage
	Peptides
	MW (kDa)
	SP
	Molecular function
	Biological Process
	Cellular component

	2,3-bisphosphoglycerate-independent phosphoglycerate mutase
	A0A0B2VUR0
	4
	2
	      64 
	No
	Phosphoglycerate mutase activity
	Glucose catabolic process
	Unknown function

	Actin-2
	A0A0B2URX3
	19
	4
	      31 
	No
	ATP binding
	Cytoskeleton organization
	Unknown function

	Alanine aminotransferase 1
	A0A0B2V9Y4
	6
	2
	      61 
	No
	Pyridoxal phosphate binding and transaminase activity
	Biosynthetic process
	Unknown function

	Aldehyde dehydrogenase family 9 member A1
	A0A0B2VCZ3
	5
	2
	      86 
	Yes
	Oxidoreductase activity
	Unknown function
	Unknown function

	Aldose reductase B
	A0A0B2VWR6
	10
	2
	      33 
	No
	Oxidoreductase activity
	Unknown function
	Unknown function

	Aminopeptidase N
	A0A0B2V4Q4
	2
	2
	     213 
	Yes
	Aminopeptidase activity, metallopeptidase activity and zinc ion binding
	Unknown function
	Unknown function

	ANT-3.1
	B5A257
	24
	4
	      31 
	Yes
	Unknown function
	Unknown function
	Unknown function

	Apolipoprotein(A)
	A0A0B2UXW0
	20
	4
	      35 
	Yes
	Serine-type endopeptidase activity
	Unknown function
	Unknown function

	Arginine kinase
	A7YVI5
	9
	3
	      45 
	No
	ATP binding and kinase activity
	Unknown function
	Unknown function

	Calmodulin 
	A0A0B2UVU2
	20
	2
	      16 
	No
	Calcium ion binding
	Unknown function
	Unknown function

	Calpain clp-1 
	A0A0B2VN55
	4
	2
	      61 
	No
	Calcium-dependent cysteine-type endopeptidase activity
	Unknown function
	Intracellular

	Calreticulin
	A0A0B2V659
	11
	3
	      43 
	Yes
	Calcium ion binding
	Protein folding
	Endoplasmic reticulum

	Calsequestrin
	A0A0B2VMM7
	16
	3
	      49 
	Yes
	Calcium ion binding
	Unknown function
	Unknown function

	Calumenin-A
	A0A0B2VQG1
	22
	6
	      36 
	Yes
	Calcium ion binding
	Unknown function
	Unknown function

	Carboxypeptidase
	A0A0B2UYY2
	2
	4
	     260 
	Yes
	Serine-type carboxypeptidase activity
	Unknown function
	Unknown function

	Carnitine O-acetyltransferase
	A0A0B2UYP5
	7
	2
	      39 
	No
	Transferase activity and transferring acyl groups
	Unknown function
	Unknown function

	Cathepsin B-like cysteine proteinase 6
	A0A0B2VTL1
	10
	2
	      45 
	Yes
	Cysteine-type peptidase activity
	Unknown function
	Unknown function

	Cathepsin L 
	A0A0B2VC96
	6
	2
	      74 
	Yes
	Cysteine-type peptidase activity and serine-type endopeptidase activity
	Unknown function
	Unknown function

	Cathepsin Z
	A0A0B2UNS7
	4
	2
	      35 
	Yes
	Cysteine-type peptidase activity
	Unknown function
	Unknown function

	Chaperonin-like protein Hsp-60, mitochondrial
	A0A0B2W434
	5
	2
	      86 
	No
	ATP  binding
	Protein refolding
	Cytoplasm

	Collectin-12 
	A0A0B2UY45
	2
	2
	     125 
	No
	Nucleic acid binding
	Dna integration
	Unknown function

	C-type lectin protein 

	A0A0B2USF5
	15
	4
	      43 
	Yes
	Carbohydrate binding
	Unknown function
	Unknown function

	Table 2 (continued)
	
	
	
	
	
	
	
	

	Description
	Accession
	Coverage
	Peptides
	MW (kDa)
	Sp
	Molecular function
	Biological process
	Cellular component

	Elongation factor 2
	A0A0B2VI65
	7
	3
	      97 
	No
	Gtpase activity, gtp binding and translation elongation factor activity
	Unknown function
	Unknown function

	Enolase 
	A0A0B2VEA6
	29
	8
	47
	No
	Magnesium ion binding and phosphopyruvate hydratase activity
	Glycolytic process
	Phosphopyruvate hydratase complex

	Epidermal retinol dehydrogenase 2 
	A0A0B2VCJ7
	11
	2
	38
	No
	Oxidoreductase activity
	Unknown function
	Integral component of membrane

	Estradiol 17-beta-dehydrogenase 8
	A0A0B2VZ70
	22
	4
	26
	No
	Oxidoreductase activity
	Unknown function
	Unknown function

	Exportin-1
	A0A0B2UQZ9
	9
	7
	124
	No
	Unknown function
	Intracellular protein transport
	Unknown function

	Ferritin 
	A0A0B2VBR4
	13
	2
	20
	No
	Ferric iron binding and ferroxidase activity
	Cellular iron ion homeostasis and iron ion transport
	Cell

	Fumarate reductase
	A0A0B2W139
	18
	6
	52
	Yes
	Oxidoreductase activity
	Unknown function
	Unknown function

	Galactokinase
	A0A0B2VTC2
	6
	2
	46
	No
	ATP binding and galactokinase activity
	Galactose metabolic process
	Cytoplasm

	Galectin 
	A0A0B2W2G3
	20
	2
	16
	No
	Carbohydrate binding
	Unknown function
	Unknown function

	Gamma-glutamyltranspeptidase 1
	A0A0B2VJ19
	5
	2
	60
	No
	Gamma-glutamyltransferase activity
	Glutathione metabolic process
	Unknown function

	Glucose-6-phosphate 1-dehydrogenase
	A0A0B2UZ30
	13
	5
	66
	No
	Glucose-6-phosphate dehydrogenase activity and nadp binding
	Glucose metabolic process and pentose-phosphate shunt
	Unknown function

	Glucose-6-phosphate isomerase
	A0A0B2W5Z0
	25
	10
	68
	No
	Glucose-6-phosphate isomerase activity
	Gluconeogenesis and glycolytic process
	Unknown function

	Glutamate dehydrogenase
	A0A0B2UXI4
	10
	4
	59
	No
	Glutamate dehydrogenase (nad+) activity
	Cellular amino acid metabolic process
	Unknown function

	Glutathione peroxidase 
	A0A0B2VSL8
	6
	2
	42
	No
	Glutathione peroxidase activity
	Response to oxidative stress
	Unknown function

	Glutathione S-transferase 
	A0A0B2VSH0
	10
	2
	25
	No
	Glutathione transferase activity
	Metabolic process
	Unknown function

	Glyceraldehyde-3-phosphate dehydrogenase
	A0A0B2UTM8
	26
	10
	44
	No
	Glyceraldehyde-3-phosphate dehydrogenase (nad+) (phosphorylating) activity, nad binding and nadp binding
	Glucose metabolic process and glycolytic process
	Unknown function

	Heat shock 70 kDa protein 
	A0A0B2W0B9
	9
	4
	75
	No
	ATP binding
	Unknown function
	Unknown function

	Table 2 (continued)

	Heat shock cognate protein HSP 90-beta
	A0A0B2VT58
	28
	4
	22
	No
	ATP binding
	Protein folding and response to stress
	Unknown function

	Heat shock protein HSP 90-alpha
	A0A0B2V484
	26
	13
	75
	No
	ATP binding
	Protein folding and response to stress
	Unknown function

	Hemicentin-1
	A0A0B2UNR1
	6
	3
	131
	No
	Unknown function
	Unknown function
	Unknown function

	Hexokinase
	A0A0B2USB4
	16
	5
	52
	No
	ATP binding, glucose binding and hexokinase activity
	Cellular glucose homeostasis and glycolytic process
	Cell

	Immunoglobulin-binding protein 1
	A0A0B2VJL5
	18
	4
	39
	No
	Regulation of signal transduction
	Unknown function
	Unknown function

	Importin-5
	A0A0B2VLS9
	12
	10
	126
	No
	Unknown function
	Intracellular protein transport
	Intracellular

	Inositol monophosphatase
	A0A0B2USQ4
	7
	2
	37
	No
	Inositol monophosphate 1-phosphatase activity
	Inositol phosphate dephosphorylation source
	Unknown function

	Isocitrate dehydrogenase [NAD] subunit gamma
	A0A0B2VSC5
	2
	2
	121
	Yes
	Isocitrate dehydrogenase (nad+) activity, magnesium ion binding, nad binding and serine-type endopeptidase activity
	Lipid metabolic process and tricarboxylic acid cycle
	Unknown function

	Leukotriene A-4 hydrolase
	A0A0B2VFU8
	10
	4
	71
	No
	Metallopeptidase activity and zinc ion binding
	Unknown function
	Unknown function

	Macrophage migration inhibitory factor-like protein
	A0A0B2V815
	34
	4
	21
	No
	Unknown function
	Unknown function
	Unknown function

	Major allergen Ani s 1 
	A0A0B2V5M2
	13
	2
	21
	Yes
	Serine-type endopeptidase inhibitor activity
	Unknown function
	Unknown function

	Major pepsin inhibitor
	A0A0B2VB99
	16
	2
	17
	No
	Unknown function
	Unknown function
	Unknown function

	Major sperm protein 
	A0A0B2VCS9
	9
	2
	25
	No
	Unknown function
	Unknown function
	Cytoskeleton

	Mesocentin
	A0A0B2VWQ7
	3
	4
	233
	No
	Unknown function
	Unknown function
	Unknown function

	Microsomal triglyceride transfer protein large subunitSV=1
	A0A0B2VPL4
	3
	2
	113
	Yes
	Lipid transporter activity
	Unknown function
	Unknown function

	Myoglobin
	A0A0B2VPY5
	12
	2
	17
	No
	Heme binding, iron ion binding, oxygen binding and oxygen transporter activity
	Unknown function
	Unknown function

	Neprilysin-1
	A0A0B2VJQ9
	7
	19
	424
	No
	Metalloendopeptidase activity
	Unknown function
	Unknown function

	Neuroserpin
	A0A0B2V666
	3
	2
	120
	No
	Unknown function
	Unknown function
	Extracellular space

	Onchocystatin 
	A0A0B2V581
	36
	4
	22
	Yes
	Cysteine-type endopeptidase inhibitor activity
	Unknown function
	Unknown function

	Table 2 (continued)

	
	
	
	
	
	
	
	

	OV-16 antigen O
	A0A0B2V438
	55
	6
	19
	No
	Unknown function
	Unknown function
	Unknown function

	OV-17 antigen 
	A0A0B2VKQ1
	54
	10
	15
	Yes
	Unknown function
	Unknown function
	Unknown function

	Paramyosin
	A0A0B2UZA1
	16
	3
	33
	No
	Motor activity 
	Unknown function
	Myosin complex

	Phosphatidylethanolamine-binding-like protein F40A3.3 
	A0A0B2VUI6
	39
	4
	20
	No
	Unknown function
	Unknown function
	Unknown function

	Phosphatidylinositol
	A0A0B2VF93
	8
	2
	50
	No
	Phosphatidylinositol phosphate kinase activity
	Unknown function
	Unknown function

	Phosphatidylinositol phosphatase 
	A0A0B2VJK9
	1
	2
	449
	Yes
	Unknown function
	Unknown function
	Integral component of membrane

	Phosphoenolpyruvate carboxykinase
	A0A0B2UWV2
	12
	5
	76
	No
	Transport
	Unknown function
	Intracellular

	Phosphoenolpyruvate carboxykinase [GTP]
	A0A0B2V286
	29
	13
	72
	No
	Gtp binding, kinase activity and phosphoenolpyruvate carboxykinase (gtp) activity
	Gluconeogenesis
	Unknown function

	Plasminogen
	A0A0B2V8X7
	14
	3
	32
	Yes
	Serine-type endopeptidase activity
	Unknown function
	Unknown function

	Pyruvate kinase
	A0A0B2URT1
	13
	7
	74
	No
	Kinase activity, magnesium ion binding, potassium ion binding and pyruvate kinase activity
	Unknown function
	Unknown function

	Quinone oxidoreductase-like protein 2-like protein
	A0A0B2VLU5
	23
	4
	37
	No
	Oxidoreductase activity and zinc ion binding
	Unknown function
	Unknown function

	Reticulocyte-binding protein 2-like protein a
	A0A0B2VVR5
	6
	2
	74
	No
	Unknown function
	Unknown function
	Unknown function

	Reticulon-like protein 
	A0A0B2VR17
	12
	2
	29
	No
	Unknown function
	Unknown function
	Endoplasmic reticulum membrane 

	Serine hydroxymethyltransferase
	A0A0B2W560
	11
	4
	55
	No
	Glycine hydroxymethyltransferase activity, methyltransferase activity and pyridoxal phosphate binding
	Glycine metabolic process source: interpro
l-serine metabolic process source: interpro
tetrahydrofolate interconversion
	Unknown function

	Serpin B6
	A0A0B2VH56
	8
	2
	44
	Yes
	Unknown function
	Unknown function
	Extracellular space

	Sorbitol dehydrogenase 
	A0A0B2VJ07
	10
	2
	39
	No
	Oxidoreductase activity and zinc ion binding
	Unknown function
	Unknown function

	Spermidine synthase
	A0A0B2V470
	11
	4
	40
	No
	Transferase activity
	Polyamine metabolic process
	Unknown function

	Superoxide dismutase [Cu-Zn] 
	A0A0B2UYA2
	18
	2
	19
	Yes
	Metal ion binding and superoxide dismutase activity
	Unknown function
	Unknown function

	
	
	
	
	
	
	
	
	

	Thyrotropin-releasing hormone-degrading ectoenzyme
	A0A0B2UZP1
	5
	7
	215
	No
	Metallopeptidase activity and zinc ion binding
	Unknown function
	Unknown function

	Thyrotropin-releasing hormone-degrading ectoenzymeSV=1
	A0A0B2V4Y5
	2
	3
	216
	Yes
	Metallopeptidase activity and zinc ion binding
	Unknown function
	Unknown function

	Titin
	A0A0B2VJV3
	3
	3
	166
	No
	Unknown function
	Unknown function
	Unknown function

	Transportin-3
	A0A0B2VBU8
	5
	3
	103
	No
	Unknown function
	Unknown function
	Unknown function

	Transthyretin-like protein 46 
	A0A0B2VAW6
	19
	2
	17
	Yes
	Unknown function
	Unknown function
	Extracellular space

	Tropomyosin
	A0A0B2VDB8
	27
	7
	31
	No
	Unknown function
	Unknown function
	Unknown function

	Troponin I 
	A0A0B2VTU0
	9
	2
	31
	No
	Unknown function
	Unknown function
	Troponin complex

	Troponin T
	A0A0B2USX2
	7
	3
	44
	No
	Unknown function
	Regulation of muscle contraction
	Troponin complex

	Tubulin alpha chain
	A0A0B2VPL2
	25
	7
	50
	No
	Gtpase activity, gtp binding and structural constituent of cytoskeleton
	Microtubule-based process
	Cytoplasm and microtubule

	Twitchin
	A0A0B2UWL8
	19
	15
	140
	No
	ATP binding and protein kinase activity
	Unknown function
	Unknown function

	Ubiquitin-conjugating enzyme E2 variant 2
	A0A0B2VYL2
	45
	6
	16
	No
	Unknown function
	Unknown function
	Unknown function

	Vitellogenin-6
	A0A0B2V8F3
	54
	86
	     198 
	Yes
	Lipid transporter activity
	Unknown function
	Unknown function


The proteins identified were categorized by their molecular function, biological process and cellular component according to information obtained from the Gene Ontology database (UNIPROT).* Signal peptide.
















