<u>±</u>

1	Lipopolysaccharide-induced VEGF production and ambient oxidative stress in type 2			
2	diabetes			
3				
4	Short Title: VEGF production and ethnicity in type 2 diabetes			
5	Kenneth Anthony Earle ^{1, 2} , Karima Zitouni ³ , Jaffar Nourooz-Zadeh ⁴			
6	¹ Royal Free & University College London Medical School, Department of Medicine, London,			
7	United Kingdom			
8	² Thomas Addison Unit, St George's University Hospitals NHS Foundation Trust, London, UK			
9	³ Infection and Immunity Institute, St Georges University of London, United Kingdom			
10	⁴ Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical			
11	Sciences, Iran			
12				
13	Keywords: Kidney disease, lipid hydroperoxides, α -Tocopherol, cell culture, ethnicity			
14	Corresponding author:			
15	Dr Kenneth Anthony Earle			
16	St George' Hospital NHS Trust, Thomas Addison Diabetes Centre			
17	Lanesborough Wing. London SW17 ORE			
18	E mail: k.earle@sgul.ac.uk Tel: 020 8725 3499			

- 19 _Name and address of person to whom reprint requests should be addressed:-
- 20 Dr Kenneth Anthony Earle
- 21 St George's University Hospital NHS Foundation Trust
- 22 Thomas Addison Diabetes Centre
- 23 Lanesborough Wing.
- 24 London SW17 ORE
- 25 ____ Any grants or fellowships supporting the writing of the paper.
- Sir Jules Thorn Charitable Trust
- St George's Hospital NHS Trust Charity fund (AONS)
- 28 ____ Disclosure summary.
- 29 The authors have nothing to disclose.

30 Abstract

31 Context

32	Oxidative stress is implicated in the development of microvascular disease and is associated with
33	an upregulation of vascular endothelial growth factor (VEGF) which is pathogenetically linked
34	to microvascular complications of diabetes. Patients of African origin have an increased
35	susceptibility to microvascular kidney disease compared with Caucasians, the reasons and the
36	mechanisms that contributes to this vulnerability are unclear.
37	Objectives
37 38	Objectives Primary) Investigate whether there are ethnic differences in Lipopolysaccharide induced
38	Primary) Investigate whether there are ethnic differences in Lipopolysaccharide induced

42 **Design and Setting**

- 43 Cross sectional study at a secondary care centre in North London, UK, serving an inner-city
- 44 community of 154,000 adults.

45 **Patients**

46 African-Caribbean and Caucasian patients with type 2 diabetes (n=52)

47

49 **Results**

Lipopolysaccharide induced production of VEGF in whole blood cultures (61.8[31.9] pg/mL to 78.4[36.0] pg/mL; p<0.001) that correlated positively with LOOH levels (r=0.3, P=0.04) and was significantly higher in African-Caribbean than Caucasian type 2 diabetes patients (404 [207.5] vs 268.8 [137.0] pg/mL X10⁹/L monocytes; P=0.018). Plasma α-Tocopherol concentration was higher in Caucasian patients (40.3[18.3] vs 30.0[9.6] μ mol/L; p=0.04) compared to African-Caribbeans.

56 **Conclusions:**

57 This study suggests that the redox environment influences VEGF production in response to 58 proinflammatory stimuli in type 2 diabetes. The differential responsiveness by ethnic origin may 59 be of relevance in the variations in susceptibility to the long-term microvascular complications. 60

62 Introduction

Diabetes mellitus affects more than 415 million individuals worldwide (1), the most common form is type 2 diabetes, that is characterized by persistent hyperglycaemia, the degree and the duration of which are well established as central in the development of vascular complications including diabetic kidney disease. This complication has a predilection for patients of African descent compared with Caucasian origin and is the leading cause of end stage renal disease (ESRD) (2). The incidence of ESRD related diabetes is four to six times higher in patients of African descent compared to Caucasians (3).

70

It is understood that hyperglycaemia gives rise to the accumulation of advanced glycation end product proteins and reactive oxygen species which, together with their deficient disposal causes a metabolic imbalance known as oxidative stress (4, 5). In diabetic conditions, lipid hydroperoxide levels and histological damage of increased oxidative stress is increased in the kidney of animal models and can be reduced by antioxidant therapy (6, 7). The mechanisms related to free radical exposure that gives rise to tissue damage involves induction of pro-inflammatory pathways and cytokine release (8, 9).

78

Reactive oxygen species upregulate vascular endothelial growth factor (VEGF) expression in
various cell types, such as endothelial cells, smooth muscle cells, and macrophages (10, 11).
Hohenstein et al (2006) reported increased VEGF expression by many different cell types in
diabetic glomeruli compared to controls (12). VEGF increases the transcapillary leak of albumin

and therefore may contribute to microvascular disease. However, it is unknown if this mechanism
is relevant to the enhanced risk of nephropathy seen in certain sub-groups of patients with diabetes.

85

Meta-analysis studies showed that VEGF genetic polymorphisms are associated with increased 86 87 risk of diabetic nephropathy in Asian and Caucasian patients (13, 14). We have previously reported 88 ethnic differences in VEGF +405 polymorphism in patients with diabetes which has been shown to influence circulating levels of the cytokine (15). However, a genome-wide analysis has not 89 shown consistent relationships between VEGF polymorphisms and circulating protein in different 90 populations suggesting that other non-heritable, modulating factors contribute to differences in 91 circulating levels (16). We reported increased oxidative stress in African-Caribbean patients with 92 93 type 2 diabetes compared to Caucasian patients as assessed by lipid peroxidation product, antioxidant nutrients and antioxidant enzyme activities (17-19). The reasons for this observation 94 or the mechanisms that could account for these differences are unclear. Therefore, we investigated 95 96 the relationship of markers of oxidative stress and VEGF production in patients with type 2 diabetes from different ethnic backgrounds. 97

98 Methods

We studied 52 patients with type 2 diabetes who were part of the Prospective Evaluation of Early
Nephropathy and its Treatment (PREVENT) study. Patients were considered to be of AfricanCaribbean (AC) origin if both parents were native to either African or Caribbean countries.
Caucasian (CA) white patients were native of Western European or Mediterranean countries.

103

104	Individuals with a history of cardiovascular disease defined as having a clinical record of ischaemic
105	heart disease (angina, myocardial infarction, coronary artery revascularization and or heart
106	failure), peripheral vascular disease (intermittent claudication or peripheral artery
107	revascularization) or cerebrovascular disease (transient ischaemic episodes or stroke), a history of
108	malignancy or any other life threatening illness, current pregnancy, clinical proteinuria
109	(albumin:creatinine ratio [ACR] >30 mg/mmol) or inter-current illness were excluded.
110	Microalbuminuria was diagnosed if ACR was \geq 3 and $<$ 30mg/mmol in at least 2 of 3 sterile, early
111	morning urine samples. Therapeutic regimens for hypertension and glucose lowering, and smoking
112	history (as either current/ex-smoker or non-smoker) were recorded. The study was approved by
113	the ethics committee of the Whittington Hospital Trust and all patients provided written, informed
114	consent.

115

Patients were studied in the post-prandial state after 12 hour fast. Body mass index (BMI) was calculated from weight in kg divided by height in m². Sitting blood pressure was measured after 10 minutes rest using a validated automated machine (OMRON 705HEM CP; OMRON Healthcare, West Sussex, U.K.) using an appropriate cuff size. Venous blood was taken from an

120	antecubital vein. Glycosylated haemoglobin A1c (HbA1c) was measured by a high-performance
121	liquid chromatography system (Menarini 8140; Menarini Diagnostics, Wokingham, U.K.). Total
122	cholesterol and total triglycerides were estimated using enzymatic methods (Boehringer-
123	Mannheim, Mannheim, Germany). Low density lipoprotein-cholesterol was calculated using the
124	formula 3/4 (Total cholesterol - HDL-cholesterol) mmol/l described by de Cordova (20). Urinary
125	albumin and creatinine were measured by immunoturbidimetry (Cobas Fara, Roche Diagnostics,
126	Lewes, UK) and the Jaffe rate reaction methods, respectively.

127

Plasma lipid hydroperoxide (LOOH) concentrations (range in non-diabetic subjects: 0.22-6.22 µmol/L) was measured by ferrous oxidation-xylenol orange (FOX-2) assay in conjunction with triphenylphosphine method (21). The inter- and intra-assay coefficients of variation (CV) of the FOX-2 assay are <5 and <6%, respectively. Plasma α -tocopherol concentrations was measured by HPLC as previously described (17) and corrected for lipid profile with inter- and intra-assay coefficients of variation of 3%. Total monocyte and platelet counts were measured in whole venous blood (Advia 120, Bayer, Basingstoke, UK).

135

136 Cell culture

To measure cytokine production, whole blood cell cultures were incubated in triplicates with or without lipopolysaccharide (LPS) (25mg/mL) to activate monocytes (22). The inter- and intraassay CVs for VEGF are 6 and 8% respectively. Concentration of the main circulating 165 amino acid VEGF-A isoform in culture supernatants was determined using an enzyme-linked immunosorbent assay (ELISA) kit, according to the manufacturer's protocol (R&D Systems Ltd,
Abingdon, UK).

143

144 Statistics

Analyses were performed using Stata 14.2 (Stata Corp, Texas, USA). Continuous variables were 145 146 compared using parametric or non-parametric tests according to their distribution. Categorical variables were compared using the Chi-squared or Fishers exact tests. Variables with skewed 147 148 distribution were log transformed before analyses. At an alpha of 0.05, the study had 98% power to detect a 16 pg/ml increase in LPS-stimulated VEGF. The multivariate model was based upon 149 150 inputting those variables that were significantly different between the groups and/or of biological 151 relevance to VEGF release. All tests were 2-tailed and a p value <0.05 was accepted as being 152 statistically significant.

153

154

155 **Results**

The African-Caribbean and Caucasian groups had similar chronological age, body mass index, systolic and diastolic blood pressure, fasting plasma glucose, glycated haemoglobin and cholesterols, and prevalence of retinopathy and microalbuminuria. There were more males in the African- Caribbean group and they tended to have a longer duration of diabetes in comparison to the Caucasian cohort. Whilst the latter were more likely to have a positive smoking history, higher triglyceride concentrations, monocyte and platelet counts (Table 1). There were no statistically significant differences in the proportions of patients in the African-Caribbean and Caucasian groups that were prescribed oral hypoglycaemic agents (Metformin and/or Sulphonylureas) or Insulin (48 vs 53 or 36 vs 25%;p=0.713) for blood glucose management, angiotensin converting enzyme inhibitors or angiotensin 2 receptor antagonists to lower blood pressure (44 vs 50%;p=0.896) or HMG Co-A reductase inhibitors to lower cholesterol (43 vs 56%;p=1.00).

167

Lipopolysaccharide significantly increased VEGF concentrations from 61.8[31.9] pg/mL to 168 78.4[36.0] pg/mL; p<0.001. Plasma LOOH and LPS stimulated VEGF release corrected for 169 170 monocyte count was significantly higher in African-Caribbean patients than Caucasian patients (Figure 1). Plasma LOOH correlated with VEGF concentration (rho=0.3; p=0.04). Plasma α-171 172 Tocopherol concentration was higher in a subset of a group (n=19) of the Caucasian patients (40.3[18.3] vs 30.0[9.6] µmol/L; p=0.04) compared with group of African-Caribbean patients 173 (n=15). In multivariate analysis, current and previous history of smoking, female gender, 174 Caucasian ethnicity (with marginal significance) and age all had negative β coefficients. In this 175 model, plasma LOOH remained the only statistically significant independent predictor (Table 2). 176

177

178 Discussion

Our study has found that in patients with type 2 diabetes mellitus, the production of VEGF from LPS stimulated whole blood cell cultures is higher and proportional to biochemical evidence of greater exposure to oxidative stress in patients of African-Caribbean compared with Caucasian origin. These findings are consistent with *in vitro* studies showing the induction of VEGF by LPS in monocytes and its upregulation by superoxide radical generating systems in a time and dose-dependent manner (23).

186	A circulating, cellular source of VEGF most notably, appears to have an important role in the
187	reparation of ischaemic tissues. In animal models of myocardial ischaemia, restoration of blood
188	flow and preservation of function is associated with VEGF protein production and VEGF receptor
189	gene expression (24, 25). Studies in humans with myocardial infarction have shown that
190	circulating VEGF is elevated and the VEGF gene upregulated during the acute phase of injury in
191	both arterial smooth muscle cells and infiltrating macrophages (26, 27). Furthermore, after acute
192	cerebral infarction elevation of circulating VEGF occurs in relation to the size of the lesion and
193	the associated leucocytes (28). Leucocytes, which can be less populous in people of African origin,
194	have the same relationship with low-grade inflammation and cardio-metabolic risk seen in other
195	ethnic groups with higher counts (29). However, the differences in VEGF response we observed
196	suggests that monocyte function may be modified by the higher levels of glucose-induced
197	oxidative stress that occurs in the patients of African-Caribbean origin.

205 urinary albumin excretion. Albuminuria in turn mediates release of other proinflammatory cytokines (35). In the evolution of diabetic nephropathy, monocytic infiltration is a feature of the 206 development of tubulo-interstitial lesions. Therefore, oxidative stress induced VEGF could 207 208 participate in the cascade of albuminuria, upregulation of chemoattractant molecules, increased monocyte attraction and trafficking of proinflammatory molecules and fibrogenic cytokines such 209 as transforming growth factor β 1 within the kidney. In a streptozotocin murine model of diabetes, 210 increased podocyte VEGF signalling has been shown to significantly worsen the characteristic 211 histological features of nephropathy (36). Lee at al reported that in cultured murine podocytes, 212 glucose-dependent increases in oxidative stress and VEGF could be completely ameliorated by 213 different antioxidants (37). Moreover, it has been reported that the renal changes associated with 214 the db/db model of diabetes could be abrogated by neutralising anti-VEGF antibody (38). In 215 addition, VEGF receptor tyrosine kinase inhibitor (SU5416) reduced albuminuria in type 2 216 diabetes db/db mouse model (39), supporting the involvement and interplay of increased oxidative 217 stress with VEGF in the pathogenesis of diabetic nephropathy. An association between high 218 219 circulating levels of VEGF and the oxidative effects of ferritin suggests that both have a role in the development of complications in patients with diabetes (40). Also, a recently described 220 association between advanced chronic kidney disease and VEGF implies that it may also have a 221 role in renal disease progression (41). 222

223

In our study, it would appear that oxidative stress that determined the VEGF response to the inflammatory stimulus may be a proxy for ethnic origin. **Exposure to hyperglycaemia though is a possible explanation of the differences in redox status between the groups (42). Duration of diabetes was significantly longer in univariate analysis in the African-Caribbean group**

228	which however, failed to reach statistical significance as independent predictor in
229	multivariate analysis. Dietary factors could be relevant and it is notable that a survey from
230	the United States suggests that 40% of minority ethnic groups with diabetes have a deficient
231	micronutrient intake including vitamin E (43). A limitation of our study was that we did not collect
232	dietary details from our cohort so we were not able to determine whether the differences in
233	oxidative stress between the groups were related to the intake of vitamin E. In summary, we show
234	that a variation in VEGF production by activated, pro-inflammatory cells is related to ambient
235	oxidative stress. Infiltrating monocytes contribute to renal disease and these findings may have
236	relevance to differing susceptibility to ESRD. Further clinical studies are required to examine the
237	role of circulating monocyte VEGF production in the renal complications of diabetes.
238	
239	Author Contributions.
240•	Designed research: KAE
241•	Performed research: KAE, KZ, JNZ
242•	Data analysis: KAE
243•	Manuscript preparation, writing and editing: KAE, KZ, JNZ
244	
245	Acknowledgement
246	• We would like to thank the Sir Jules Thorn Charitable Trust and St George's Hospital NHS
247	Trust Charity fund (AONS) whose funding made possible the measurement of vascular
248	endothelial growth factor.

• We would like to thank Drs Mehrotra and Zachariah for their role in patient recruitment.

250 **References**

	251	1.	International	Diabetes	Federation	, 2015
--	-----	----	---------------	----------	------------	--------

- 252 2. Babayev R, WhalyConnell A, Kshirsagar A, Klemmer P, Navaneethan S, Chen SC, Li S,
- 253 McCulloough PA, Bakris G, Bomback A. KEEP Investigators. Association of race and body
- mass index with ESRD and mortality in CKD stages 3–4; results from the Kidney Early
 Evaluation Program (KEEP). Am J Kidney Dis. 2013; 61(3):404–12.
- 3. Norris KC, Agodoa LY. Unraveling the racial disparities associated with kidney disease.
 Kidney Int. 2005; 68(3):914-24.
- Haffner SM. Clinical relevance of the oxidative stress concept. Metabolism. 2000; 49(2 Suppl 1):30-4.
- 5. Testa R, Bonfigli AR, Prattichizzo F, Sala LL, De Nigris V, Ceriello A. The "Metabolic
 Memory" Theory and the Early Treatment of Hyperglycemia in Prevention of Diabetic
 Complications. Nutrients. 2017; 9(5): E437.
- 6. Horie K, Miyata T, Maeda K, Miyata S, Sugiyama S, Sakai H, van Ypersole de Strihou C,
 Monnier VM, Witztum JL, Kurokawa K. Immunohistochemical colocalization of
 glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions.
- 266 Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J Clin Invest.
- 267 1997; 15; 100(12):2995-3004.
- 268 7. Lal MA, Körner A, Matsuo Y, Zelenin S, Cheng SX, Jaremko G, DiBona GF, Eklöf AC,
- 269 Aperia A. Combined antioxidant and COMT inhibitor treatment reverses renal abnormalities
- in diabetic rats. Diabetes. 2000; 49(8):1381-9.

271	8.	Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling
272		pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003; 52(1):1-
273		8.
274	9.	Sato W, Kosugi T, Zhang L, Roncal CA, Heinig M, Campbell-Thompson M, Yuzawa Y,
275		Atkinson MA, Grant MB, Croker BP, Nakagawa T. The pivotal role of VEGF on glomerular
276		macrophage infiltration in advanced diabetic nephropathy. Lab Invest. 2008; 88(9):949-61.
277	10.	Kim YW, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood. 2014;
278		123(5):625-31.
279	11.	Wang Y, Zang QS, Liu Z, Wu Q, Maass D, Dulan G, Shaul PW, Melito L, Frantz DE, Kilgore
280		JA, Williams NS, Terada LS, Nwariaku FE. Regulation of VEGF-induced endothelial cell
281		migration by mitochondrial reactive oxygen species. Am J Physiol Cell Physiol. 2011;
282		301(3):C695-704.
283	12.	Hohenstein B, Hausknecht B, Boehmer K, Riess R, Brekken RA, Hugo CP. Local VEGF
284		activity but not VEGF expression is tightly regulated during diabetic nephropathy in man.
285		Kidney Int. 2006; 69(9):1654-61.
286	13.	Mooyaart AL, Valk EJ, van Es LA, et al. Genetic associations in diabetic nephropathy: a
287		meta-analysis. Diabetologia 2011; 54: 544–553.
288	14.	Sun L, Yuan Q, Cao N, Guo W, Yao L, Feng JM, Ma JF, Wang LN. VEGF genetic
289		polymorphisms may contribute to the risk of diabetic nephropathy in patients with diabetes
290		mellitus: a meta-analysis. ScientificWorld Journal. 2014;624573
291	15.	Zitouni K, Tinworth L, Earle KA. Ethnic differences in the +405 and -460 vascular
292		endothelial growth factor polymorphisms and peripheral neuropathy in patients with diabetes

- residing in a North London, community in the United Kingdom. BMC Neurol.
 2017;17(1):125
- 295 16. Ruggiero D, Dalmasso C, Nutile T, Sorice R, Dionisi L, Aversano M, Bröet P, Leutenegger
- 296 A-L, Bourgain C, Ciullo M. Genetics of VEGF Serum Variation in Human Isolated
- 297 Populations of Cilento: Importance of VEGF Polymorphisms. PLOS One 2011;6:e16982
- 17. Mehrotra S, Ling KL, Bekele Y, Gerbino E, Earle KA. Lipid hydroperoxide and markers of
 renal disease susceptibility in African-Caribbean and Caucasian patients with Type 2 diabetes
 mellitus. Diabet Med. 2001; 18(2):109-15.
- 18. Zitouni K, Harry DD, Nourooz-Zadeh J, Betteridge DJ, Earle KA. Circulating vitamin E,
- transforming growth factor beta1, and the association with renal disease susceptibility in two
 racial groups with type 2 diabetes. Kidney Int. 2005;67(5):1993-8
- 19. Zitouni K, Nourooz-Zadeh J, Harry D, Kerry SM, Betteridge DJ, Cappuccio FP, Earle KA.
- Race-specific differences in antioxidant enzyme activity in patients with type 2 diabetes: a potential association with the risk of developing nephropathy. Diabetes Care. 2005; 28(7):1698-703.
- 308 20. de Cordova CMM and de Cordova MM. A new accurate, simple formula for LDL-cholesterol
- 309 estimation based on directly measured blood lipids from a large cohort. Ann Clin Biochem
- 310 2013; 50: 13–19
- Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP. Measurement of plasma hydroperoxide
 concentrations by the ferrous oxidation-xylenol orange assay in conjunction with
 triphenylphosphine. Anal Biochem. 1994; 220(2):403-9.

314	22. Filella X, Bladé J, Montoto S, Molina R, Coca F, Montserrat E, Ballesta AM. Impaired
315	production of interleukin 6 and tumour necrosis factor alpha in whole blood cell cultures of
316	patients with multiple myeloma. Cytokine. 1998; 10:993-996.

- 23. Pérez-Ruiz M, Ros J, Morales-Ruiz M, Navasa M, Colmenero J, Ruiz-del-Arbol L, Cejudo
- P, Clária J, Rivera F, Arroyo V, Rodés J, Jiménez W. Vascular endothelial growth factor
 production in peritoneal macrophages of cirrhotic patients: regulation by cytokines and
 bacterial lipopolysaccharide. Hepatology. 1999; 1057-1063.
- 24. Luo Z, Diaco M, Murohara T, Ferrara N, Isner JM, Symes JF. Vascular endothelial growth
 factor attenuates myocardial ischemia-reperfusion injury. Ann Thorac Surg. 1997;
 64(4):993-8.
- 25. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF, flk-1, and flt1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol. 1996;
 270(5 Pt 2):H1803-11
- 26. Kawamoto A, Kawata H, Akai Y, Katsuyama Y, Takase E, Sasaki Y, Tsujimura S,
 Sakaguchi Y, Iwano M, Fujimoto S, Hashimoto T, Dohi K. Serum levels of VEGF and basic

FGF in the subacute phase of myocardial infarction. Int J Cardiol. 1998; 67(1):47-54.

- 330 27. Shinohara K, Shinohara T, Mochizuki N, Mochizuki Y, Sawa H, Kohya T, Fujita M,
- Fujioka Y, Kitabatake A, Nagashima K. Expression of vascular endothelial growth factor
 in human myocardial infarction. Heart Vessels. 1996; 11(3):113-22.
- 28. Slevin M, Krupinski J, Slowik A, Kumar P, Szczudlik A, Gaffney J. Serial measurement of
 vascular endothelial growth factor and transforming growth factor-beta1 in serum of
 patients with acute ischemic stroke. Stroke. 2000; 31(8):1863-70.

336	29. Boucher AA, Edeoga C, Ebenibo S, Wan J, Dagogo-Jack S. Leukocyte count and
337	cardiometabolic risk among healthy participants with parental type 2 diabetes: the
338	Pathobiology of Prediabetes in a Biracial Cohort study. Ethn Dis. 2012;22(4):445-50
339	30. Jaipersad AS, Lip GYH, Siverman S, Shantsila E. The role of monocytes in angiogenesis
340	and atherosclerosis. J AM Coll Cardiol 2014;63:1-11.
341	31. Adamis AP, Shima DT, Yeo KT, Yeo TK, Brown LF, Berse B, D'Amore PA, Folkman J.
342	Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor
343	by human retinal pigment epithelial cells. Biochem Biophys Res Commun. 1993;
344	193(2):631-8.
345	32. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H,
346	Iwamoto MA, Park JE, et al. Vascular endothelial growth factor in ocular fluid of patients
347	with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994; 331(22):1480-7.
348	33. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA. Hypoxic regulation of vascular
349	endothelial growth factor in retinal cells. Arch Ophthalmol. 1995; 113(12):1538-44.
350	34. Santilli F, Spagnoli A, Mohn A, Tumini S, Verrotti A, Cipollone F, Mezzetti A, Chiarelli
351	F. Increased vascular endothelial growth factor serum concentrations may help to identify
352	patients with onset of type 1 diabetes during childhood at risk for developing persistent
353	microalbuminuria. J Clin Endocrinol Metab. 2001; 86(8):3871-6
354	35. Wang Y, Rangan GK, Tay YC, Wang Y, Harris DC. Induction of monocyte chemoattractant
355	protein-1 by albumin is mediated by nuclear factor kappaB in proximal tubule cells. J Am
356	Soc Nephrol. 1999; 10(6):1204-13

- 359 36. Vernon D, Bertuccio CA, Marlier A, Reidy K, Garcia AM, Jiminez J, Velzquez H,
- 360 Kashgarian M, Moeckel GW, Tufro A. Podocyte vascular endothelieal growth factor
- $(Vegf_{164})$ overexpression causes severe nodular glomeruloscelrosis in a muse model of type
- 362 diabetes. Diabetologia 2011;54(5);1227-1241.
- 363 37. Lee EY, Chung CH, Kim JH, Joung HJ, Hong SY. Antioxidants ameliorate the expression
- of vascular endothelial growth factor mediated by protein kinas C in diabetic podocytes.
 Nephrol Dial Transplant 2006;21(6): 1496-503
- 366 38. Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R.
 367 Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing
- vascular endothelial growth factor antibody. Diabetes. 2002; 51(10):3090-4.
- 369 39. Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S: Blockade of vascular
 and endothelial growth factor signalling ameliorates diabetic albuminuria in mice. J Am Soc
 371 Nephrol. 2006, 17: 3093-3104.
- 372 40. Guo L, Jiang F, Tang Y-T, Si M-Y, Jiao X-Y. The Association of Serum Vascular
- Endothelial Growth Factor and Ferritin in Diabetic Microvascular Disease Diabetes.
 Technol & Therapeutics 2014;16:224-234
- 41. Anderson CE, Hamm LL, Batuman G, Kumbala DR, Chen C-S, Kallu SG, Siriki R, Gadde
- 376 S, Kleinpeter MA, Krane NK, Simon EE, He J and Chen J. The association of angiogenic
- factors and chronic kidney disease. BMC Nephrology 2018;19:117
- 378 42. Eugene G. Butkowski & Herbert F. Jelinek. Hyperglycaemia, oxidative stress and
- inflammatory markers, Redox Report. 2016;22:6, 257-264,

380	43. Huffman FG, Vaccaro JA, Zarini GG, Biller D, Dixon Z. Inadequacy of micronutrients, fat,
381	and fiber consumption in the diets of Haitian-, African- and Cuban-Americans with and
382	without type 2 diabetes. Int ##J Vitam Nutr Res. 2012; 82(4):275-87.
383	
384	
385	
386	Legend
387	Table 1. Demographic, clinical, biochemical and haematological characteristics of African-
388	Caribbean and Caucasian patients with type 2 diabetes
389	
390	Table 2. Multivariate regression analysis with LPS-stimulated VEGF release corrected for
391	monocyte as the dependent variable
392	
393	Figure 1. Fasting mean (SEM), plasma lipid hydroperoxide (LOOH) in open bars, and vascular
394	endothelial growth factor (VEGF) in solid bars, after stimulation with lipopolysaccharide
395	corrected for monocyte count in whole blood cell cultures from patients of African- Caribbean
396	(AC) and Caucasian (CA) origin with type 2 diabetes
397	
398	
399	

Demographic, clinical	African-Caribbean	Caucasian	
biochemical and haematological	(n=22)	(n=30)	р
parameters			
Age (years)	63.0 ± 6.4	59.0 ± 10.4	0.12
Duration of diabetes	13.0 ± 9.5	8.3 ± 6.4	0.04
BMI (Kg/m ²)	28.8 ± 2.8	29.8 ± 5.6	0.47
Systolic blood pressure(mmHg)	158.9 ± 17.8	153.8 ± 25.8	0.44
Diastolic blood pressure (mmHg)	90.9 ± 8.2	87.4 ± 11.9	0.56
Gender (Male/Female) %	57/43	32/68	0.08
Smoking History (%)			
Current	9	11	
Previous	27	49	0.005
Never	64	40	
Microalbuminuria (%)	40	36	0.79
Total Cholesterol (mmol/L)	5.3 ± 0.8	5.4 ± 0.8	0.51
LDL-cholesterol (mmol/L)	2.2 ± 0.59	2.6 ± 0.91	0.06
HDL-cholesterol (mmol/L)	1.61 ± 0.48	1.35 ± 0.56	0.07
Triglycerides (mmol/L)	1.3 ± 0.5	1.8 ± 0.9	0.03
Fasting plasma glucose (mmol/l)	9.2 ± 3.8	10.9 ± 4.6	0.18

HbA1c (%)	8.3 ± 0.9	7.8 ± 1.8	0.21
Platelet count ($x10^{9}/L$)	196.9 ± 57.9	236.8 ± 74.5	0.07
Monocyte count $(x10^9/L)$	0.21 ± 0.1	0.36 ± 0.17	0.001

¹ Data expressed as Mean \pm SD

¹ **Table 1**. Demographic, clinical, biochemical and haematological characteristics of African-Caribbean and Caucasian patients with type 2 diabetes patients

±

Variable	β-coefficient	t	P value	95% CI
Log ₁₀ LOOH	167.23	3.67	<0.001	75.6 to 258.9
Gender	-7.12	-0.45	0.66	-39.3 to 25.0
Current Smoker	-25.62	-0.98	0.33	-78.2 to 27.0
Previous Smoker	-33.63	-1.96	0.06	-68.1 to 0.8
Ethnicity	-24.36	-1.44	0.16	-58.4 to 9.6
Duration Diabetes	-1.43	-1.84	0.07	-3.0 to 0.1
Log ₁₀ triglyceride	-0.17	-0.31	0.76	-1.3 to 0.9

 $^{^{1}}$ Table 2. Multivariate regression analysis with increase in VEGF release corrected for monocyte count as the dependent variable

