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PR interval genome-wide association meta-analysis
identifies 50 loci associated with atrial and
atrioventricular electrical activity
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Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction,

and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genome-

wide association study of over 92,000 European-descent individuals identifies 44 PR interval

loci (34 novel). Examination of these loci reveals known and previously not-yet-reported

biological processes involved in cardiac atrial electrical activity. Genes in these loci are over-

represented in cardiac disease processes including heart block and atrial fibrillation. Variants

in over half of the 44 loci were associated with atrial or blood transcript expression levels, or

were in high linkage disequilibrium with missense variants. Six additional loci were identified

either by meta-analysis of ~105,000 African and European-descent individuals and/or by

pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation.

These findings implicate developmental pathways, and identify transcription factors, ion-

channel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction,

identifying potential targets for drug development.
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The PR interval on the surface electrocardiogram reflects
atrial and atrioventricular node myocyte depolarization
and conduction. Abnormalities in PR interval duration are

associated with increased risk of atrial fibrillation (AF), which
carries a substantial risk of morbidity and mortality, and with
cardiac conduction defects and heart block, conditions that often
necessitate pacemaker implantation1. Understanding the mole-
cular mechanisms affecting the PR interval may provide insights
into cardiac electrical disease processes, and identify potential
drug targets for prevention and treatment of AF and conduction
disease.

Twin and family studies suggest that the heritability of PR
interval is between 40 and 60%2. Prior genome-wide association
studies (GWAS) in up to 30,000 individuals have identified ten
loci associated with PR interval among European-descent
individuals3, 4. The key motivation for the present study is to
extend the biological and clinical insights derived from GWAS
data by utilizing the largest sample size to detect novel PR loci
genome-wide. We further increase power by performing trans-
ethnic meta-analyses. To gain additional biological and clinical
insights, we test for pleiotropy with other clinically relevant
phenotypes. We examine the biological and functional relevance
of identified associations to gain insights into molecular processes
underlying clinically important phenotypes.

Our GWAS of over 92,000 European-descent individuals
identifies 44 loci (34 novel) associated with PR interval. Exam-
ination of the 44 loci revealed known and novel biological pro-
cesses involved in cardiac atrial electrical activity, including
cardiac sodium channels, transcription factors involved in cardiac
development, and sarcomeric-related proteins. Ten of the 61 non-
redundant variants in these 44 loci are in high linkage dis-
equilibrium (LD) with one or more missense variants. More than
half of the index variants influence transcript expression levels as
measured in the atria or in blood, with the regulation of certain
genes found only in atrial tissue. Indeed, cardiac regulatory
regions of the genome as measured by cardiac DNA hypersen-
sitivity sites are enriched for variants associated with PR interval,
compared to non-cardiac regulatory regions. Genes in the 44 loci
are highly over-represented in a number of disease processes,
including sick sinus syndrome, heart block, and AF. This moti-
vated us to perform pleiotropic analyses, where we jointly analyze
the phenotypes of PR–heart rate; PR–QRS interval (a measure of

ventricular conduction); and PR–AF, and identify an additional
three new pleiotropic loci. More than half of the single nucleotide
polymorphisms (SNPs) identified show evidence of pleiotropy
with other electrophysiologic phenotypes; SNPs that influence
atrial conduction also influence ventricular conduction, atrial
arrhythmias, and/or heart rate. Trans-ethnic analyses suggest that
the majority of the associations derived from European-descent
population are also present in African-American population.
Meta-analysis examining over 100,000 individuals of African and
European descent identifies five novel PR loci (two of which are
also identified by pleiotropic analyses). These findings underscore
the power of GWAS to extend knowledge of the molecular
underpinnings of clinical processes.

Results
PR interval meta-analysis of genome-wide association studies.
We meta-analyzed ~2.7 million SNPs from GWAS data on 92,340
individuals of European ancestry from 31 studies (Supplementary
Data 1 and 2) for association with PR interval using an additive
genetic model. A total of 1601 SNPs mapping to 44 loci (of which
34 were novel in Europeans) reached genome-wide significance
(P ≤ 5 × 10−8) (Fig. 1, Tables 1 and 2, Supplementary Figures 1
and 2). The genomic inflation factor lambda was 1.11 and LD
score regression5 showed that that the inflation of the test statistic
was mainly caused by true polygenicity (Supplementary Fig. 3).
Using a Bayesian locus-based test of association (GWiS)6, we
identified 61 non-redundant signals in the 44 loci (listed in
Supplementary Data 4). For example, the top locus on chromo-
some 3, a known cardiac conduction locus mapping to the two
cardiac sodium channel genes SCN5A and SCN10A3, 4, 7, 8, had
seven non-redundant signals associated with PR interval (Fig. 2a).

Putative functional variants. To assess the functional relevance
of the identified SNPs, we used the 1000G reference panel to
identify variants in high LD with the index SNPs. We then
examined whether those variants were either nonsynonymous
variants or fell within putative regulatory regions. Ten of the 44
loci had missense variants in high LD (r2 > 0.8) with the index
SNP (Tables 1 and 2, Supplementary Data 4). TTN, in particular,
was enriched for missense SNPs, with the top signal and
approximately one-third of the 47 genome-wide significant TTN
SNPs being missense (Fig. 2b). To examine the possible impact of
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Fig. 1 Genome-wide results of PR interval in 92,340 individuals of European descent. 2.8 million SNPs were tested for association with PR interval in 31
cohorts. The Manhattan plot shows the meta-analysis association results: 44 independent loci (labeled) are associated at the genome-wide significance
level of P≤ 5 × 10−8, as marked by the dashed line
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these amino acid substitutions on protein structure or function,
we used two prediction algorithms, Sift9 and PolyPhen-210. The
vast majority of the genome-wide significant missense variants at
the 44 loci were categorized as tolerated by Sift and benign by
PolyPhen-2, consistent with modest effects on PR interval not
subjected to purifying selection (Supplementary Data 4).

Expression quantitative trait locus (eQTL) analysis using RNA-
seq data suggests that index SNPs in nearly half of the identified
loci (20/44) are associated with cis gene expression in cardiac left
atrial appendage (LAA) tissue (n= 230) (Supplementary Data 5).
Of these, we identified co-localizing variants that jointly affect
both molecular expression and the PR phenotype to provide
intuition regarding the candidate gene that may play a role in

atrial conduction (Supplementary Data 6). Several points are
worth highlighting. First, for most of the loci, the eQTL
associations are for the gene nearest the index SNP, but for
nearly one-quarter, they are not. Second, certain SNPs can be
promiscuous in that they are associated with the transcript
expression of multiple different genes (e.g., rs6599250 is
associated with both SCN5A and SCN10A expression). Third,
most of the eQTL associations found in cardiac atrial tissue—e.g.,
associations with SCN10A, MEIS1, CAV1, FAT1, and TMEM182
transcripts—were not found in whole blood samples, even at
nominal significance (Supplementary Data 6), despite larger
sample sizes (n= 369 GTEx blood samples using RNA-seq and
n= 5311 blood samples assayed by Illumina gene expression

Table 1 Description of PR loci previously identified by GWAS among those of European descent

European ancestry index SNPs in previously GWAS identified PR loci Non-red SNPs AA PR Missense DHS Cardiac eQTL

Locus SNP Chr Closest gene CA CAF Beta (ms) SE (ms) P-value n P < 0.05 r2 > 0.8 r2 > 0.8 FDR < 0.05

1 rs4430933 2 MEIS1 A 0.39 1.3 0.11 5.06E−30 1 YES – YES MEIS1
2 rs6599250 3 SCN10A T 0.41 3.8 0.11 4.42E−242 2 YES SCN10A YES SCN10A & SCN5A
3 rs11708996 3 SCN5A C 0.15 3.1 0.18 1.06E−68 5 YES SCN5A YES –
4 rs343849 4 ARHGAP24 A 0.3 −2.1 0.13 3.12E−61 1 YES – YES –
5 rs255292 5 BNIP1/NKX2-5 C 0.42 −1.1 0.12 5.99E−21 1 YES – YES BNIP1
6 rs3807989 7 CAV1/CAV2 A 0.41 2 0.12 8.65E−69 1 YES – YES CAV1
7 rs652673 11 WNT11 C 0.22 −0.8 0.15 4.41E−08 1 – – – –
8 rs17287293 12 C12orf67/SOX5 G 0.15 −2.2 0.16 2.33E−41 1 YES – – –
9 rs1896312 12 TBX3 C 0.29 1.6 0.13 1.16E−34 4 – – – –
10 rs6489953 12 TBX5 C 0.17 1.2 0.15 1.94E−16 2 – – – –

For each of the 10 loci, we list the number of non-redundant signals, whether this locus is nominally significant in African Americans, if missense SNPs are in LD with the index SNP, if the index SNP is in
LD with or located in a cardiac DHS, and if the locus contains cardiac or blood eQTLs
Abbreviations: Chr chromosome, CA coded allele, CAF coded allele frequency, SE standard error, Non-red SNPs non-redundant SNPs

Table 2 Description of novel PR loci among those of European descent

European ancestry index SNPs in novel PR loci Non-red SNPs AA PR Missense Cardiac DHS Cardiac eQTL

Locus SNP Chr Closest gene CA CAF Beta (ms) SE (ms) P-value n P < 0.05 r2 > 0.8 r2 > 0.8 FDR < 0.05

11 rs4648819 1 SKI G 0.11 −1.7 0.28 4.68E−10 1 – – – –
12 rs7538988 1 EPS15 C 0.03 −2.1 0.37 1.14E−08 1 – – YES –
13 rs12127701 1 MYBPHL G 0.06 1.7 0.28 1.54E−09 1 – MYBPHL – –
14 rs11264339 1 KRTCAP2 T 0.48 −0.7 0.11 5.94E−10 1 – EFNA1 YES –
15 rs397637 1 OBSCN T 0.28 0.8 0.12 7.11E−10 1 – OBSCN YES –
16 rs3856447 2 ID2 A 0.39 1.2 0.11 1.20E−26 2 – – YES –
17 rs2732860 2 TMEM182 G 0.52 −0.9 0.11 3.03E−15 2 – – YES TMEM182
18 rs13018106 2 FIGN C 0.42 −0.8 0.12 1.53E−11 1 YES – YES –
19 rs922984 2 TTN T 0.07 1.5 0.23 1.79E−11 2 – TTN YES –
20 rs9826413 3 EOMES T 0.06 2 0.36 1.69E−08 1 – – – –
21 rs900669 3 FRMD4B A 0.25 0.8 0.13 5.71E−09 1 YES – YES –
22 rs13087058 3 PDZRN3 C 0.37 −1 0.12 5.82E−17 1 – – YES –
23 rs16858828 3 PHLDB2 C 0.18 0.9 0.15 2.41E−08 1 – – YES –
24 rs6441111 3 CCNL1 C 0.52 0.8 0.13 6.96E−11 1 YES – YES LINC00881
25 rs7638853 3 SENP2 A 0.34 −0.7 0.12 2.44E−08 1 – SENP2 YES –
26 rs17446418 4 CAMK2D G 0.26 0.8 0.13 3.41E−09 1 – – YES –
27 rs3733409 4 FAT1 T 0.13 0.9 0.17 2.67E−08 1 YES FAT1 YES FAT1
28 rs7729395 5 PAM T 0.05 2.4 0.37 1.00E−10 1 – PAM – –
29 rs11763856 7 TBX20/HERPUD2 T 0.03 3.1 0.49 4.47E−10 2 YES – YES –
30 rs2129561 7 MKLN1 A 0.42 −1 0.12 3.39E−15 1 – – – LINC-PINT
31 rs881301 8 FGFR1 C 0.41 0.8 0.12 5.04E−10 1 – – YES –
32 rs12678719 8 ZFPM2 G 0.27 0.8 0.13 3.77E−10 1 – – – –
33 rs12359272 10 ALDH18A1/SORBS1 A 0.37 1 0.13 3.68E−16 2 – – YES –
34 rs12257568 10 SH3PXD2A/OBFC1 T 0.41 1 0.12 5.83E−18 2 YES – – –
35 rs1372797 11 NAV2 T 0.12 −1.1 0.18 2.36E−09 2 – – YES –
36 rs11067773 12 MED13L C 0.09 −1.3 0.23 1.02E−08 1 – – – –
37 rs718426 13 EFHA1 G 0.41 −1.2 0.11 3.25E−24 1 – – YES –
38 rs2585897 13 XPO4 A 0.16 1.2 0.15 9.28E−16 1 YES – YES –
39 rs9590974 13 LRCH1 C 0.34 1.1 0.12 1.02E−19 1 – – YES –
40 rs11465506 14 IL25/MYH6 A 0.02 −6.4 1.04 7.06E−10 2 YES MYH6 YES –
41 rs4901308 14 FERMT2 T 0.19 −0.8 0.15 2.04E−08 1 – – – –
42 rs17767398 14 SNORD56B SIPA1L1 G 0.26 1 0.13 6.44E−13 1 – – YES –
43 rs904974 15 TLE3 T 0.16 1.1 0.19 4.53E−08 1 YES – – –
44 rs1984481 17 MYOCD C 0.54 −0.8 0.12 1.37E−11 1 – – YES –

For each of the 34 novel loci, we list the number of non-redundant signals, whether this locus is nominally significant in African Americans, if missense SNPs are in LD with the index SNP, if the index SNP
is in LD with or located in a cardiac DHS, and if the locus contains cardiac or blood eQTLs
Chr chromosome, CA coded allele, CAF coded allele frequency, SE standard error, Non-red SNPs non-redundant SNPs
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array). Similarly, while most cardiac eQTLs were identified in
both atrial and ventricular tissue, TMEM182 and CAV1 eQTL
associations are identified only in atrial tissue (Supplementary
Data 6). Fourth, certain SNPs are associated with transcript
expression levels of different genes, depending on the tissue being
examined. For instance, rs2732860 was associated with
TMEM182 expression in atrial tissue but with MFSD9 expression

in blood, again suggesting tissue-specificity for SNP–eQTL
associations. Taken together, these data underscore the impor-
tance of examining eQTL data in tissue types relevant to the trait
of interest: even with a modest study size of 230 cardiac atrial
samples, a notable number of eQTL associations were uncovered.

The majority of loci (30/44) contain index SNPs that lie in, or
are in high LD with, regulatory regions of the genome that are
marked by deoxyribonuclease I (DNAse I) hypersensitivity sites
(DHSs), lending further support to the hypothesis that regulation
of gene-expression plays an important role in determining PR
interval (Tables 1 and 2). To provide insight into the cellular and
tissue structure of the phenotype, we examined P-values of all
SNPs in the PR meta-analysis and assessed cell- and tissue-
selective enrichment patterns of progressively more strongly
associated variants to explore localization of signal within specific
lineages or cell types. As would be expected for the cardiac
phenotype of PR interval, we found enrichment of signal in
cardiac DHSs compared with DHSs from other tissue types
(Supplementary Fig. 5). Interestingly, the second most enriched
tissue DHSs were in those that regulate microvascular endothelial
cells, complementing our findings (noted below) that there is an
enrichment in genes involved in blood vessel morphogenesis.
These findings possibly reflect the involvement of an overlapping
set of transcription factors (e.g., CAV1, NKX2-5, EFNA1, FGFR1,
MEIS1, TBX5, WNT11, TBX20, ARHGAP24, and MYOCD)
influencing both cardiac and vascular development during
mesodermal differentiation and development.

Molecular function and biological processes of PR genes.
Although extensive LD among common variants and the
incompleteness of the HapMap reference panel preclude an
unambiguous identification of the functional variant or the cul-
prit gene, we used the following criteria to implicate genes in 37
of the 44 loci: (1) the gene selected was the only nearby gene
(within a ±500 kb window); (2) the gene selected has a missense
variant in high LD (r2 > 0.8) with the index SNP; or (3) the index
SNP was associated with cardiac transcript expression levels of
the selected gene (Tables 1 and 2). The set of implicated genes,
detailed in Supplementary Note 3, showed strong enrichment for
genes (permutation false discovery rate (FDR) < 1.0 × 10−4)
involved in cardiac development, specifically the cardiac cham-
bers and His-Purkinje system development (Supplementary
Data 3). Other notable biological processes include the develop-
ment of the vasculature and cardiac myocyte cell differentiation.
The molecular function and cellular component of the identified
genes were largely enriched for transcription factors, ion-channel
related genes, and cell junction/cell signaling proteins (Supple-
mentary Data 3).

Clinical relevance of PR-associated loci. To examine the clinical
relevance of the identified loci, we intersected the PR genes with
gene membership from multiple knowledge bases encompassing
over 4000 human diseases. The most highly over-represented
conditions (permutation FDR < 1.0 × 10−3) are heart diseases
including congenital abnormalities and heart failure, sick sinus
syndrome and sinus arrhythmia (phenotypes related to the sinus
node which houses the pacemaker cells that generate heartbeats),
heart block (related to cardiac conduction between atria and
ventricles), and AF (Supplementary Data 7).

We examined the significant PR-associated SNPs for their effect
on heart rate11, QRS interval (measure of ventricular conduction)12,
and AF13. All 61 non-redundant SNPs from 44 independent loci
were examined. Over half of the non-redundant SNPs (31/61)
representing 20 loci were also associated with at least one of the
other electrical phenotypes (Supplementary Data 8, Fig. 3). The
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cardiac sodium channel genes, SCN5A and SCN10A, clearly play a
critical role in cardiac electrophysiology. PR prolonging variants in
these genes are also associated with prolonged QRS duration, and
some though not all variants at this locus are associated with lower
heart rate, and lower risk of AF (Fig. 3). The role of transcription
factors in cardiac electrophysiology is equally complex. Several T-
box containing transcription factors, important for cardiac conduc-
tion system formation in the developing heart, are associated with
PR interval. Although TBX3 and TBX5 sit close together on
chromosome 12, the top PR prolonging allele in TBX5 prolongs
QRS and decreases AF risk while the top PR prolonging allele in

TBX3 shortens QRS duration while also decreasing AF risk. The PR
prolonging variant near TBX20 prolongs QRS duration but is not
associated with AF risk (Fig. 3). Overall, eight of the 13 transcription
factor genes associated with PR interval were also associated with at
least one other atrial or atrioventricular electrical phenotype.

PR interval prolongation may reflect conduction disease, and
prolonged PR interval is a risk factor for pacemaker implantation
(~25% increase in the risk of pacemaker implantation for each
10 ms increase in PR duration above the median in the
Copenhagen Study)14. We examined whether PR prolonging
variants were associated with higher risk of pacemaker implanta-
tion among ~370,000 individuals from the UKBiobank, of whom
1074 require pacemaker implantation. Using Mendelian rando-
mization, we show that while prolongation of PR interval is
causally related to pacemaker implantation, the MR estimate of
the causal effect is smaller (OR= 1.14/10 ms increase in PR
interval) than the effect size seen observationally for PR on
pacemaker implantation, suggesting that acquired factors such as
heart disease may also play an important role (Supplementary
Fig. 6).

PR and QRS intervals. Many loci regulate both atrial/atrioven-
tricular (PR interval) and ventricular (QRS) depolarization and
conduction: 12 of the 44 PR loci were nominally associated with
QRS duration (Supplementary Data 7) and, similarly, 17 of 22
previously identified QRS loci were at least nominally associated
with PR interval (Supplementary Data 9). Several intriguing
findings are worth highlighting. First, while SNPs in most loci
that are associated with prolonged PR are also associated with
prolonged QRS, two loci have genome-wide significant discordant
PR–QRS relationships, in which prolonged PR variants are
associated with shorter QRS duration (TBX3 and SNORD56B);
Supplementary Data 8, Fig. 3, Supplementary Fig. 7b. Second,
although TBX20 plays a crucial role in the development of the
cardiac conduction system, the SNPs that are associated with
atrial and atrioventricular conduction (PR) differ from those
related to ventricular conduction (QRS) (index SNP PR
rs11763856, index SNP QRS rs1419856, r2= 0.001). A better
understanding of the influence of these specific regions on cardiac
conduction will require further investigation.

PR interval and atrial fibrillation. One-third (18/61) of PR index
SNPs were nominally associated with AF. For six of these SNPs,
the alleles associated with prolonged PR are associated with
increased AF risk, whereas for 12, the alleles associated with
prolonged PR are paradoxically associated with lower AF risk.
This observation is consistent with the relationship between PR
interval and AF described in population studies, where we
showed that while both short (<120 ms) and long (>200 ms) PR
intervals are associated with increased AF risk, short PR interval
is associated with higher risk than long PR interval13. For both
concordant (meaning relationships where the PR prolonging
variant is associated with increased AF risk) and discordant
PR–AF relationships, the larger the SNP effect size for PR
interval, the larger the odds ratio for association with AF (Sup-
plementary Fig. 7a). The CAV1 index SNP associated with
increased PR interval and decreased AF risk reached genome-
wide significance for both phenotypes. Furthermore, of 23 pre-
viously described AF GWAS loci, 11 were at least nominally
associated with PR interval15. Interestingly, despite adequate
power to identify modest associations, several loci, including
PITX2, the most significant AF GWAS locus, showed no asso-
ciation with PR interval, though a prior report found modest
nominal association with P-wave duration (Supplementary
Data 9)16. Therefore, these loci may have a mode of action
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independent of atrial and atrioventricular depolarization or
conduction.

PR interval and heart rate. Ten PR loci were nominally asso-
ciated with heart rate, including two sarcomeric proteins, MYH6
and TTN. At the MYH6 locus, a known heart rate locus4, variant
rs365990 is associated with prolonged PR interval and with
slower heart rates, whereas a non-redundant second MYH6 signal
(<20 kb away; rs11465506), the allele associated with prolonged
PR is associated with faster heart rates. We then examined heart
rate SNPs for association with PR and found half of the heart rate
SNPs were associated with PR interval, with both concordant and
discordant effects. Adjusting for heart rate in the regression
model did not impact the effect size or significance of the
PR–genotype associations, even though resting heart rate is
modestly associated with PR interval (Supplementary Fig. 8).

Cross-trait genome-wide meta-analyses. Finally, we performed
joint phenotype analyses, with PR–heart rate, PR–QRS, and
PR–AF as outcomes, to increase the power of finding loci
involved in cardiac electrical activity. As described above, pro-
longed PR variants can have either a concordant or discordant
association with another electrical phenotype. Therefore, we
modeled the outcome for each joint analysis in two ways: with a
variant having a concordant effect on PR–QRS, PR–HR, and
PR–AF, and a discordant effect (Supplementary Figures 6a–c).
These analyses yielded three novel loci associated with atrial
electrical activity: one related to atrial and ventricular conduction
(from PR–QRS analyses) and two related to atrial electrical
activity and arrhythmias (from PR–AF analyses); (Supplementary
Tables 1 and 2, Supplementary Note 3, Supplementary Fig. 9).
Additional support for association of these loci were obtained by
an analysis limited to cardiac DHS sites, and by trans-ethnic
meta-analysis with African Americans, described below, lending
further support to the validity of these associations (Supple-
mentary Table 1, Supplementary Fig. 9).

Trans-ethnic analyses. Our study had less power to find asso-
ciations among African Americans (n= 13,415) than among
European-descent individuals (n= 92,340). Nonetheless, 16 of
the 44 European-identified loci nominally replicated among
African Americans, suggesting that a large proportion of genetic
associations with PR interval are shared between the two ethnic
groups (Supplementary Data 9). For European-descent GWAS
PR SNPs at least nominally associated with PR among African
Americans, the estimated effect was in the same direction for the
two population (Supplementary Fig. 7d).

Examining only the index signal may underestimate the true
number of locus associations that replicate. Differences in LD
structure between the genomes of individuals of European
descent and those of African American descent cause dissimilar
patterns of SNPs associated with PR interval. For instance, the
TBX5 locus index SNP rs6489953 is part of a large LD block
associated with PR interval among individuals of European
descent. This SNP is not significantly associated with PR interval
among African Americans (beta= 0.04, P= 0.90, Supplementary
Data 8, Fig. 2c). There is, however, a strong SNP–PR association
signal in the TBX5 among African Americans (index SNP
rs7955405, beta= 1.16, P= 9.2 × 10−16 in African Americans),
Fig. 2c. This SNP is in high LD with rs6489953 among European
descent individuals (HapMap CEU r2= 0.62), but not among the
population from African descent (HapMap YRI r2= 0.03).
Hence, examination of only the top European descent index
signal would miss the association among African Americans.
Furthermore, interrogation of the TBX5 locus among African

Americans narrows the association block, allowing for fine
mapping of the association signal (Fig. 2c). A second noteworthy
interethnic difference is that there are SNP associations among
those of European descent, for instance, rs1896312 in TBX3,
where despite adequate power, no association could be estab-
lished among African Americans (Fig. 2c).

Our trans-ethnic GWAS meta-analysis of PR interval among
13,415 African Americans and 92,340 European-ancestry indivi-
duals identified five additional novel loci associated with atrial
and atrioventricular conduction (PR interval) (Supplementary
Table 1, Supplementary Fig. 9).

Discussion
Our GWAS meta-analytic study of over 92,000 individuals of
European ancestry identified 44 loci associated with cardiac atrial
and atrioventricular conduction (PR interval). The implicated
genes at these loci show strong enrichment for genes involved in
processes related to cardiac conduction, namely, cardiovascular
system development and, specifically, in development of the
cardiac chamber and bundle of His. Similarly, diseases over-
represented by these genes are processes related to arrhythmias
and heart block, consistent with the current knowledge of the
physiology and epidemiology of cardiac atrial conduction.

Using HapMap17 imputation, we tested over 2.7 million SNPs,
and while we did not directly test all common variants with this
approach, nor did we test low-frequency variants (with minor
allele frequencies below 1%), we identified many index SNPs in
LD with functional variants, either through amino acid changes
or involvement in gene regulation. For most newly identified loci,
we are able to pinpoint a gene that potentially may be causative,
either because the index SNP (or a SNP in high LD with it) is a
missense variant in the gene, or because it regulates the expres-
sion of the gene. Regulation of gene expression can be tissue-
specific, and our findings underscore the importance of exam-
ining eQTL data in tissue types relevant to the trait of interest.

A total of 34 novel loci were identified for PR interval in
Europeans. Several have been identified previously in a related
phenotype or in a different ancestral population, complementing
our findings. Two loci, EFHA1 and LRCH1, were previously
identified for association with the PR segment18. In addition, the
novel locus CAMK2D was found to be associated with P-wave
duration, and MYH6 with P-wave duration and P-wave terminal
force19. The ID2 locus on chromosome 2 was found in a GWAS
on PR interval in Hispanic/Latino population20. A locus that was
identified in two studies in Asian population21, 22, SLC8A1, did
not reach genome-wide significance in our meta-analysis, but was
suggestive with the strongest SNP being rs13026826 (beta for A-
allele: 0.278, P= 1.036 × 10−6).

Contrasting meta-analyzed association results from European
descent individuals with results from a smaller sample of African
Americans, we find that, with few exceptions, a large proportion
of genetic associations with PR interval are shared between the
two ethnic groups. We then combined data from Europeans and
African Americans in a trans-ethnic meta-analysis, allowing us to
find additional loci. With over 105,000 samples in total, our
power was ~80% to find a significant association at common
variants that explain ~0.04% of the variance in PR interval. Future
studies should examine sequence or other data that provide better
assessment of rare and common functional variants, as was done
previously for SCN5A7.

We also combined our results on PR interval with previously
published results on heart rate, QRS duration, and AF, and
identified loci contributing to atrial arrhythmias and cardiac
conduction. We observed significant pleiotropy of effect of these
SNPs, with over half of the SNPs associated with PR interval
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(atrial conduction) in the study also associated with ventricular
conduction (QRS interval), atrial arrhythmias (AF), and heart
rate (RR interval).

Our series of GWAS, including transethnic and cross-trait
meta-analytic studies, has identified 50 loci, 40 of which are novel,
associated with cardiac atrial and atrioventricular electrical
activity among individuals of European and African ancestry.
Understanding the biology of a trait in this way provides insight
into related disease processes and may help identify potential
approaches to drug therapy.

Methods
Meta-analysis of PR interval. We included 32 cohorts comprising 92,340 indi-
viduals. Ethical review boards of the respective cohorts approved the studies and
informed consent was obtained from all subjects. Detailed information on the
participating cohorts is in Supplementary Note 1. Each cohort conducted a GWAS
on PR-interval measured on baseline EKG recordings of healthy individuals.
Subjects were excluded from analysis based on a set of criteria employed by all
participating cohorts, including presence of AF on the baseline EKG, a history of
myocardial infarction or heart failure, extreme PR values (≤80 ms or ≥ 320 ms),
Wolff–Parkinson–White syndrome, pacemaker implantation, the use of class I and
III blocking medications (ATC code prefix C01B) or digoxin, and pregnancy. Age,
sex, height, body mass index, and principal components were included as covari-
ates, as well as study site if applicable. We did not exclude or correct for beta
blocker and/or calcium channel blocker use. As a sensitivity analysis, we further
adjusted for these variables in the largest cohort, ARIC. No appreciable change was
observed in the effect estimates (r > 0.99). Analyses were stratified by ethnicity to
maintain a homogeneous population with similar LD patterns across cohorts. Low-
quality SNPs were removed based on stringent quality control criteria and untyped
SNPs were imputed using HapMap 2 as reference panel prior to the association
analysis.

Summary level data from all cohorts were collected and stringent quality
control was applied to the data, removing SNPs with extreme beta and/or standard
error values, or with poor imputation quality. Per cohort, SNPs with an imputation
quality below 0.1 or above 1.1 were removed, as well as SNPs with a beta or
standard error greater than 1000 or less than −1000. Next, SNPs were removed
based on manual examination of quantile–quantile plots stratified for minor allele
frequency and for imputation quality; SNPs in strata with early departure from the
null were excluded for that specific cohort. Remaining SNPs were meta-analyzed
using an inverse-variance fixed effects model23, correcting for per cohort inflation
factors (lambda). Two cohorts, AGES and deCODE, contained a small percentage
of overlapping samples: approximately 5% based on projections as well as based on
Z-statistics from each study using the program METAL (https://genome.sph.
umich.edu/w/images/7/7b/METAL_sample_overlap_method_2017-11-15.pdf). To
account for this overlap and to adjust for a corresponding inflation of the test
statistic, we separately meta-analyzed AGES and deCODE, corrected for the
corresponding genomic inflation factor (1.089), and included all corrected
association results into the overall meta-analysis.

We conducted the meta-analysis by using three independent analysts and two
different software packages: MANTEL (http://debakker.med.harvard.edu/
resources.html) and METAL (http://www.sph.umich.edu/csg/abecasis/metal/). All
results were extremely concordant, reflecting a robust analysis. In total, 2,712,613
SNPs were tested for association with PR interval. Results were considered
statistically significant at a P= 5 × 10−8, a figure that reflects the estimated testing
burden of one million independent SNPs in samples of European ancestry24.
Regions harboring association signals were visualized using SNAP25.

GWiS. To identify non-redundant association signals within each locus and cal-
culate the variance explained, we implemented the GWiS method, which aggregates
the statistical support for multiple independent effects at a locus using a reference
LD matrix6. A locus is defined as the genomic region flanked by the 5′ and 3′ most
genome-wide significant signal, plus 100 KB of flanking sequence on each end. For
each locus, GWiS uses Bayesian model selection to find the number of independent
effects and the SNPs that best tag them, choosing the SNPs that maximize the
posterior probability in a greedy search. In each step, the SNP that gives the
greatest increase in the posterior probability is added into the model, and this step
is repeated until no more SNPs increase the posterior probability.

The SNPs selected by the Bayesian model selection are then used in a
multivariate linear regression to calculate the variance explained. We modified the
original implementation of GWiS to use the meta-analysis results as input26.

GWiS was applied to the GWAS meta-analysis, making use of pairwise SNP r2

estimates from the ARIC study. GWiS estimated 61 non-redundant signals of
association at the 40 genome-wide significant loci (Supplementary Data 4).

Gene selection, gene enrichment, clinical relevance. Although extensive LD
among common variants and the incompleteness of the HapMap reference panel
preclude an unambiguous identification of the functional variant or the culprit

gene, we used the following criteria to implicate genes in 37 of the 44 loci: (1) the
gene selected was the only nearby gene (within a ±500 kb window); (2) the gene
selected has a missense variant in high LD (r2 > 0.8) with the index SNP; or (3) the
index SNP was associated with cardiac transcript expression levels of the selected
gene.

We performed over-representation enrichment analysis on PR genes relative to
the entire human genome by leveraging several human disease knowledge bases
including PharmGKB (~3500 disorders, www.pharmgkb.org), Human Phenotype
Ontology (~4000 common diseases, http://human-phenotype-ontology.github.io/),
and DisGeNET (http://www.disgenet.org). The analysis used the program
WebGestalt (www.webgestalt.org), which computed over-representation P-values
based on hypergeometric distributions27. To further increase our confidence in
gene set analysis, we also applied gene set enrichment analysis (GSEA) to the entire
GWAS gene list rank ordered based on their association P-values. We used the
latest GO dataset available at the Molecular Signatures Database (v6.1). We
performed 1000 random permutations and used an FDR < 0.01 threshold to
identify enriched GO categories. The highly enriched GO annotations identified
using the parametric approach were also significant based on the permutation
method, and we report only GO categories that were significantly enriched at FDR
< 0.01 common to both the parametric and nonparametric procedures.

Multiple hypothesis testing was addressed using Benjamini–Hochberg’s FDR
adjustment of the enrichment P-values, and an FDR threshold < 0.01 was used to
designate significantly over-represented disease states. We applied the same
approach using WebGestalt to identify enriched functional categories (FDR < 0.01)
based on Gene Ontology annotations of molecular function, cellular component,
and biologic process28.

Functional variants in significant loci. We annotated the 61 index SNPs and
nearby SNPs in LD with the index SNPs (within 1Mb and with r2 > 0.8 in 1000
Genomes Phase 1 CEU) and tested all non-synonymous SNPs with PolyPhen-210

and SIFT9 to predict the functional implication.
We performed an eQTL analysis using the 61 PR index SNPs. We examined

eQTL associations from LAA and validated findings in tissue from right atrial
appendage (RAA). For comparison, we also evaluated left ventricular tissue as well
as peripheral whole blood.

Human LAA tissue was obtained with consent from 223 European-American
patients undergoing cardiac surgery for treatment of AF, valvular, and/or coronary
artery disease. Use of discarded surgical tissue was approved by the Institutional
Review Board of the Cleveland Clinic. Before 2008, verbal consent was obtained
and documented in the medical records in a process approved by the Cleveland
Clinic Institutional Review Board. From 2008 onward, patients provided separate
Institutional Review Board-approved written informed consent. AF history, type of
AF, and other clinical data were collected in a research database. LAA tissue was
also obtained from 12 non-failing donor hearts not used for transplant with written
consent for research use provided by the family. Donor information included age,
race, and sex. The Cleveland Clinic Institutional Review Board approved the tissue
studies included in this report. Demographic characteristics of the study population
have been summarized Table 1, “subjects of European descent” column29.

LAA specimens were snap frozen in liquid nitrogen and stored at −80 °C. Total
RNA was extracted 50–100 mg tissue using the Trizol protocol. Tissue was
homogenized with sterile Omni Tip Disposable Generator Probes (Omni
International). RNA processing and sequencing and DNA genotyping have been
described29. Library generation for RNAseq was done at the University of Chicago
Genomics Facility using standard Illumina protocols. Samples were filtered based
on RNA quality. Unstranded 100-bp paired-end sequencing was performed on the
Illumina HiSeq 2000 platform and multiplexed to six samples across two lanes.
Samples were demultiplexed and aligned to hg19 using TopHat (v2.0.4)11 with the
default options. Reads from exactly matched PCR duplicates were marked using
Picard tools (https://broadinstitute.github.io/picard/) and excluded from further
analysis. Sequence reads were mapped to the human genome to derive a digital
count of the expression of genes, which were defined using the Ensembl (version
71) gene catalog.

DNA was extracted from 25–50 mg homogenized LAA tissue (as above) using
the DNAzol protocol. DNA was genotyped using Illumina Hap550v3 and Hap610-
quad SNP microarrays. SNP data were imputed to 1000 Genomes Project phase 2
yielding ≈19 million SNPs, using IMPUTE10 after filtering out variants falling
below 0.5 on IMPUTE’s information statistic. For the eQTL analysis, we excluded
SNPs with <5% minor allele frequency, resulting in roughly 6.8 million SNPs.

Methods for LAA eQTL analysis have been described29. Expression counts were
obtained from aligned files using htseq counts against the human Ensembl gene
annotation. On average, 26 million paired-end read fragments aligned to this
annotation of the transcriptome across all of our samples. Reads were quantile-
normalized, and gene counts for eQTL analysis were variance-stabilized
transformed using the R package Deseq2. Expression of each gene was adjusted by
the following covariates: sex, genetic substructure based on four multidimensional
scaling factors, and 25 expression surrogate variable analysis (SVA) covariates. The
SVA method is similar to principal component analysis, which uses unsupervised
mathematical models to separate out the high variance components in high
dimensional data. Thus, without manual normalization, the SVA method corrects
for potential large effectors of gene expression such as read-depth, batch effects,
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and other technical variables, as well as environmental and disease effects such as
AF status, history of structural heart disease, coronary artery disease, etc. Surrogate
variables were calculated from the variance-stabilizing transformation data using
the sva package. eQTL analyses were performed using MatrixeQTL (2.1.0) to test
associations between genotype and variance-stabilizing transformation counts. β-
coefficients were calculated as the additive effect of 1 allelic difference on log2 gene
expression. The QVALUE package was used to estimate FDR from the complete
list of cis-eQTL SNP/genome-wide expressed gene pairs P values. Linear regression
and Q–Q plot comparison of the LAA eQTLs with selected tissues were performed
using the version 6p analysis of GTEx project.

We also performed eQTL associations in 5311 samples from peripheral blood.
Those methods have also been described previously30. In brief, Illumina Gene
expression data for each dataset was obtained and sequences mapped against the
human genome build 36 (Ensembl build 54, Hg18). Highly stringent alignment
criteria were used to ensure that probes map unequivocally to one single genomic
position. Genotype data was acquired using different genotyping platforms, and
harmonized by imputation (HapMap2 CEU).

Gene expression data was quantile-normalized to the median distribution, and
subsequently log2 transformed. The probe and sample means were centered to zero.
Gene expression data was then corrected for possible population structure by
removal of four multi-dimensional scaling components using linear regression.

After normalization of the data, we performed cis-eQTL mapping. eQTLs were
deemed cis-eQTLs when the distance between the SNP chromosomal position and
the probe midpoint was less than 250 kilobases (kb). eQTLs were mapped using a
Spearman’s rank correlation on the imputed genotype dosage values. We used a
weighted Z-method for subsequent meta-analysis. We permuted the sample
identifiers labels of the expression data and repeated this analysis ten times. In each
permutation, the sample labels were permuted. We then corrected for multiple
testing by controlling the FDR at 0.05, by testing each P-value in the real data
against a null-distribution created from the permuted datasets.

Significant associations from LAA eQTL analyses were replicated using pre-
calculated eQTLs from GTEx. We accessed full single tissue cis-eQTL analyses for
left ventricle, RAA, and whole blood from GTEx v7, accessed on 22nd March,
2018. Samples with genotype and expression data for eQTL analyses were n= 272,
n= 264, and n= 369, for left ventricle, RAA, and whole blood, respectively.

For each of the 61 nonredundant SNPs in the 44 independent loci, we identified
the probes/genes for which there was a cis-eQTL association. We also identified the
most significant SNP (eSNP) associated with that gene. Frequently, the eSNP and
our SNP of interest were in high or near perfect LD and represented the same
signal (see Supplementary Figures 2 and 4 for example of MEIS1 demonstrating
strong co-localization).

Our aim for identifying co-localizing genetic variants that jointly affect both
molecular expression and the PR phenotype is to provide intuition regarding the
candidate gene that may play a role in atrioventricular conduction. In any given
locus, we identify a candidate gene from eQTL data if it meets the following three
criteria: (1) the SNP–transcript association in LAA is significant at a threshold of
genome-wide q < 0.05; (2) there is evidence of co-localization in that the PR-GWAS
index SNP and the top LAA SNP are in high LD (>0.90) OR there is evidence that
the association remains significant in conditional analysis examining the PR-
GWAS index SNP adjusted for the top LAA SNP (P < 0.01); and (3) the findings
from the LAA replicate (P < 0.05) in GTEx data from the RAA. It is important to
note that our replication tissue from GTEx is RAA whereas our discovery tissue is
LAA. While we only claim as candidate genes those that replicate, differences in
eQTL associations between LAA and RAA are nonetheless interesting and noted in
Supplementary Data 6.

At successively more stringent P-value thresholds, SNPs were evaluated for
enrichment in tissue-specific DNAse I hypersensitive sites. SNPs from each PR
association P-value bin were intersected with the complete set of DHS false
discovery 5% hotspot regions identified in any of the 349 tissue or cell line samples
available from Maurano et al.31. Intersections between GWAS SNPs and DHS
regions were computed using the BEDOPS32 software. Fold enrichment was
calculated by comparing the proportion of SNPs within each P-value bin to the
background rate of all GWAS variants falling within the DHS sites for each tissue
separately.

Transethnic analyses. To search for additional loci involved in PR interval, results
of a published GWAS on PR interval in African Americans33 were combined with
our GWAS meta-analysis results in Europeans using inverse variance weighted
fixed-effect models, correcting for the inflation factor of both cohorts. New loci
were called if they reached statistical significance at a P ≤ 5 × 10−8, and if this locus
was not significantly associated with PR interval in Europeans or African Amer-
icans separately (i.e., if none of the SNPs within one Megabase of the tested SNP
reached P ≤ 5 × 10−8 in any of the population). SNP look-ups of index SNPs in
Europeans were performed in African American GWAS results, to test for over-
lapping signals in both ethnicities that were not observed in African Americans
because of the relatively low sample size (n= 13,415).

Cross-trait meta-analyses. For the joint analysis of PR and AF, beta estimates and
standard errors were used to generate z-scores (beta/se), which were then com-
bined as (zPR+ zAF)/sqrt(2) to identify genetic variants that both increase PR

interval and risk for AF, and as (zPR−zAF)/sqrt(2) to identify genetic variants that
increase PR interval, but decrease the risk for AF. Genome-wide significance was
set at 8.3 × 10−9, to account for the six tests performed across the three traits that
were meta-analyzed with PR interval. Only loci that did not contain variants
genome-wide significant separately for PR or AF were concerned novel.

To search for additional loci involved in atrial and ventricular cardiac
conduction, we meta-analyzed our PR interval GWAS results with previously
published QRS duration8 and RR interval11 results, respectively. We used sample
size (z-score) weighted models[34] to identify variants that increase both PR
interval and the second trait tested (either QRS duration or RR interval) and
variants that increase PR interval but decrease risk for the second trait.

Genomic inflation factor lambda was 1.02 for concordant PR–QRS, 0.98 for
discordant PR–QRS, 1.01 for concordant PR–RR, and 0.98 for discordant PR–RR.
Therefore, we did not correct for these lambdas, even though the meta-analyses
contain overlapping samples.

New loci were called if they reached statistical significance at a P ≤ 8.3 × 10−9,
and if this locus was not significantly associated with PR interval nor with the
second trait tested. SNP look-ups of index SNPs in PR interval were performed in
QRS duration and RR interval, and also the other way around (QRS duration and
RR interval index SNPs in PR interval) to test for overlapping signals.

Association with pacemaker implantation. Association with pacemaker
implantation was determined in the UKBiobank data for the 61 SNPs indepen-
dently associated with PR interval. Samples were limited to unrelated whites of
British ancestry (~370,000 samples), of whom 1074 had a pacemaker implanted. A
logistic regression model was run, including covariates for age, sex, and 40 PCs to
account for potential population substructure or other potential confounding.
Inverse variance weights (IVW) Mendelian randomization was performed using
the “MendelianRandomization” package in R. Results were consistent with those
produced by MR-EGGER and MR-Median regression.

Data availability. The full meta-analysis results are available for download through
the CHARGE repository in dbGaP: http://www.chargeconsortium.com/main/
results
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