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ABSTRACT 

Background: Potentially lethal cardiac channelopathies/cardiomyopathies may underlie a 

substantial portion of sudden unexplained death in the young (SUDY).  The whole exome 

molecular autopsy (WEMA) represents the latest approach to postmortem genetic testing for 

SUDY.   However, proper variant adjudication in the setting of SUDY can be challenging.  

Methods: From January 2012 through December 2013, 25 consecutive cases of SUDY aged 

from 1-40 years (average age at death 27 ± 5.7 years; 13 white, 12 black) from Cook County, 

Illinois, were referred following a negative (n=16) or equivocal (n=9) conventional autopsy. A 

WEMA with analysis of 99 sudden death-susceptibility genes was performed.  The predicted 

pathogenicity of ultra-rare, non-synonymous variants (NSVs) was determined using the 

American College of Medical Genetics (ACMG) guidelines. 

Results: Overall, 27 ultra-rare NSVs were seen in 16/25 (64%) SUDY victims. Among black 

individuals, 9/12 (75%) had an ultra-rare NSV compared with 7/13 (54%) white individuals. Of 

the 27 variants, 10 were considered “pathogenic (P)” or “likely pathogenic (LP)” in 7/25 (28%) 

individuals in accordance with the ACMG guidelines. P / LP variants were identified in 5/16 

(31%) of autopsy-negative cases and in 2/6 (33%) SUDY victims with equivocal findings of 

cardiomyopathy.  Overall, 6 P/LP variants in 4/25 (16%) cases were congruent with the 

phenotypical findings at autopsy and therefore considered “clinically actionable”.  

Conclusions: WEMA with gene-specific surveillance is an effective approach for the detection 

of potential pathogenic variants in SUDY cases.  However, systematic variant adjudication is 

crucial to ensure accurate and proper care for surviving family members. 

KEY WORDS: Genetics, Sudden Death, Channelopathies, Cardiomyopathies 
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CLINICAL PERSPECTIVE 

What is new?  

 The first population-based, case-series study involving the whole exome 

sequencing-based cardiac channelopathy/cardiomyopathy gene specific molecular 

autopsy of sudden unexplained death in the young (SUDY) cases within the 

United States. 

 

What are the clinical implications?  

 While the ACMG guidelines are useful, careful evaluation of the decedent’s 

autopsy findings and/or pre-mortem clinical phenotype remains critical before 

adjudicating a variant as the definitive cause of death.  

 The goal of these investigative studies is to provide closure to families 

surrounding the loss of their loved one, but perhaps the only thing worse than no 

answer, is to give a false answer prematurely. 
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INTRODUCTION 

Sudden cardiac death is a major world-wide public health burden with an estimated annual 

incidence ranging from 180,000 to 450,000 
1
 in the United States and as many as 3.7 million 

deaths globally 
2
. The majority of these deaths are due to coronary artery disease among the 

elderly 
3
. However, approximately 2,000 to 5,000 young people between 1 to 35 years of age die 

suddenly each year in the United States 
4
. For many of these sudden deaths in the young, a 

comprehensive medico-legal investigation including a conventional autopsy examination 

elucidates a clear cause of death. However, in up to 40% of these cases, gross and microscopic 

inspection of the heart and other organs fails to reveal a definite cardiac/non-cardiac etiology
5
, 

and are categorized as autopsy negative sudden unexplained death in the young (SUDY). 

Potentially lethal and heritable cardiac channelopathies like long QT syndrome (LQTS), 

catecholaminergic polymorphic ventricular tachycardia (CPVT), and Brugada syndrome (BrS), 

are associated typically with grossly and histologically normal hearts and may account for a 

significant portion of SUDY. Additionally, heritable cardiomyopathies, including hypertrophic 

cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic cardiomyopathy 

(ACM), may present with a mild structural phenotype that could escape detection at autopsy. 

Together, these genetic heart diseases may be the underlying etiology for a significant percentage 

of SUDY cases.  

Recently, guidelines for autopsy investigations of SUDY cases stipulate procurement and 

retention of tissue suitable for DNA extraction as a class I recommendation and advise that 

postmortem genetic testing (i.e. the molecular autopsy) be considered as the new standard of care 

in the decedent’s evaluation 
6-8

. With at least 99 sudden death-susceptibility genes to date, post-

mortem genetic testing with whole exome sequencing (WES) and targeted gene analysis 
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represents a cost- and time-effective approach for performing the molecular autopsy. While there 

is increasing evidence to support the use of a whole exome molecular autopsy (WEMA) 
5, 9-15

, 

standardization of the procedure for characterizing putative pathogenic mutations is crucial to 

enable proper counseling of surviving family members and accurate publishing for scientific 

progress. Recently, the American College of Medical Genetics (ACMG) has provided guidelines 

for the interpretation of sequence variants 
16

 which may be helpful in delineating the predicted 

pathogenicity of variants identified by WEMA in SUDY cases.   

Here, we describe a cohort of 25 unrelated SUDY victims referred consecutively by the 

Office of the Medical Examiner, Cook County, Illinois. We performed a WEMA to determine the 

spectrum and prevalence or ultra-rare, nonsynonymous variants (NSVs) within sudden death-

susceptibility genes and demonstrate use of both the ACMG guidelines and the necropsy-derived 

phenotype data for proper variant adjudication.  

MATERIALS AND METHODS: 

The data, analytical methods, and study materials will not be made available to other researchers 

for the purposes of reproducing the results or replicating the procedure.  

Study Subjects 

From January 2012 to December 2013, 25 consecutive, unrelated SUDY cases were referred to 

the Windland Smith Rice Sudden Death Genomics Laboratory at the Mayo Clinic in Rochester, 

Minnesota, to undergo WEMA following Mayo Clinic IRB approval. All 25 cases underwent a 

comprehensive autopsy by the Office of the Medical Examiner from Cook County, Illinois. 

Enrollment criteria required sudden death of an individual between the ages of 1 and 40 years of 

age which remained unexplained or equivocal following a comprehensive autopsy. 
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Control Population 

973 European white control exomes (509 females, 464 males) from the ICR1000 UK exome 

series and the 1958 Birth Cohort study were included for a case:control subset analysis of genetic 

variation amidst these 99 genes between Caucasian decedents and these controls..
17

 As 

previously reported, exome sequencing was performed using the Illumina TruSeq and Illumina 

instruments.
17

 

DNA Isolation  

Genomic DNA was isolated from autopsy whole blood or frozen tissue using the Gentra 

Puregene Blood Kit (Qiagen, Maryland, US) following the manufacturer’s protocol.  

Whole Exome Next-Generation DNA Sequencing  

Genomic DNA samples were submitted to Mayo Clinic’s Advanced Genomics Technology 

Center for WES. The Bravo liquid handler and Aligent’s protocol was used to prepare paired-end 

libraries, and DNA was fragmented using a Covaris E210 sonicator. Agencourt AMPure SPRI 

beads were used to purify the constructs. SureSelect forward and Agilent SureSelect ILM Pre-

Capture Indexing reverse primers were used to enrich the DNA fragment libraries, which were 

analyzed with Agilent Bioanalyzer DNA 1000 chip. 

Exome capture was performed with the SureSelect XT Human All Exon V5 plus UTR 

Target Enrichment System (Agilent, Santa Clara, California). Dynal Dynabeads MyOne 

Streptavidin T1 captured the DNA:RNA hypbrids, and Agencourt Ampure XZP beads eluted 

DNA from the beads, which were amplified with Agilent Sure Select Post-Capture Indexing 

forward and Index PCR reverse primers. Sequencing of the exome libraries was completed with 
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Illumina HiSeq 2000 platform (San Diego, California) and TruSeq SBS sequencing kit V3 

reagents. 

Variant Filtering and Pathogenicity Assessment 

Following WES, variants were filtered using Qiagen’s Ingenuity® Variant Analysis™ software 

(Qiagen Bioinformatics, Redwood City, California). Variants were included only if they met the 

following filtering parameters: 1) had a high quality score (read depth > 10 reads, call quality > 

20, genotype quality > 20, and present in genes outside the top 1% of exonically variable genes 

and top 5% of exonically variable 100 base windows), 2) were NSVs (i.e. missense, nonsense, 

frameshift insertion/deletion [INDEL], in-frame INDEL, or splice error), and 3) met our  rarity 

threshold (minor allele frequency [MAF] ≤ 0.00005 in any ethnic group within Exome 

Aggregation Consortium [ExAC, n=60,706]
18

, 1,000 Genome Project [1KG, n=1,094]
19

, and the 

National Heart, Lung and Blood Institute Grand Opportunity Exome Sequencing Project [ESP, 

n=6,503] databases). Variants meeting the above criteria underwent a further gene-specific 

surveillance for all known cardiac channelopathy- , cardiomyopathy-, and sudden unexplained 

death in epilepsy (SUDEP)-susceptibility genes (N=99, Supplemental Table 1).  

The ACMG guidelines for the interpretation of sequence variants were used to classify 

identified variants as pathogenic (P), likely pathogenic (LP), or variant of uncertain significance 

(VUS) 
16

.  To be considered “clinically actionable”, the variant had to meet ACMG guideline 

criteria for a P or LP variant designation and be congruent with the presence/absence of disease-

gene suggested autopsy findings.   Here in, we consider a “clinically actionable” variant as a LP 

or P variant that should immediately prompt the physician to perform mutation-specific cascade 

genetic testing besides the standard cardiology clinical evaluation in all first-degree relatives of 

the deceased.  Further, among those relatives who test positive for the implicated variant, 
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periodic re-assessment of potential disease manifestation related to the identified disease-

susceptibility variant should be performed.  

Candidate disease-causing variants identified through WEMA were confirmed in the 

decedents’ genomic DNA using standard polymerase chain reaction (PCR) and Sanger 

sequencing methods.  PCR primers, conditions, and sequencing methods are available upon 

request. 

Statistical Analysis 

Fisher’s exact tests were performed to determine statistical significance between two groups.  A 

p<0.05 was considered to be significant.  

 

RESULTS: 

Sudden Unexplained Death in the Young Cohort 

The demographics for the 25 SUDY cases are summarized in Table 1. The average age at death 

was 27 ± 5.7 years. There were 17 males (68%) and 8 (32%) females. Thirteen (52%) cases were 

white and 12 (48%) were black. Sixteen (64%) cases were autopsy negative and 9 (36%) cases 

had equivocal findings or inconclusive cardiac abnormalities with 6 (24%) having equivocal 

findings for a possible cardiomyopathy. The 25 SUDY victims died during the following 

circumstances: unwitnessed (10; 40%), sleep (9; 36%), nonspecific (3; 12%) and exertion or 

auditory trigger (3; 12%). Eleven (44%) SUDY cases had a personal history of either illicit drug 

use (24%) or mental illness (20%). A prior history of arrhythmia or syncope was noted in 2 (8%) 

cases. No cases had a known family history of arrhythmia, syncope, seizure, or cardiac arrest.  
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Yield of Ultra Rare-Non-Synonymous Variants (NSVs) in Sudden Death-Susceptibility 

Genes 

Following WEMA, we identified 27 ultra-rare (MAF < 0.00005), NSVs within the 99 sudden 

death-susceptibility genes in 16/25 (64%) individuals overall including 9/12 (75%) black and 

7/13 (54%) white decedents (Figure 1 and Table 2).  Compared to the 54% yield observed in 

white cases, ultra-rare NSVs were identified in 281/973 (28.9%, p=0.064) European white 

controls (Figure 2). Interestingly, 4/13 (30.8%) white SUD cases hosted multiple ultra-rare 

NSVs amidst these 99 genes versus 43/973 (4.4%, p=0.002) of the European controls (Figure 

2).  Of the 27 NSVs identified, 4 (p.R783H-MYH7, p.L567Q-SCN5A, p.Y462S-RYR2, and 

p.N4763S-RYR2) were present in “major” genes (i.e. strong evidence for disease association) for 

cardiac channelopathies and cardiomyopathies (KCNQ1, KCNH2, SCN5A, RYR2, MYH7, and 

MYBPC3) and 23 variants were in “minor” genes (i.e. limited evidence genes) (Table 2 and 

Figure 3).  None of the variants were identified within any of the three SUDEP-susceptibility 

genes (KCNA1, SCN1A, and SCN8A). 

Variant Adjudication with ACMG Guidelines 

Of the 27 ultra-rare NSVs, 10 NSVs (37%) were classified as pathogenic (P) variants or likely 

pathogenic (LP) variants based on the ACMG guideline criteria (Figure 1 and Table 2).  These 

10 NSVs were found in 7/25 (28%) individuals [5/13 (38%) white and 2/12 (17%) black].  

Compared with the white SUDY cases, 36/973 (3.7%) white controls hosted an ultra-rare NSV in 

> 1 of the 99 genes that would be graded as either a LP or P variant (p=0.000098).  Multiple LP 

or P variants were identified in 2/13 (15.4%) of the white sudden death victims versus 2/973 

(0.21%, p=0.00094) white controls (Figure 2).  P or LP variants were identified in 5/16 (31%) 

autopsy negative SUDY victims and in 2/6 (33%) SUDY victims that had an equivocal finding 
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of cardiomyopathy at autopsy.  There were 9 (36%) decedents who each hosted an ultra-rare 

variant of uncertain significance (VUS).  These VUSs are potentially informative given their 

ultra-rare status.  However, all 17 VUSs identified occurred in so called “minor” genes where the 

strength of evidence for disease association is limited (Figure 3).  Furthermore, only 5 of the 17 

VUS matched the phenotype at autopsy.  Although there appears to be genotype-phenotype 

concordance potentially, these variants could not be considered the underlying cause of death 

until further evidence for pathogenicity is satisfied with either functional validation studies or 

other criteria in the ACMG guidelines. Twelve VUSs were discordant with the phenotype 

observed at autopsy and therefore were dismissed as likely benign (Figure 3). 

Clinically Actionable Variants 

The ACMG has proposed that the use of the term “likely pathogenic” (and therefore also 

pathogenic) should mean that the variant of interest has a > 90% certainty of being disease-

causing 
16

. However, some NSVs identified through WES that meet the ACMG criteria for a P or 

LP designation, may not be consistent with the autopsy findings for the SUDY.   Of the 10 P/LP 

variants that were identified, 6 variants (p.R350Q-DES, p.R783H-MYH7, p.N4763S-RYR2, 

p.L567Q-SCN5A, p.V2736fs-TTN, and p.D22167fs-TTN) identified in 4/28 (14.3%) were 

congruent with the SUDY’s phenotype at autopsy and therefore deemed “clinically actionable” 

(Table 2 and Figure 3).   

The remaining 4 P/LP variants (p.Q1289X-DSP, p.K942X-MYH6, c.903+1 G>A-NEBL, 

and p.Y462S-RYR2) were not congruent (Table 2 and Figure 3) with autopsy findings.  

Although p.Q1289X-DSP, p.K942X-MYH6, c.903+1 G>A-NEBL, all satisfy the ACMG 

guideline criteria for P or LP designation based on being an “ultra-rare” and null variant (i.e. 

nonsense or splice-error), these variants in cardiomyopathy-associated genes were identified in 
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SUDY victims with no autopsy findings suggestive of a structurally abnormal heart.  Therefore, 

these variants may require additional lines of evidence prior to assigning them as being disease-

causing and relevant to surviving family members.  The p.Y462S-RYR2 variant was identified in 

a patient with autopsy findings consistent with HCM.  RYR2 mutations cause CPVT, a 

structurally normal heart-associated arrhythmia syndrome. This SUDY case also hosted a desmin 

(p.R350Q-DES) LP variant that would be consistent with his autopsy findings and most likely 

represents the pathogenic basis for the decedent’s sudden death.     

Case Summaries for SUDY Victims with a Clinically Actionable Variant 

Overall, 4/25 (16%) of the SUDY cases hosted at least one “clinically actionable” variant.  A 14-

year-old white male (Case 1, Table 2) who experienced an exertion-related autopsy negative 

sudden death, hosted a p.L567Q-SCN5A pathogenic variant and a p.N4763S-RYR2 likely 

pathogenic variant.   SCN5A encodes a voltage-gated cardiac sodium channel, and mutations in 

the gene have been associated with LQT3 
20

 and BrS1 
21

. Electrophysiological studies of the 

p.L567Q-SCN5A mutation have demonstrated a significant effect on sodium channel 

inactivation
22

, and the patients with this specific mutation are particularly prone to sudden death 

23
.   RYR2 gene mutations cause CPVT, a structurally normal heart associated arrhythmia 

syndrome that often manifests during exertion.   

A 27-year-old black female (Case 9, Table 2) who collapsed suddenly with seizure-like 

activity, had a p.R783H-MYH7 pathogenic variant and a p.V27236fs-TTN likely pathogenic 

variant. She had a history of a cardiac blood clot four years prior to death and her autopsy was 

equivocal for ischemic cardiomyopathy. The MYH7 gene is associated with familial HCM and 

DCM. Although the p.R783H variant results in a conservative amino acid substitution, this 

specific variant has been observed previously in two individuals with cardiomyopathy 
24

. TTN 
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frameshift mutations have been associated with DCM.  The TTN frame-shift variant identified in 

this SUDY case localizes to the sequence segment encoding for the A-band region of the protein, 

where such frameshift mutations are overrepresented in cases of DCM compared to controls 
25

. 

A 28-year-old white male (Case 15, Table 2), found dead in bed, hosted both a p.R350Q-

DES and a p.Y462S-RYR2 likely pathogenic variant. He had history of arrhythmias and was 

scheduled for cardioversion later that year. Additionally, his autopsy was equivocal for HCM 

with microscopic findings of myocyte hypertrophy and gross findings of an enlarged tricuspid 

valve with abnormal chordae, enlarged chambers, left ventricle hypertrophy, and fusion of right 

and non-coronary cusps of the aortic valve. His heart was enlarged, weighing 610g. His mother 

was diagnosed previously with HCM.  DES -encoded desmin is a class III intermediate filament 

specific to muscle cells. Mutations in desmin have been associated with HCM, DCM, 

myofibrillar myopathy, and sudden death 
26-29

.  RYR2 encodes the cardiac ryanodine receptor 

found in the sarcoplasmic reticulum of cardiac muscle. The receptor facilitates calcium release 

that is crucial for cardiac contraction.  

A 36-year-old white female (Case 23, Table 2), who was found unresponsive in bed, 

hosted a p.D22167fs-TTN frameshift variant designated as likely pathogenic. She had history of 

heart murmur of an unknown type.  Although originally considered autopsy negative, 

microscopic findings at autopsy included mild to moderate interstitial fibrosis as well as myocyte 

hypertrophy. The mutation results in a frameshift mutation within the region encoding for the A-

band portion of the TTN protein where frame-shift mutations are overrepresented in DCM cases 

when compared to controls 
25

.  

DISCUSSION 

Since providing the first ever proof-of-principle case report of a WES-based comprehensive 

molecular autopsy of a previously healthy 16-year-old SUDY victim, where we identified a 
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pathogenic MYH7 mutation 
30

,  the utility of the whole exome molecular autopsy (WEMA) has 

been recognized increasingly as an efficient and cost-effective method for comprehensive post-

mortem genetic evaluation of SUDY cases 
5, 9-15

. 

Here, we present the first population-based study involving WEMA of SUDY cases 

within the United States.  Using WES and a gene-specific analysis involving 99 cardiac 

channelopathy-, cardiomyopathy-, and SUDEP-associated genes, we identified an ultra-rare 

(MAF < 0.00005; 1 in 20,000 alleles), amino acid altering variant in a sudden death-

susceptibility gene in 54% of our white and 75% of our black SUDY victims.   

In 2016, Bagnall and colleagues reported on the genetic analysis of 59 cardiac 

channelopathy/cardiomyopathy genes in a similar SUDY cohort of 113 cases from Australia or 

New Zealand
5
.  Using a MAF < 0.1% (i.e. 1 in 1000 alleles), 27% of their cases hosted what they 

termed a ‘clinically relevant’, ‘pathogenic’ or ‘likely pathogenic’ cardiac gene mutation.  Of the 

36 ‘clinically relevant’ variants identified, 30 had a MAF < 0.00005 (the threshold used in our 

study).  Thus, 6 of the variants identified would not have been considered to be potentially 

disease-causing using our more stringent MAF cut-off.  In fact, 4 of these variants have a higher 

prevalence in ExAC (1 in 500 to 1 in 1000 subjects) than the estimated disease prevalence (for 

example, 1 in 2000 for LQTS) that they would be associated with. 

While both studies support the utility of WEMA to identify potential sudden death-

causing variants within sudden death-susceptibility genes, the challenge of the WES-based 

molecular autopsy does not lie in the identification of variants, but rather, in the adjudication of 

their predicted pathogenicity. Accurate variant classification is crucial to enable proper 

counseling of surviving family members and accurate publishing for scientific progress.  
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Erroneously or prematurely adjudicating ambiguous variants as pathogenic has the 

potential to harm patients and their families. Tragically, this became a reality for one family 

described by Ackerman et al., as they dealt with the disastrous consequences of unnecessary 

treatment based on an erroneously interpreted variant in KCNQ1 
29

. Our group and others have 

estimated previously that as much as 10% of the variants published as LQTS-associated 

mutations may be classified incorrectly
31, 32

. This number is likely to be higher when accounting 

for all sudden death genes, as a recent study has indicated that as many as 30% of all disease-

causing genetic variants in the literature may have been reported incorrectly
33

. 

In order to assist in the interpretation of identified variants, the ACMG guidelines provide 

a framework for variant classification by incorporating a variety of weighted factors that lead to 

a final delineation of pathogenic (P), likely pathogenic (LP), benign, or  variant of uncertain 

significance (VUS) 
16

. Using strict criteria, variants are assessed for “very strong” (i.e. a null 

variant), “strong” (i.e. the same amino acid change as a previously established pathogenic 

variant, confirmed as de novo when there is no family history, or is associated with well-

established functional studies demonstrating a deleterious effect), “moderate” (i.e. absence from 

large control populations like ExAC), or “supporting” (i.e. multiple lines of computational 

evidence predicting a deleterious effect) evidence for pathogenicity. Points earned in each 

category are combined in a variety of ways to reach a final variant classification.  

Recently, following interrogation of 77 cardiac channelopathy/cardiomyopathy genes, 

Lahrouchi and colleagues reported a yield of ACMG guideline predicated “pathogenic” / ”likely 

pathogenic” variants in 13% of their mostly European decent (88%) cohort of 302 SUDY cases 

without structural heart disease or nonspecific cardiovascular changes
15

.  Congruent with a 

phenotype of negative-autopsy and suspected sudden cardiac arrhythmia death, 85% of the 
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“pathogenic” / ”likely pathogenic” variants identified by Lahrochi and colleagues were in major 

cardiac channelopathy-susceptibility genes (i.e. KCNQ1, KCNH2, SCN5A, and RYR2)
15

.   

While using their own interpretation for labeling variants as ‘pathogenic’ or ‘likely 

pathogenic’, Bagnall and colleagues reported finding such variants in 27% of their SUDY cases
5
.  

However, when applying the ACMG guideline criteria to their identified variants, this yield 

decreases to only 7.1% (8/113).  In fact, based on the ACMG guidelines, 28 of their 36 

‘pathogenic’ or ‘likely pathogenic’ variants would be demoted to a VUS.  The difference in 

variant interpretation stems largely from the over-calling of missense variants as being ‘likely 

pathogenic’.  In their study, missense variants with a MAF < 0.1% that were predicted to be 

damaging by at least 2 out of 3 in silico tools (SIFT, Polyphen, Mutation Taster) and involving 

conserved nucleotides (GREP score ≥ 2) were considered as ‘likely pathogenic’
5
. However, 

according to ACMG, this level of evidence alone would be deemed insufficient to promote a 

variant to a “likely pathogenic” designation.  

Based on ACMG guideline criteria, 28% of our overall cohort hosted at least one 

“pathogenic” / “likely pathogenic” variant.  The yield of “pathogenic”/ “likely pathogenic” 

variants was about 30% for both the autopsy-negative and equivocal cases with cardiomyopathic 

findings at autopsy.  This reflects a 20% higher yield of ACMG guideline predicated variants in 

our cohort than what was observed in the phenotypically and demographically similar cohort 

investigated by Bagnall and colleagues
5
.   The large difference in yield may stem from 

differences in the next-generation sequencing platforms and bioinformatics-based variant 

annotation and analytical pipelines that were used as well our inclusion of 40 additional genes 

that were not included in the Bagnall study
5
.  In fact, 3 of our 25 (12%) cases had either a TTN 
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frameshift (2 cases) or NEBL splice-error (1 case) “likely pathogenic” variant.  However, these 

two genes were not included in the Bagnall study
5
. 

  However, while 28% of our SUDY cases hosted a “pathogenic” or “likely pathogenic” 

variant based on the ACMG guidelines, the decedent’s phenotype at autopsy was congruent with 

the genetic finding in only 14% of cases and therefore considered “clinically actionable”.  These 

“clinically actionable” pathogenic/ likely pathogenic variants have sufficient genotype-

phenotype evidence to warrant cascade genetic testing of surviving family members. However, 

other ultra-rare variants that don’t rise to our present consideration of “clinically actionable” 

might be deemed as nevertheless worthy of careful research/clinical-based investigations to see if 

the variant co-segregates with the disease phenotype which if it did, then those variants might be 

elevated to a “clinically actionable” status that would warrant cascade genetic testing for future 

family members. 

Interestingly, three cardiomyopathy-associated genes variants that satisfied the ACMG 

guideline criteria for pathogenic or likely pathogenic designation based on being an “ultra-rare” 

and null variant (i.e. nonsense or splice-error) were identified in SUDY victims with no autopsy 

findings suggestive of a structurally abnormal heart. Although some cardiomyopathy-associated 

gene variants can provide a potentially lethal arrhythmic substrate prior to the development of 

overt cardiomyopathic changes, because these identified variants were not congruent with the 

observed phenotype, the designation of these variants, as ACMG guideline-predicated 

“pathogenic” or “likely pathogenic” variants, should be rendered with some residual skepticism.   

It is noteworthy that 1/3 of the ultra-rare variants identified were categorized as "needs 

further functional study."  These variants are potentially informative clinically given their 

presence in disease-associated genes and their ultra-rare status.  However, they currently lack 
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sufficient clinical evidence (i.e. co-segregation with disease phenotype) and research-based 

evidence (i.e. in vitro functional validation assay) to be put forward as a disease-causing, 

clinically relevant variant.     

CONCLUSIONS 

Despite 64% of this population-based cohort of consecutive, unrelated SUDY cases having ultra-

rare, nonsynonymous variants within sudden death-susceptibility genes, 28% had a variant 

classified as either “pathogenic” or “likely pathogenic” based on the ACMG guidelines. 

Furthermore, 14% of cases had a congruent genotype-phenotype correlation enabling the variant 

to be clinically actionable for cascade genetic testing of surviving family members. The 

substantial number of VUSs demonstrates the necessity for further standardizing the adjudication 

of putative pathogenic variants. While the current ACMG guidelines are useful, careful 

evaluation of the decedent’s autopsy findings and/or pre-mortem clinical phenotype remains 

critical before adjudicating a variant as the definitive cause of death in SUDY cases. The goal of 

these investigative studies is always to provide closure to families surrounding the loss of their 

loved one, but perhaps the only thing worse than no answer, is to give a false answer 

prematurely. 
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Table 1: SUDY Cohort Demographics   

Cases 25 

Age (years) 27.0 ± 5.7 

Male  17 (68%) 

Female 8 (32%) 

White  13 (52%) 

Black 12 (48%) 

Autopsy Negative 16 (64%) 

Equivocal  9 (36%) 

Equivocal Cardiomyopathy  6 (24%)  

Event: Unwitnessed 10 (40%) 

Event: Sleep 9 (36%) 

Event: Nonspecific  3 (12%) 

Event: Exertion/Auditory  3 (12%) 

Illicit drug use 6 (24%) 

Mental Illness  5 (20%) 

Arrhythmia or syncope 2 (8%) 
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Table 2:  SUDY Case Summary and Variant Adjudication 

Case Sex 
Age 

(years) 
Race 

Setting of 

SUDY 
Autopsy Findings 

Autopsy 

Classification 

Equivocal 

Cause 
Variant(s) 

Associated 

Disease(s) 

ACMG 

Criteria Met 

ACMG 

Classification 
Clinically Actionable?  

1 M 14 White Exertion Contraction band necrosis 
Autopsy 

negative  
- 

p.L567Q-SCN5A 
LQTS, BrS, 

DCM 

PS1, PS3, PS4, 

PM1, PM2, PP3 
Pathogenic  Yes 

p.N4763S-RYR2 CPVT, ACM PM1, PM2, PP2 Likely pathogenic  Yes 

p.Y332C-PDLIM3 DCM PM2 VUS No 

p.G28A-MYPN HCM, DCM PM2 VUS No 

2 M 19 Black Auditory 

Interventricular septum 

hypertrophy, right atrial 

enlargement with 

endocardial fibroelastosis, 

right ventricular elongated 

chordae 

Autopsy 

negative 
- p.S688P-PKP2 ACM PM2 VUS No 

3 F 19 White Unwitnessed None 
Autopsy 

negative  
- p.I591V-ACTN2 HCM, DCM PM2 VUS No 

4 F 19 White Sleep None 
Autopsy 

negative  
- - - - - - 

5 F 21 White Unwitnessed  None 
Autopsy 

negative  
- 

c.903+1G>A-

NEBL 
DCM PVS1, PM2 Likely pathogenic  No 

6 F 23 White Unwitnessed None Equivocal  
Possible drug 

toxicity  
- - - - - 

7 M 25 Black Sleep 

Thin LV wall (0.6cm), 

scattered hypertrophic 

myocytes 

Equivocal  Cardiomyopathy  p.K120T-KCNJ2 LQTS PM2 VUS No 

8 M 26 White Sleep None 
Autopsy 

negative  
- - - - - - 
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9 F 27 Black Nonspecific  
LV hypertrophy (1.8cm), 

LV posterior MI scarring 
Equivocal  

Ischemic 

cardiomyopathy  

p.R783H-MYH7 HCM, DCM 

PS1, PM1, 

PM2, PM5, 

PM6, PP2, PP4 

Pathogenic  Yes 

p.V27236fs-TTN HCM, DCM PVS1, PM2 Likely pathogenic  Yes 

p.V190M-JUP ACM PM2 VUS - 

10 F 27 Black Unwitnessed 
Interstitial and perivascular 

fibrosis  

Autopsy 

negative 
- p.R25W-LAMP2 HCM PM2 VUS - 

11 M 27 Black Unwitnessed None Equivocal  
Possible 

sarcoidosis  
- - - - - 

12 M 27 White Sleep 

Focal perivascular fibrosis, 

probe-patent foramen 

ovale 

Autopsy 

negative  
- p.K942X-MYH6 HCM, DCM PVS1, PM2 Likely pathogenic  No 

13 M 28 Black Unwitnessed  
Focal myocyte 

hypertrophy  

Autopsy 

negative  
- p.E44Q-ILK DCM PM2 VUS No 

14 M 28 Black Unwitnessed 
Intraventricular septum 

hypertrophy (2.0cm) 
Equivocal Cardiomyopathy  p.A52P-MYOM1 HCM PM2 VUS No 

15 M 28 White Sleep 

Enlarged heart (610g), LV 

hypertrophy, enlarged 

tricuspid valve with 

abnormal chordae, fusion 

of aortic valve cusps, 

myocyte hypertrophy   

Equivocal  
Hypertrophic 

cardiomyopathy  

p.Y462S-RYR2 CPVT, ACM 
PM1, PM2, 

PM5, PP2 
Likely pathogenic  No 

p.R350Q-DES DCM 
PM1, PM2, 

PM5, PP2 
Likely pathogenic Yes 

16 M 29 Black Exertion  

Focal interstitial and 

perivascular fibrosis, 

myocyte nuclear 

hypertrophy 

Equivocal  
Excited delirium 

(schizophrenia) 
p.R1899H-MYH6 HCM, DCM PM2 VUS No  

17 M 29 Black Unwitnessed Subendocardial fibrosis 
Autopsy 

negative  

 p.Q1289X-DSP ACM 
PVS1, PM2, 

PP3 
Pathogenic  No 

- 
p.F1198L-

LAMA4 
DCM PM2 VUS No 
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 p.R3Q-CTF1 DCM PM2 VUS No 

18 M 29 White Unwitnessed 
Focal interstitial and 

perivascular fibrosis 
Equivocal  Cardiomyopathy  - - - - - 

19 M 29 White Sleep None 
Autopsy 

negative  
- p.G8D-SCN4B LQTS PM2 VUS No 

20 M 30 Black Sleep None 
Autopsy 

negative  
- - - - - - 

21 M 30 White Nonspecific None 
Autopsy 

negative  
- - - - - - 

22 M 30 White Unwitnessed  None 
Autopsy 

negative  
- - - - - - 

23 F 36 White Sleep 
Interstitial fibrosis, 

myocyte hypertrophy  

Autopsy 

negative  
- 

p.D22167fs-TTN HCM, DCM PVS1, PM2 Likely pathogenic  Yes 

p.V585M-

CACNA1C 
BrS, LQTS PM2 VUS No  

24 M 37 Black Sleep 

Enlarged heart (625g), LV 

hypertrophy (2.2cm), 

intraventricular septum 

hypertrophy (2.0cm), 

myocyte fibrosis and 

disarray 

Equivocal  

 p.W427R-RBM20 DCM PM2 VUS No  

Hypertrophic 

cardiomyopathy   
p.A531T-MYLK2 HCM PM2 VUS No 

 p.P486L-TBX1 HCM PM2, PP2 VUS No 

25 F 39 Black Nonspecific  
Tunneling of LAD (1mm 

deep) 

Autopsy 

negative  
- - - - - - 
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FIGURES 

Figure 1:   Yield of Ultra-Rare Nonsynonymous Variants and ACMG Guideline-Designated 

Pathogenic/Likely Pathogenic Variants Identified in Sudden Unexplained Death in the Young -  Shown is 

a bar graph indicating the percent yield of “ultra-rare” (minor allele frequency < 0.005%) nonsynonymous 

variants and ACMG guideline predicated “pathogenic” / “likely pathogenic” variants detected among 99 cardiac 

channelopathy/cardiomyopathy/SUDEP-associated genes for our overall cohort and the ethnic-specific (white 

or black), autopsy negative, and autopsy equivocal subsets.  

 

Figure 2:  White Case: Control Comparative Analysis of Ultra-Rare Nonsynonymous Variants and 

ACMG Guideline-Designated Pathogenic/Likely Pathogenic Variants 

Shown is a bar graph indicating the percent yield of “ultra-rare” (minor allele frequency < 0.005%) 

nonsynonymous (NS) variants and ACMG guideline predicated “pathogenic” / “likely pathogenic” variants 

detected among 99 cardiac channelopathy/cardiomyopathy/SUDEP-associated genes for white sudden 

unexplained death in the young cases (n=13) and European white controls (n=973).  

 

Figure 3:  Variant Interpretation Flow-Diagram – Shown is a flow-diagram algorithm used to determine 

whether an identified “ultra-rare” non-synonymous variant was considered “clinically actionable”, “needs 

further functional study”, or presumed “likely benign”.   Numbers in parenthesis indicate number of variants. 

*Major genes include KCNQ1, KCNH2, SCN5A, RYR2, MYH7, and MYBPC3. Minor genes include all other 

genes in 99 gene panel. VUS = variant of uncertain significance.    
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